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Abstract

It is sometimes the case that one solution concept in game theory is
equivalent to applying another solution concept to a modified version of
the game. In such cases, does it make sense to study the former sepa-
rately (as it applies to the original representation of the game), or should
we entirely subordinate it to the latter? The answer probably depends on
the particular circumstances, and indeed the literature takes different ap-
proaches in different cases. In this article, I consider the specific example
of Stackelberg mixed strategies. I argue that, even though a Stackelberg
mixed strategy can also be seen as a subgame perfect Nash equilibrium of
a corresponding extensive-form game, there remains significant value in
studying it separately. The analysis of this special case may have impli-
cations for other solution concepts.
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L R
U 1,1 3,0
D 0,0 2,1

Figure 1: A game that illustrates the advantage of commitment.

1 Introduction

Game theory provides ways of representing strategic situations, as well as so-
lution concepts indicating what it means to “solve” the resulting games. These
are intertwined: a solution concept may be meaningfully defined only for some
ways of representing games. Moreover, sometimes, a solution concept is equiv-
alent to the application of another solution concept to a transformation of the
original game. In this case, one may wonder whether it is sensible to study the
former concept separately. One might well argue that we should only define the
latter concept, and see the former as just an application of it, for the sake of
parsimony. Entities should not be multiplied unnecessarily!

In this article, I consider the case of Stackelberg mixed strategies, which are
optimal mixed strategies to commit to. It will be helpful to first review Stack-
elberg models in general. A (two-player) Stackelberg model involves one player
being able to act (or commit to a course of action) before the other player
moves. The standard example is that of two firms competing on quantity. If
one firm is able to commit to a quantity before the other moves (Stackelberg
competition), the committing firm can benefit significantly from this in compar-
ison to the model where both firms move simultaneously (Cournot competition).
(For more detail, see, e.g., Fudenberg and Tirole [1991].) A Stackelberg model
requires that the commitment is absolute: the Stackelberg leader cannot back-
track on her commitment. It also requires that the other player, the Stackelberg
follower, sees what the leader committed to before he himself moves.

Of course, we can consider what happens if one player obtains a commitment
advantage in other games as well.1 We can take any two-player game represented
in normal form (i.e., a bimatrix game), and give one player a commitment
advantage. The game in Figure 1 is often used as an example. In this game,
if neither player has a commitment advantage (and so they make their choices
simultaneously), then player 1 (the row player) has a strictly dominant strategy:
regardless of player 2’s choice, U gives player 1 higher utility than D. Realizing
that player 1 is best off playing U , player 2 is better off playing L and getting 1,
rather than playing R and getting 0. Hence, (U,L) is the solution of the game
by iterated strict dominance (also implying that it is the only equilibrium of the
game), resulting in utilities (1, 1) for the players.

1One line of work concerns settings where there are many selfish followers and a single
benevolent leader, for example a party that “owns” the system and controls part of the activity
in it, who acts to optimize some system-wide objective. See, e.g., Roughgarden [2004]. In this
article I will not assume that the leader is benevolent.
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Player 1

Up Down

Player 2

fi h

1 1 3 0 0 0 2 1

Left Left RightRight

1, 1 3, 0 0, 0 2, 1

Figure 2: The extensive-form representation of the pure Stackelberg version of
the game in Figure 1.

Now suppose that player 1 can commit to an action (and credibly communi-
cate the action to which she has committed to player 2) before player 2 moves.
If she commits to playing U , player 2 will again play L. On the other hand, if
she commits to playing D, player 2 will realize he is better off playing R. This
would result in utilities (2, 1) for the players. Hence, player 1 is now better off
than in the version of the game without commitment.2

While in this example, the Stackelberg outcome of the game is different
from the simultaneous-move outcome, my impression is that most game theorists
would not consider the Stackelberg outcome to correspond to a different solution
concept. Rather, they would see it simply as a different game. Specifically, the
time and information structure of the game—who moves when knowing what—is
different. The extensive form provides a natural representation scheme to model
the time and information structure of games. For example, the Stackelberg
version of the game in Figure 1 can be represented as the extensive-form game
in Figure 2. This game is easily solved by backward induction: if player 1 has
committed to Up, then it is better to move Left for player 2, resulting in utilities
(1, 1); on the other hand, if player 1 has committed to Down, then it is better to
move Right for player 2, resulting in utilities (2, 1). Hence, player 1 is best off
moving Down. Thus, solving the extensive-form game by backward induction
gives us the Stackelberg solution.

So far, so reasonable. Now, let us turn to Stackelberg mixed strategies.
Here, one of the players has an even stronger commitment advantage: not only
is she able to commit to a course of action, she is able to commit to a mixed
strategy, that is, a distribution over the actions that she can take. Consider
again the game from Figure 1, and now suppose that player 1 can commit to a

2Note that player 1 merely stating that she will play D, without any commitment, will
not work: she would always have an incentive to back out and play U after all, to collect an
additional 1 unit of utility, regardless of what player 2 plays. Player 2 will anticipate this and
play L anyway.
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Player 1

(1,0) (=Up) (0,1) (=Down)(.5,.5)

Player 2
… …

Left Left RightRight Left Right

1, 1 3, 0 0, 0 2, 10.5, 0.5 2.5, 0.5

Figure 3: The extensive-form representation of the mixed Stackelberg version
of the game in Figure 1.

mixed strategy. She could commit to the distribution (0, 1), i.e., putting all the
probability on D, and again obtain 2. However, she can do even better: if she
commits to (0.49, 0.51), i.e., putting slightly more than half of the probability
mass on D, player 2 will still be better off playing R (which would give him 1
slightly more than half the time) than playing L (which would give him 1 slightly
less than half the time). This results in an expected utility of 0.49 ·3+0.51 ·2 =
2.49 > 2 for player 1. Of course, player 1 can also commit to (0.499, 0.501),
and so on; in the limit, player 1 can obtain 2.5. Stackelberg mixed strategies
have recently received significant attention due to their direct application in a
number of real security domains [Pita et al., 2009, Tsai et al., 2009, An et al.,
2012, Yin et al., 2012].

Again, it is possible to capture the commitment advantage that player 1 has
using the extensive form, as illustrated in Figure 3. Note that player 1 has a
continuum of moves in the first round, as indicated by the ellipses. Each of the
(infinitely many) subgames has a straightforward solution, with the exception
of the one where player 1 has committed to (0.5, 0.5), in which player 2 is
indifferent between his choices. If player 2 responds by playing Right in this
case, then it is optimal for player 1 to in fact commit to (0.5, 0.5); and this
constitutes the unique subgame perfect Nash equilibrium of the game.

Again, this way of representing the game in extensive form and solving it is
entirely correct. However, it appears more awkward than it did in the case of
committing to a pure strategy. For one, the first node in the game tree now has
infinitely many children. This is due to the fact that committing to a mixed
strategy is not the same as randomizing over which pure strategy to commit to.
The reason that they are not the same is that if player 1 randomizes over which
pure strategy to commit to, then player 2 sees the realization of that random
process, i.e., the realized pure strategy, before acting. Because of this, there is
indeed no reason to randomize over which pure strategy to commit to, as this
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could not lead to a higher utility than simply committing (deterministically) to
whichever pure strategy maximizes player 1’s utility. Consequently, randomizing
over which pure strategy to commit to could not result in a utility greater than
2 for player 1 in the game above.

Because the game tree has infinitely many nodes, it cannot be explicitly
written down on paper or—perhaps more importantly—in computer memory.
An algorithm for computing the optimal mixed strategy to commit to must
operate on a different representation of the game—most naturally, the original
normal form from which the game was obtained. Of course, an alternative is to
discretize the space of mixed strategies, choosing only a finite subset of them to
stand in as “representatives” in the hope of getting a reasonable approximation.
This, however, gives up on exactly representing the game, and moreover is not
even a computationally efficient way of solving the game, as we will discuss in
more detail later. A closely related issue is that this infinitely-sized extensive-
form representation does little to facilitate seeing the underlying structure of
the game.3 From seeing it (or a finite approximation of it), the viewer may
not even realize that player 1’s actions in the game correspond to the set of all
mixed strategies of an original normal-form game.4

Still, one may argue that, while it may be true that the extensive form
obscures some of the structure of the game, this is not sufficient reason to study
Stackelberg mixed strategies separately (i.e., as directly providing a solution for
a game represented in normal form). After all, it is often the case that, when
we consider a solution concept in the special context of some specific family
of games, additional structure appears that was not there in the general case.
However, in what follows, we will see that there are other reasons to study
Stackelberg mixed strategies separately.

2 Von Neumann’s heritage: Zero-sum games

If there is one class of games that game theory can be said to truly solve (other
than games solvable by iterated dominance), it is that of two-player zero-sum
games. This is due to von Neumann’s famous minimax theorem [von Neumann,
1928]. In such games, there are two players with pure strategy sets S1 and S2,

3Schelling [1960] similarly suggests that, by the time we have incorporated aspects such as
commitment moves into a standard game-theoretic representation of the game at hand, we
have abstracted away these issues and are at some level not really studying them anymore.

4It is easy to be misled by Figure 3 into thinking that it does make this fairly obvious, due
to the natural ordering of the mixed strategies from left to right. However, this is an artifact
of the fact that there are only two pure strategies for player 1 in the original game. If there
were three pure strategies, it would not be possible to order the mixed strategies so naturally
from left to right. We could in principle visualize the resulting tree in three dimensions instead
of two. For more pure strategies, this of course becomes problematic. More importantly, such
visualizations are technically not part of the extensive form. The extensive form only specifies
a set of actions for each node, and no ordering, distance function, or topology on them. Such
are only added when we draw the tree on a piece of paper (or in three dimensions, etc.).
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respectively, and for all s1 ∈ S1, s2 ∈ S2, we have u1(s1, s2) + u2(s1, s2) = 0.5

Consider the scenario where player 1 is extremely conservative and assumes that,
no matter which mixed strategy she chooses, player 2 will manage to choose the
strategy that is worst for player 1. Under this pessimistic assumption, player 1
can still guarantee herself

max
σ1∈Σ1

min
s2∈S2

u1(σ1, s2)

where Σ1 = ∆(S1) is the set of player 1’s mixed strategies. Strategies σ1 that
achieve this maximum are known as maximin strategies. If player 2 were to
make a similar pessimistic assumption, he could guarantee himself

max
σ2∈Σ2

min
s1∈S1

u2(s1, σ2)

Because the game is zero-sum, instead of trying to maximize his own utility,
player 2 could equivalently try to minimize player 1’s utility. Then, a pessimistic
player 2 could guarantee that player 1 gets no more than

min
σ2∈Σ2

max
s1∈S1

u1(s1, σ2)

Strategies σ2 that achieve this minimum are known as minimax strategies. In-
deed, note that

min
σ2∈Σ2

max
s1∈S1

u1(s1, σ2) = − max
σ2∈Σ2

min
s1∈S1

u2(s1, σ2)

but this is not yet the minimax theorem. Rather, the minimax theorem states
that

max
σ1∈Σ1

min
s2∈S2

u1(σ1, s2) = min
σ2∈Σ2

max
s1∈S1

u1(s1, σ2)

This quantity is known as the value of the game. If (for example) the game is
played repeatedly by sophisticated players, it seems very reasonable to expect
that this is the average value that player 1 will obtain from a round of play
over time. If she were getting less, she should just switch to a strategy that
guarantees at least the value. If she were getting more, then player 2 should
switch to a strategy that guarantees that player 1 gets at most the value.

From the minimax theorem, it is straighforward to deduce that a strategy
profile is a Nash equilibrium of a two-player zero-sum game if and only if player
1 plays a maximin strategy and player 2 plays a minimax strategy. Hence,
the concept of Nash equilibrium provides a generalization of these strategies
to general-sum games. On the other hand, it is even easier to see that the
Stackelberg mixed strategies for player 1 coincide with her maximin strategies
in a two-player zero-sum game; the definition of a Stackelberg mixed strategy
is a straightforward generalization of that of a maximin strategy in such games.
Hence, Stackelberg mixed strategies and Nash equilibrium strategies coincide in

5Constant-sum games, in which u1(s1, s2) + u2(s1, s2) = c for some constant c, are effec-
tively equivalent.
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maximize v1

subject to
(∀s2 ∈ S2) v1 −

∑
s1∈S1

u1(s1, s2)ps1 ≤ 0∑
s1∈S1

ps1 = 1
(∀s1 ∈ S1) ps1 ≥ 0

Figure 4: Linear program formulation for computing a maximin strategy for
player 1. ps1 is a variable indicating the probability placed on player 1’s pure
strategy s1. The first constraint requires that v1 be at most the utility that
player 1 gets when player 2 best-responds, and the goal is to maximize this
minimum utility for player 1.

two-player zero-sum games. This should not be surprising, because any solution
concept that does not coincide with (or refine) maximin/minimax strategies in
two-player zero-sum games would seem suspect given the minimax theorem.
Nevertheless, Stackelberg mixed strategies and Nash equilibrium strategies gen-
eralize to general-sum games in different ways, and arguments can be given
both ways as to which is more natural. But viewing Stackelberg mixed strate-
gies (only) as the solution to an extensive-form game obscures this and would
appear to leave Nash equilibrium (or related equilibrium concepts) as the only
generalization.

We will return to properties that are obscured by not studying Stackelberg
mixed strategies directly on the normal form in Section 4. First, however, we
will consider computational aspects.

3 The computational angle

Historically, the development of our understanding of the minimax theorem
was tied up with the development of linear programming. A linear program
describes an optimization problem over multiple variables, with multiple linear
inequality constraints on these variables as well as an objective to be minimized
or maximized. Figure 4 shows how the problem of finding a maximin strategy
can be formulated as a linear program (as is well known). Dantzig [1951] showed
that, from a computational viewpoint, the two problems are equivalent.6

Besides providing a mathematically elegant way to model many optimiza-
tion problems, linear programs are useful for determining the computational
complexity of problems. An example of a computational problem is that of
finding maximin strategies of two-player zero-sum games, represented in nor-
mal form (and any specific two-player zero-sum game would be an instance of
this problem). Computer scientists design algorithms for solving such prob-
lems. Such an algorithm is generally required to provide the correct output for

6In fact, he pointed out that there was a case in which his reduction from linear programs
to zero-sum games does not work; this gap was later filled by Adler [2013].
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any input—e.g., any two-player zero-sum game. With some training, designing
correct algorithms is usually not that hard; however, for many problems, de-
signing fast algorithms is challenging. One may wonder why we should really
care whether algorithms are fast. So what if my computer needs to work a little
harder? I can wait a few seconds if needed. The flaw in this reasoning is that
for many problems, the runtime of the obvious algorithms scales exponentially
in the size of the input, so that as we increase the size of the problem instances,
rather quickly we find instances that would take the algorithm more than the
lifetime of the universe to solve, even on the fastest computer available. In
contrast, other algorithms have the property that their runtime scales only as
a polynomial function in the size of the input. Problems for which such algo-
rithms exist are generally considered tractable, and the algorithm is said to be
efficient. Note that the same problem may have two correct algorithms, one of
which scales exponentially and one of which (perhaps one that requires more
design effort) scales polynomially; in this case, still, the problem is considered
tractable. (It is always possible to find a slow algorithm for a problem; the
question is whether fast ones exist.)

It is known that linear programs can be solved in polynomial time [Khachiyan,
1979]. That means that any problem that can be rephrased as (or, technically,
reduced to) a linear program can also be solved in polynomial time. (Note that
this does require that the linear program itself can be obtained in polynomial
time, and a fortiori that the linear program has polynomial size—an exponen-
tially sized linear program could not be written down in polynomial time.) In
particular, this implies that the problem of computing a maximin strategy of a
two-player zero-sum game can be solved in polynomial time.

Now, what about the more general problem of computing a Nash equilib-
rium of a two-player (general-sum) game represented in normal form? This
one turns out to be significantly trickier. There is no known linear program
formulation for this problem, and more generally, no polynomial-time algo-
rithms are known. Perhaps the best-known algorithm—the Lemke-Howson al-
gorithm [Lemke and Howson, 1964]—is known to require exponential time on
some families of games [Savani and von Stengel, 2006]. (Other algorithms more
obviously require exponential time in some cases [Dickhaut and Kaplan, 1991,
Porter et al., 2008, Sandholm et al., 2005].) Can we prove it is in fact impossible
to design a polynomial-time algorithm for this problem? As is the case for many
other computational problems, we do not currently have the techniques to un-
conditionally prove this. What computer scientists often can do in these cases is
to prove the following type of result: “If this problem can be solved in polyno-
mial time, then so can any problem in the class C of problems.” In this case, the
original problem is said to be C-hard (and, if the problem additionally is itself
a member of C, it is said to be C-complete). The most famous such class is NP.
Indeed, problems such as the following turn out to be NP-complete: “Given a
two-player game in normal form, determine whether it has a Nash equilibrium
in which pure strategy s1 receives positive probability,” or “Given a two-player
game in normal form, determine whether it has a Nash equilibrium in which
the sum of the players’ expected utilities exceeds a threshold ε” [Gilboa and
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Zemel, 1989, Conitzer and Sandholm, 2008]. For the problem of computing just
one Nash equilibrium of a two-player game in normal form—i.e., any one Nash
equilibrium will do—the problem is known to be PPAD-complete [Daskalakis
et al., 2009, Chen et al., 2009].7 The precise definition of these classes is not of
importance here; suffice it to say that computer scientists generally give up on
designing an efficient algorithm for the problem when such a complexity result
is found for it.

Then, what about computing a Stackelberg mixed strategy for a two-player
game represented in normal form? One approach—arguably the most natural
one when we do not study Stackelberg mixed strategies separately—would be to
convert the game to the extensive-form representation of the leadership model,
and solve the resulting game for a subgame perfect Nash equilibrium. As dis-
cussed before, one problem with this approach is that the extensive form of such
a game in fact has infinite size, and can therefore not be (directly) represented
in computer memory. A natural (though only approximate) approach is to dis-
cretize the space of distributions to which player 1 can commit. For any N ,
we can restrict our attention to the finitely many distributions that only use
probabilities that are multiples of 1/N . However, this still results in

(
N+|S1|−1
|S1|−1

)
different distributions. (This is equal to the number of ways in which N in-
distinguishable balls—corresponding to the N atomic units of 1/N probability
mass—can be placed in S1 distinguishable bins—corresponding to the different
pure strategies for player 1.) This number is exponential in the number of pure
strategies for player 1, so this approach cannot lead us to a polynomial-time
algorithm (even ignoring the fact that it in general will not provide an exact
solution).

As it turns out, though, it is in fact possible to solve this problem in poly-
nomial time, if we avoid converting the game into extensive form first. Because
computing a Stackelberg mixed strategy is a generalization of computing a max-
imin strategy in a two-player zero-sum game, it should not come as a surprise
that this algorithm relies on linear programming. The algorithm uses a divide-
and-conquer approach, as follows. For every pure strategy s∗2 ∈ S2 for player 2,
we ask the following question: (Q) what is the highest utility that player 1 can
obtain, under the condition that player 1 plays a mixed strategy σ1 to which s∗2
is a best response (and assuming that player 2 in fact responds with s∗2)? For
some strategies s∗2, it may be the case that there is no σ1 to which s∗2 is the
best response, and this will correspond to the linear program having no feasible
solutions—but this obviously cannot be the case for all of player 2’s strategies.
Among the ones that do have feasible solutions, we choose one that gives the
highest objective value, and the corresponding mixed strategy σ1 is an (optimal)
Stackelberg mixed strategy for player 1. It remains to be shown how to formu-
late (Q) as a linear program. This is shown in Figure 5. (Later on, I will discuss

7Papadimitriou [1994] introduced the class PPAD. Daskalakis and Papadimitriou [2005]
showed that the problem is PPAD-hard for three players; Chen and Deng [2005] then obtained
the stronger result that it is PPAD-hard even for two players. Etessami and Yannakakis [2010]
proved that with three or more players, the problem of computing an exact Nash equilibrium,
rather than an ε-equilibrium, is FIXP-complete.
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maximize
∑
s1∈S1

u1(s1, s
∗
2)ps1

subject to
(∀s2 ∈ S2)

∑
s1∈S1

(u2(s1, s
∗
2)− u2(s1, s2))ps1 ≥ 0∑

s1∈S1
ps1 = 1

(∀s1 ∈ S1) ps1 ≥ 0

Figure 5: Linear program formulation for computing a Stackelberg mixed strat-
egy (more precisely, an optimal strategy for player 1 that induces s∗2 as a best
response) [Conitzer and Sandholm, 2006, von Stengel and Zamir, 2010]. ps1 is
a variable indicating the probability placed on player 1’s pure strategy s1. The
objective gives player 1’s expected utility given that player 2 responds with s∗2,
and the first constraint ensures that s∗2 is in fact a best response for player 2.

another formulation for the problem, as a single linear program (Figure 7).) The
main point to take away is that the extensive-form view of Stackelberg mixed
strategies does little to lead us to an efficient algorithm for computing them,
whereas studying these strategies separately, as providing a solution for games
represented in normal form, suggests that a linear programming approach may
succeed, which in fact it does.

4 Other properties that are easier to interpret
when studying Stackelberg mixed strategies
separately

As discussed in Section 2, if we do not separately study how Stackelberg mixed
strategies provide solutions to 2-player normal-form games, this obscures that
they are a generalization of maximin strategies. In this section, I discuss some
other properties of Stackelberg mixed strategies that involve comparisons to
Nash equilibria of the simultaneous-move game. I argue that it is easier to
get insight into these properties if we do study Stackelberg mixed strategies
separately.

One may wonder about the following: is commitment always advantageous,
relative to, say, playing a Nash equilibrium of the simultaneous-move game?
It is clear that committing to a pure strategy is not always a good idea. For
example, when playing Rock-Paper-Scissors, presumably it is not a good idea
to commit to playing Rock and make this clear to your opponent. On the other
hand, committing to the mixed strategy (1/3, 1/3, 1/3) does not hurt one bit.8

More generally, in any two-player zero-sum game, (optimally) committing to a
mixed strategy beforehand does not hurt (or help) one bit: this is exactly what
the minimax theorem tells us. But what about in general-sum games? We have

8An exception is, of course, if we play against an exploitable non-game-theoretic player,
such as one who always plays Scissors.
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already seen that it can (strictly) help there,9 but does it ever hurt? It turns out
that it does not, and it is not hard to get some intuition why. Consider any Nash
equilibrium (σ1, σ2) of the simultaneous-move game—for example, one that is
optimal for player 1. Then, if player 1 commits to playing σ1, then any one of
the pure strategies in σ2’s support is a best response. If we assume that player
2 breaks ties in player 1’s favor—or if the game is such that player 1 can, by
adjusting her strategy slightly, make the most favorable strategy in σ2’s support
the unique best response for player 2—then player 1 must be at least as well off
as in the case where player 2 responds with σ2, which is the Nash equilibrium
case. Without these assumptions, things become significantly hairier, because
depending on how player 2 breaks ties, player 1 may end up with any utility
in an interval—but it can be shown that this interval is still more favorable
than the corresponding interval for Nash equilibrium [von Stengel and Zamir,
2010]. At least in my view, comparisons such as these are more natural when we
study Stackelberg mixed strategies separately, so that we are comparing player
1’s utility in two different solutions of the same game, rather than comparing
player 1’s utility across two different games.

As another example, Kiekintveld et al. [2009] introduce a class of games
called security games, which involve a defender and an attacker. In these games,
the defender chooses how to allocate its resources to (subsets of) the targets,
and the attacker chooses a target to attack. Both players’ utilities are a function
of (1) which target is attacked and (2) whether that target is defended by some
resource(s). Holding the attacked target fixed, the defender prefers for it to be
defended, and the attacker prefers for it not to be defended. Korzhyk et al.
[2011] show that, under a minor assumption—namely, that if a resource can
(simultaneously) defend a given set of targets, then it can also defend any subset
of that set—every Stackelberg mixed strategy for the defender is also a Nash
equilibrium strategy for the defender (in the simultaneous-move version of the
game). (Moreover, it is shown that the Nash equilibria of the simultaneous-
move game satisfy interchangeability: if (σ1, σ2) and (σ′1, σ

′
2) are equilibria, then

necessarily so are (σ1, σ
′
2) and (σ′1, σ2).) Hence, in a sense, for these games,

Stackelberg mixed strategies are a refinement of Nash equilibrium strategies (for
the defender). Now, the point here is not to place undue emphasis on security
games. Rather, the point is, again, that this type of refinement property is
very cumbersome to state if we strictly hold to the view that Stackelberg mixed
strategies are just subgame perfect Nash equilibria of a different game. We
would have to make a statement about how the solutions to two different games
relate to each other, rather than just being able to state that one concept is a
refinement of the other.

9For a study of how much it can help, see Letchford et al. [2014].
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5 The analogous (and related) case of correlated
equilibrium

Unlike Stackelberg mixed strategies, correlated equilibrium [Aumann, 1974] is
commonly considered a solution concept in its own right. Roger Myerson has
been quoted as saying that: “If there is intelligent life on other planets, in
a majority of them, they would have discovered correlated equilibrium before
Nash equilibrium.” In fact, I personally believe that most of them would have
discovered Nash equilibrium before correlated equilibrium, like we did, but this
will be a difficult one to settle. The point, anyway, is well taken: correlated
equilibrium is a natural solution concept that is technically more elegant than
Nash equilibrium in a number of ways. Having thus built up the suspense, let
us now define the correlated equilibrium concept.

In a correlated equilibrium of a 2-player10 game, an ordered pair of signals
(θ1, θ2) ∈ Θ1 × Θ2 = Θ is drawn according to some distribution p : Θ → [0, 1].
(Note that the θi need not be independent or identically distributed.) Each
player i receives her signal θi, and based on this takes an action in the game.
That is, player i has a strategy τi : Θi → Σi, where Si is the set of actions for
player i in the game and Σi = ∆(Si) is the set of probability distributions over
these actions.11 All of this collectively constitutes a correlated equilibrium if it
is optimal for each player to follow her strategy assuming that the other does
so as well. That is, for every player i and every signal θi that i receives with
positive probability (p(θi) =

∑
θ−i

p(θi, θ−i) > 0), and for every action si that
player i might take, we have∑

θ−i

p(θ−i|θi)(ui(τi(θi), τ−i(θ−i))− ui(si, τ−i(θ−i))) ≥ 0

That is, the strategies τi are an equilibrium of the Bayesian game defined by the
distribution over the signals. (Note, however, that this distribution is considered
part of the solution.)

It is well known and straightforward to show that, if all we care about is the
resulting distribution over outcomes S—where S = S1×S2 and the probability
of an outcome s = (s1, s2) is

P (s1, s2) =
∑

(θ1,θ2)∈Θ

p(θ1, θ2)τ1(θ1)(s1)τ2(θ2)(s2)

where τi(θi)(si) is the probability that the distribution τi(θi) places on si—then
it is without loss of generality to

10All of this is easily generalized to n players, but for simplicity I will stick to two players
here.

11The notation here is a bit nonstandard: in isolation, it would be more natural to use Ai

to denote the set of actions and Si to denote the set of pure strategies, i.e., mappings from
signals to actions. However, in order to make the comparison to other concepts easier, it will
help to stick to using si for the rows and columns of the game.
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(∀s1, s
′
1 ∈ S1)

∑
s2∈S2

(u1(s1, s2)− u1(s′1, s2))ps1,s2 ≥ 0
(∀s2, s

′
2 ∈ S2)

∑
s1∈S1

(u2(s1, s2)− u2(s1, s
′
2))ps1,s2 ≥ 0∑

s1∈S1

∑
s2∈S2

ps1,s2 = 1
(∀s1 ∈ S1, s2 ∈ S2) ps1,s2 ≥ 0

Figure 6: Linear inequalities specifying the set of correlated equilibria of a
2-player game (this can easily be generalized to n-player games). ps1,s2 is a
variable representing the probability of the profile (s1, s2) being played. The
first constraint says that player 1, upon receiving a signal to play s1, should not
be better off playing another s′1 instead. The second constraint, for player 2, is
similar.

• let each player’s signal space coincide with that player’s action space, i.e.,
Θi = Si,

• consider the strategies where players simply follow their signals, i.e., if
θi = si, then τi(θi) is the distribution that places probability 1 on si, and

• (consequently) for (θ1, θ2) = (s1, s2), we have P (s1, s2) = p(θ1, θ2).

That is, if a correlated equilibrium resulting in probability distribution P over
outcomes S exists, then it is also a correlated equilibrium to draw the outcome
directly according to that distribution and signal to each player the action that
she is supposed to play in this outcome (but nothing more). Hence, we may
dispense with the θi notation. It also allows us to describe the set of correlated
equilibria with the set of inequalities in Figure 6.

Now let us consider the question of whether correlated equilibrium “de-
serves” to be considered a solution concept in its own right. One might argue
that it does not, in a way that is analogous to the argument against studying
Stackelberg mixed strategies separately, as follows. We can define the set of
correlated equilibria of a game G simply as the set of all Nash equilibria12 of all
games that result from extending G with signals to the players, as described at
the beginning of this section. Hence, the concept can be seen as derivative rather
than primitive. Instead of thinking about it as a separate solution concept, we
can simply think of it as the application of the Nash equilibrium concept to a
modified game (the game extended with signals).13

12Nash equilibria of a game with private information are often referred to as Bayes-Nash
equilibria.

13It could be argued that the analogy is imperfect because in the Stackelberg version of
the argument, the game is modified to a single (two-stage) game, whereas in the correlated
equilibrium version of the argument, two different correlated equilibria potentially require
different ways of modifying the game, extending them with different signaling schemes. It
is not entirely clear to me how significant this distinction is. In any case, if two correlated
equilibria require different signaling schemes, then consider a new, joint signaling scheme
where each player receives the signals from both signaling schemes, with the signals drawn
independently across the two schemes. Then, both correlated equilibria are (Bayes-)Nash
equilibria of the game with the joint signaling scheme (with the players simply ignoring the

13



maximize
∑
s1∈S1

∑
s2∈S2

u1(s1, s2)ps1,s2
subject to
(∀s2, s

′
2 ∈ S2)

∑
s1∈S1

(u2(s1, s2)− u2(s1, s
′
2))ps1,s2 ≥ 0∑

s1∈S1

∑
s2∈S2

ps1,s2 = 1
(∀s1 ∈ S1, s2 ∈ S2) ps1,s2 ≥ 0

Figure 7: A single linear program for computing a Stackelberg mixed strat-
egy [Conitzer and Korzhyk, 2011]. This linear program can be obtained by
combining the linear programs (one for each s2) from Figure 5 and renaming
the variable ps1 from the linear program corresponding to s2 to ps1,s2 . An op-
timal solution for which there exists some s∗2 such that ps1,s2 = 0 whenever
s2 6= s∗2 is guaranteed to exist.

Of course, my aim here is not to actually argue that correlated equilibrium
should not be considered a separate solution concept. Correlated equilibria have
many elegant and useful properties that would be obscured by thinking of them
merely as the application of the Nash equilibrium concept to an enriched game.
The fact that correlated equilibria can be computed in polynomial time using
the linear feasibility formulation in Figure 6 is one example of this: an explicit
Bayesian game formulation (with signals) would presumably not be helpful for
gaining insight into this polynomial-time computability, as such a formulation
would involve exponentially many strategies. Rather, the point is that the case
for studying correlated equilibrium separately is, in my view, quite similar to
the case for studying Stackelberg mixed strategies separately.

Indeed, returning to the line of reasoning from Section 4, when both cor-
related equilibria and Stackelberg mixed strategies are studied in their own
right—as applying directly to the normal form of the game, rather than being
the solutions to two different games—it becomes apparent that they are in fact
closely related. Consider again the linear program in Figure 5, which is used to
compute an optimal strategy for the leader under the constraint that a partic-
ular pure strategy for the follower must be optimal, so that solving this linear
program for every pure follower strategy gives an optimal solution. Conitzer and
Korzhyk [2011] observe that we can combine all these linear programs (one for
each pure follower strategy) into a larger single linear program. The resulting
linear program is given in Figure 7. The constraints of this linear program are
exactly the set of linear inequalities above for correlated equilibrium (Figure 6),
except that only the constraints for player 2 appear. Moreover, the objective is
to maximize player 1’s utility. An immediate corollary of this is a result (which
was earlier proved directly by von Stengel and Zamir [2010]) that a Stackelberg
mixed strategy is at least as good for the leader as any correlated equilibrium,
because if we add the constraints for player 1 we get a linear program for finding

part of the signal that corresponds to the other equilibrium). Taking this to the limit, we may
imagine a single, universal signaling scheme such that all correlated equilibria of interest are
Nash equilibria of the game with this universal signaling scheme.
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the best correlated equilibrium for player 1—and adding constraints can never
improve the optimal value of a linear program. One way to interpret the linear
program in Figure 7 is as follows: player 1 now gets to commit to a correlated
strategy, where she chooses a profile (s1, s2) according to some distribution, sig-
nals to player 2 which action s2 he should play (where there is a constraint on
the distribution such that player 2 is in fact best off listening to this advice),
and plays s1 herself. Conitzer and Korzhyk [2011] prove that there always exists
an optimal solution where player 1 always sends the same signal s∗2 to player
2, so that effectively player 1 is just committing to a mixed strategy. (When
there are 3 or more players, then the optimal solution may require true correla-
tion.) Again, the main point is that this close relationship between Stackelberg
mixed strategies and correlated equilibrium is obscured if we think of Stackel-
berg mixed strategies in terms of extensive-form games (or, for that matter, if
we think of correlated equilibrium in terms of Bayesian games).

6 Conclusion

In game theory, sometimes one solution concept is equivalent to the applica-
tion of another solution concept to a modified representation of the game. In
such cases, is it worthwhile to study the former in its own right, as it applies
to the original representation? It appears difficult to answer this question in
general, without knowing either what the solution concept is or what the con-
text is in which we are attempting to answer the question. In this article, I
have investigated this question for the specific concept of Stackelberg mixed
strategies. Often, game theorists think of Stackelberg models as just that—a
different model of how the game is to be played, rather than a different way of
solving the game. There are certainly good reasons for this view. However, my
overall conclusion is that, in the context of Stackelberg mixed strategies, limit-
ing oneself to this view comes at too great a cost. Studying them in their own
right, as providing solutions of normal-form games, often facilitates mathemati-
cal analysis—making connections to other concepts such as minimax strategies,
Nash equilibrium, and correlated equilibrium more apparent—as well as com-
putational analysis, allowing one to find efficient direct algorithms rather than
attempting to work with discretizations of infinitely sized objects.

I should emphasize, however, that the possibility of viewing these strategies
as solutions of an extensive-form game surely remains valuable too. For example,
from the perspective of epistemic game theory, Stackelberg mixed strategies
may be easiest to justify via this interpretation. Similarly, I would argue that
both views are valuable for correlated equilibrium, which I have argued is an
analogous case: while it is extremely useful for mathematical and computational
purposes to study correlated equilibrium as a solution concept for normal-form
games in its own right, as indeed it usually is viewed, seeing it as a (Nash)
equilibrium of an enriched game has its own benefits—not the least of which
is that this is a common and natural way to introduce the concept. Hence, I
believe that the choice between the two views is much like the choice between
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seeing the young woman and the old woman in the famous ambiguous image.
While we generally cannot hold both views simultaneously, if we do not allow
our minds to switch from one view to the other, we miss out on much of what
is there.
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