CSC304 Lecture 12

Mechanism Design w/ Money: Myerson's Auction

Recap: Revenue Maximization

- Single item auctions
- One bidder
> Value v is drawn from distribution with CDF F
> Strategyproof = post a price r
> Optimal $r^{*}=\operatorname{argmax}_{r} r \cdot(1-F(r))$
- Two bidders
$>$ Values v_{1} drawn from F_{1}, v_{2} drawn from F_{2}
> ??

Single-Parameter Environments

- Roger B. Myerson solved revenue optimal auctions in "single-parameter environments"
- Proposed a simple auction that maximizes expected revenue

Single-Parameter Environments

- Each agent $i . .$.
> has a private value v_{i} drawn from a distribution with CDF F_{i} and PDF f_{i}
$>$ is "satisfied" at some level $x_{i} \in[0,1]$, which gives the agent value $x_{i} \cdot v_{i}$
> is asked to pay p_{i}
- Examples
- Single divisible item
> Single indivisible item ($x_{i} \in\{0,1\}$ - this is okay too!)
$>$ Many items, single-minded bidders (again $x_{i} \in\{0,1\}$)

Myerson's Lemma

- Myerson's Lemma:

For a single-parameter environment, a mechanism is strategyproof if and only if for all i

1. x_{i} is monotone non-decreasing in v_{i}
2. $p_{i}=v_{i} \cdot x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$
(typically, $\left.p_{i}(0)=0\right)$

- Generalizes critical payments
> For every " δ " allocation, pay the lowest value that would have won it

Myerson's Lemma

- Note: allocation determines unique payments

$$
p_{i}=v_{i} \cdot x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)
$$

- A corollary: revenue equivalence
$>$ If two mechanisms use the same allocation x_{i}, they "essentially" have the same expected revenue
- Another corollary: optimal revenue auctions
> Optimizing revenue $=$ optimizing some function of allocation (easier to analyze)

Myerson's Theorem

- "Expected Revenue $=$ Expected Virtual Welfare"
$>$ Recall: $p_{i}=v_{i} \cdot x_{i}\left(v_{i}\right)-\int_{0}^{v_{i}} x_{i}(z) d z+p_{i}(0)$
$>$ Take expectation over draw of valuations + lots of calculus

$$
E_{\left\{v_{i} \sim F_{i}\right\}}\left[\Sigma_{i} p_{i}\right]=E_{\left\{v_{i} \sim F_{i}\right\}}\left[\Sigma_{i} \varphi_{i} \cdot x_{i}\right]
$$

- $\varphi_{i}=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}=$ virtual value of bidder i
- $\sum_{i} \varphi_{i} \cdot x_{i}=$ virtual welfare

Myerson's Theorem

- Myerson's auction:
> A strategyproof auction maximizes the (expected) revenue if its allocation rule maximizes the virtual welfare subject to monotonicity and it charges critical payments.
- Charging critical payments is easy.
- But maximizing virtual welfare subject to monotonicity is tricky.
> Let's get rid of the monotonicity requirement!

Myerson's Theorem Simplified

- Regular Distributions
> A distribution F is regular if its virtual value function $\varphi(v)=v-(1-F(v)) / f(v)$ is non-decreasing in v.
> Many important distributions are regular, e.g., uniform, exponential, Gaussian, power-law, ...
- Lemma
> If all F_{i} 's are regular, the allocation rule maximizing virtual welfare is already monotone.
- Myerson's Corollary:
> When all F_{i} 's are regular, the strategyproof auction maximizes virtual welfare and charges critical payments.

Single Item + Single Bidder

- Setup:
> Single indivisible item, single bidder, value v drawn from a regular distribution with CDF F and PDF f
- Goal:
> Maximize $\varphi \cdot x$, where $\varphi=v-\frac{1-F(v)}{f(v)}$ and $x \in\{0,1\}$
- Optimal auction:
$>x=1$ iff $\varphi \geq 0 \Leftrightarrow v \geq \frac{1-F(v)}{f(v)} \Leftrightarrow v \geq v^{*}$ where $v^{*}=\frac{1-F\left(v^{*}\right)}{f\left(v^{*}\right)}$
> Critical payment: v^{*}
$>$ This is VCG with a reserve price of $\varphi^{-1}(0)$!

Example

- Optimal auction:
$>x=1$ iff $\varphi \geq 0 \Leftrightarrow v \geq \frac{1-F(v)}{f(v)}$
$>$ Critical payment: v^{*} such that $v^{*}=\frac{1-F\left(v^{*}\right)}{f\left(v^{*}\right)}$
- Distribution is $U[0,1]$:
$>x=1$ iff $v \geq \frac{1-v}{1} \Leftrightarrow v \geq \frac{1}{2}$
$>$ Critical payment $=\frac{1}{2}$
> That is, we post the optimal price of 0.5

Single Item $+n$ Bidders

- Setup:
> Single indivisible item, each bidder i has value v_{i} drawn from a regular distribution with CDF F_{i} and PDF f_{i}
- Goal:
$>$ Maximize $\sum_{i} \varphi_{i} \cdot x_{i}$ where $\varphi_{i}=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}$ and $x_{i} \in$ $\{0,1\}$ such that $\sum_{i} x_{i} \leq 1$

Single Item $+n$ Bidders

- Optimal auction:
$>$ If all $\varphi_{i}<0$:
- Nobody gets the item, nobody pays anything
- For all $i, x_{i}=p_{i}=0$
> If some $\varphi_{i} \geq 0$:
- Agent with highest φ_{i} wins the item, pays critical payment
$\circ i^{*} \in \operatorname{argmax}_{i} \varphi_{i}\left(v_{i}\right), x_{i^{*}}=1, x_{i}=0 \forall i \neq i^{*}$
$\circ p_{i^{*}}=\varphi_{i^{*}}^{-1}\left(\max \left(0, \max _{j \neq i^{*}} \varphi_{j}\left(v_{j}\right)\right)\right)$
- Note: The item doesn't necessarily go to the highest value agent!

Special Case: iid Values

- Suppose all distributions are identical (say CDF F and PDF f)
- Check that the auction simplifies to the following > Allocation: item goes to bidder i^{*} with highest value if her value $v_{i^{*}} \geq \varphi^{-1}(0)$
$>$ Payment charged $=\max \left(\varphi^{-1}(0), \max _{j \neq i^{*}} v_{j}\right)$
- This is again VCG with a reserve price of $\varphi^{-1}(0)$

Example

- Two bidders, both drawing iid values from $U[0,1]$

$$
\begin{aligned}
& >\varphi(v)=v-\frac{1-v}{1}=2 v-1 \\
& >\varphi^{-1}(0)=1 / 2
\end{aligned}
$$

- Auction:
> Give the item to the highest bidder if their value is at least $1 / 2$
> Charge them $\max \left(1 / 2,2^{\text {nd }}\right.$ highest bid)

Example

- Two bidders, one with value from $U[0,1]$, one with value from $U[3,5]$
$>\varphi_{1}\left(v_{1}\right)=2 v_{1}-1$
$>\varphi_{2}\left(v_{2}\right)=v_{2}-\frac{1-F_{2}\left(v_{2}\right)}{f_{2}\left(v_{2}\right)}=v_{2}-\frac{1-\frac{v_{2}-3}{2}}{1 / 2}=2 v_{2}-5$
- Auction:
$>$ If $v_{1}<1 / 2$ and $v_{2}<5 / 2$, the item remains unallocated.
> Otherwise...
- If $2 v_{1}-1>2 v_{2}-5$, agent 1 gets it and pays max $\left(1 / 2, v_{2}-2\right)$
- If $2 v_{1}-1<2 v_{2}-5$, agent 2 gets it and pays $\max \left(5 / 2, v_{1}+2\right)$

Extensions

- Irregular distributions:
> E.g., multi-modal or extremely heavy tail distributions
> Need to add the monotonicity constraint
> Turns out, we can "iron" irregular distributions to make them regular and then use Myerson's framework
- Relaxing DSIC to BNIC
> Myerson's mechanism has optimal revenue among all DSIC mechanisms
> Turns out, it also has optimal revenue among the much larger class of BNIC mechanisms!

Approx. Optimal Auctions

- Optimal auctions become unintuitive and difficult to understand with unequal distributions, even if they are regular
> Simpler auctions preferred in practice
> We still want approximately optimal revenue
- Theorem [Hartline \& Roughgarden, 2009]:
> For iid values from regular distributions, VCG with bidderspecific reserve prices gives a 2-approximation of the optimal revenue.

Approximately Optimal

- Still relies on knowing bidders' distributions
- Theorem [Bulow and Klemperer, 1996]:
> For i.i.d. values,
E [Revenue of VCG with $n+1$ bidders] $\geq E$ [Optimal revenue with n bidders]
- "Spend that effort in getting one more bidder than in figuring out the optimal auction"

Simple proof

- One can show that VCG with $n+1$ bidders has the max revenue among all $n+1$ bidder strategyproof auctions that always allocate the item
> Via revenue equivalence
- Consider the auction: "Run n-bidder Myerson on the first n bidders. If the item is unallocated, give it to agent $n+1$ for free."
> $n+1$ bidder DSIC auction
> As much revenue as n-bidder Myerson auction

Optimizing Revenue is Hard

- Slow progress beyond single-parameter setting
> Even with just two items and one bidder with i.i.d. values for both items, the optimal auction DOES NOT run Myerson's auction on individual items!
> "Take-it-or-leave-it" offers for the two items bundled might increase revenue
- But nowadays, the focus is on simple, approximately optimal auctions instead of complicated, optimal auctions.

