CSC304 Lecture 12

Mechanism Design w/ Money: Myerson's Auction

Recap: Revenue Maximization

- Single item auctions
- One bidder
 - \succ Value v is drawn from distribution with CDF F
 - > Strategyproof = post a price r
 - > Optimal r^* = argmax_r $r \cdot (1 F(r))$
- Two bidders

> Values v_1 drawn from F_1 , v_2 drawn from F_2 > ??

Single-Parameter Environments

- Roger B. Myerson solved revenue optimal auctions in "single-parameter environments"
- Proposed a simple auction that maximizes expected revenue

Single-Parameter Environments

- Each agent *i*...
 - > has a private value v_i drawn from a distribution with CDF F_i and PDF f_i
 - ➢ is "satisfied" at some level $x_i \in [0,1]$, which gives the agent value $x_i \cdot v_i$
 - \succ is asked to pay p_i

• Examples

- Single divisible item
- > Single indivisible item ($x_i \in \{0,1\}$ this is okay too!)
- > Many items, single-minded bidders (again $x_i \in \{0,1\}$)

Myerson's Lemma

• Myerson's Lemma:

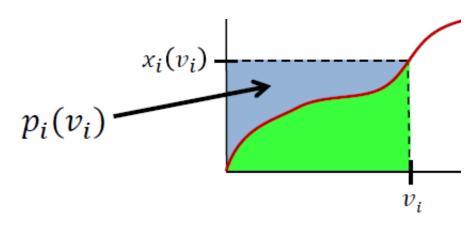
For a single-parameter environment, a mechanism is strategyproof if and only if for all *i*

1. x_i is monotone non-decreasing in v_i

2.
$$p_i = v_i \cdot x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$$

(typically, $p_i(0) = 0$)

- Generalizes critical payments
 - For every "δ" allocation, pay the lowest value that would have won it



Myerson's Lemma

• Note: allocation determines unique payments

$$p_{i} = v_{i} \cdot x_{i}(v_{i}) - \int_{0}^{v_{i}} x_{i}(z)dz + p_{i}(0)$$

- A corollary: revenue equivalence
 - If two mechanisms use the same allocation x_i, they "essentially" have the same expected revenue
- Another corollary: optimal revenue auctions
 - > Optimizing revenue = optimizing some function of allocation (easier to analyze)

Myerson's Theorem

• "Expected Revenue = Expected Virtual Welfare"

> Recall:
$$p_i = v_i \cdot x_i(v_i) - \int_0^{v_i} x_i(z) dz + p_i(0)$$

> Take expectation over draw of valuations + lots of calculus

$$E_{\{v_i \sim F_i\}}[\Sigma_i p_i] = E_{\{v_i \sim F_i\}}[\Sigma_i \varphi_i \cdot x_i]$$

•
$$\varphi_i = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)} =$$
virtual value of bidder *i*

•
$$\sum_i \varphi_i \cdot x_i$$
 = virtual welfare

Myerson's Theorem

• Myerson's auction:

- > A strategyproof auction maximizes the (expected) revenue if its allocation rule maximizes the virtual welfare subject to monotonicity and it charges critical payments.
- Charging critical payments is easy.
- But maximizing virtual welfare *subject to monotonicity* is tricky.

> Let's get rid of the monotonicity requirement!

Myerson's Theorem Simplified

- Regular Distributions
 - > A distribution F is regular if its virtual value function $\varphi(v) = v - (1 - F(v))/f(v)$ is non-decreasing in v.
 - Many important distributions are regular, e.g., uniform, exponential, Gaussian, power-law, ...
- Lemma
 - > If all F_i 's are regular, the allocation rule maximizing virtual welfare is already monotone.
- Myerson's Corollary:
 - When all F_i's are regular, the strategyproof auction maximizes virtual welfare and charges critical payments.

Single Item + Single Bidder

• Setup:

> Single indivisible item, single bidder, value v drawn from a regular distribution with CDF F and PDF f

• Goal:

> Maximize
$$\varphi \cdot x$$
, where $\varphi = v - \frac{1 - F(v)}{f(v)}$ and $x \in \{0, 1\}$

• Optimal auction:

>
$$x = 1$$
 iff $\varphi \ge 0 \iff v \ge \frac{1 - F(v)}{f(v)} \iff v \ge v^*$ where $v^* = \frac{1 - F(v^*)}{f(v^*)}$

- > Critical payment: v^*
- > This is VCG with a reserve price of $\varphi^{-1}(0)!$

Example

• Optimal auction:

>
$$x = 1$$
 iff $\varphi \ge 0 \Leftrightarrow v \ge \frac{1-F(v)}{f(v)}$
> Critical payment: v^* such that $v^* = \frac{1-F(v^*)}{f(v^*)}$

1

• Distribution is U[0,1]: 1-12

>
$$x = 1$$
 iff $v \ge \frac{1-v}{1} \Leftrightarrow v \ge \frac{1}{2}$
> Critical payment $=\frac{1}{2}$

> That is, we post the optimal price of 0.5

2

Single Item + n Bidders

• Setup:

> Single indivisible item, each bidder *i* has value v_i drawn from a regular distribution with CDF F_i and PDF f_i

• Goal:

> Maximize $\sum_i \varphi_i \cdot x_i$ where $\varphi_i = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$ and $x_i \in \{0,1\}$ such that $\sum_i x_i \leq 1$

Single Item + n Bidders

• Optimal auction:

> If all $\varphi_i < 0$:

Nobody gets the item, nobody pays anything

$$\circ$$
 For all *i*, $x_i = p_i = 0$

$$\succ$$
 If some $\varphi_i \ge 0$:

○ Agent with highest φ_i wins the item, pays critical payment
○ i^{*} ∈ argmax_i φ_i(v_i), x_{i^{*}} = 1, x_i = 0 ∀i ≠ i^{*}
○ p_{i^{*}} = φ_{i^{*}}⁻¹(max(0, max_{j≠i^{*}} φ_j(v_j)))

Note: The item doesn't necessarily go to the highest value agent!

Special Case: iid Values

- Suppose all distributions are identical (say CDF F and PDF f)
- Check that the auction simplifies to the following > Allocation: item goes to bidder i^* with highest value if her value $v_{i^*} \geq \varphi^{-1}(0)$
 - > Payment charged = $\max\left(\varphi^{-1}(0), \max_{j \neq i^*} v_j\right)$
- This is again VCG with a reserve price of $\varphi^{-1}(0)$

Example

• Two bidders, both drawing iid values from U[0,1]

>
$$\varphi(v) = v - \frac{1-v}{1} = 2v - 1$$

> $\varphi^{-1}(0) = 1/2$

- Auction:
 - > Give the item to the highest bidder if their value is at least $\frac{1}{2}$
 - > Charge them $max(\frac{1}{2}, 2^{nd} highest bid)$

Example

• Two bidders, one with value from *U*[0,1], one with value from *U*[3,5]

$$\triangleright \varphi_1(v_1) = 2v_1 - 1$$

$$\Rightarrow \varphi_2(v_2) = v_2 - \frac{1 - F_2(v_2)}{f_2(v_2)} = v_2 - \frac{1 - \frac{v_2 - 3}{2}}{\frac{1}{2}} = 2v_2 - 5$$

- Auction:
 - > If v₁ < ¼ and v₂ < 5/2, the item remains unallocated.
 > Otherwise...

○ If $2v_1 - 1 > 2v_2 - 5$, agent 1 gets it and pays $\max(\frac{1}{2}, v_2 - 2)$ ○ If $2v_1 - 1 < 2v_2 - 5$, agent 2 gets it and pays $\max(\frac{5}{2}, v_1 + 2)$

Extensions

- Irregular distributions:
 - > E.g., multi-modal or extremely heavy tail distributions
 - Need to add the monotonicity constraint
 - > Turns out, we can "iron" irregular distributions to make them regular and then use Myerson's framework
- Relaxing DSIC to BNIC
 - > Myerson's mechanism has optimal revenue among all DSIC mechanisms
 - > Turns out, it also has optimal revenue among the much larger class of BNIC mechanisms!

Approx. Optimal Auctions

- Optimal auctions become unintuitive and difficult to understand with unequal distributions, even if they are regular
 - Simpler auctions preferred in practice
 - > We still want approximately optimal revenue
- Theorem [Hartline & Roughgarden, 2009]:
 - For iid values from regular distributions, VCG with bidderspecific reserve prices gives a 2-approximation of the optimal revenue.

Approximately Optimal

- Still relies on knowing bidders' distributions
- Theorem [Bulow and Klemperer, 1996]:
 - > For i.i.d. values, $E[Revenue of VCG with n + 1 bidders] \ge E[Optimal revenue with n bidders]$
- "Spend that effort in getting one more bidder than in figuring out the optimal auction"

Simple proof

One can show that VCG with n + 1 bidders has the max revenue among all n + 1 bidder strategyproof auctions that always allocate the item
 > Via revenue equivalence

- Consider the auction: "Run *n*-bidder Myerson on the first *n* bidders. If the item is unallocated, give it to agent n + 1 for free."
 - > n + 1 bidder DSIC auction
 - > As much revenue as *n*-bidder Myerson auction

Optimizing Revenue is Hard

- Slow progress beyond single-parameter setting
 - Even with just two items and one bidder with i.i.d. values for both items, the optimal auction DOES NOT run Myerson's auction on individual items!
 - "Take-it-or-leave-it" offers for the two items bundled might increase revenue
- But nowadays, the focus is on simple, approximately optimal auctions instead of complicated, optimal auctions.