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Cake-Cutting (contd)
Indivisible Goods



Pareto Optimality (PO)
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• Definition
➢ We say that an allocation 𝐴 = (𝐴1, … , 𝐴𝑛) is PO if there is 

no alternative allocation 𝐵 = (𝐵1, … , 𝐵𝑛) such that 

1. Every agent is at least as happy: 𝑉𝑖 𝐵𝑖 ≥ 𝑉𝑖(𝐴𝑖), ∀𝑖 ∈ 𝑁

2. Some agent is strictly happier: 𝑉𝑖 𝐵𝑖 > 𝑉𝑖(𝐴𝑖), ∃𝑖 ∈ 𝑁

➢ I.e., an allocation is PO if there is no “better” allocation.

• Q: Is it PO to give the entire cake to player 1?

• A: Not necessarily. But yes if player 1 values “every 
part of the cake positively”.



PO + EF
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• Theorem [Weller ‘85]:
➢ There always exists an allocation of the cake that is both 

envy-free and Pareto optimal.

• One way to achieve PO+EF:
➢ Nash-optimal allocation: argmax𝐴 ς𝑖∈𝑁𝑉𝑖 𝐴𝑖
➢ Obviously, this is PO. The fact that it is EF is non-trivial.

➢ This is named after John Nash.
o Nash social welfare = product of utilities

o Different from utilitarian social welfare = sum of utilities



Nash-Optimal Allocation
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• Example:
➢ Green player has value 1 distributed over 0, Τ2 3

➢ Blue player has value 1 distributed over [0,1]

➢ Without loss of generality (why?) suppose: 
o Green player gets 𝑥 fraction of [0, Τ2 3]

o Blue player gets the remaining 1 − 𝑥 fraction of [0, Τ2 3] AND all of [ Τ2 3 , 1].

➢ Green’s utility = 𝑥,   blue’s utility = 1 − x ⋅
2
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➢ Maximize: 𝑥 ⋅
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3
⇒ 𝑥 = Τ3 4 ( Τ3 4 fraction of Τ2 3 is Τ1 2).
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Problem with Nash Solution
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• Difficult to compute in general
➢ I believe it should require an unbounded number of 

queries in the Robertson-Webb model. But I can’t find 
such a result in the literature.

• Theorem [Aziz & Ye ‘14]:
➢ For piecewise constant valuations, the Nash-optimal 

solution can be computed in polynomial time.

0 1

The density function of a 
piecewise constant 
valuation looks like this



Interlude: 
Homogeneous Divisible Goods
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• Suppose there are 𝑚 homogeneous divisible goods
➢ Each good can be divided fractionally between the agents

• Let 𝑥𝑖,𝑔 = fraction of good 𝑔 that agent 𝑖 gets
➢ Homogeneous = agent doesn’t care which “part”
o E.g., CPU or RAM

• Special case of cake-cutting
➢ Line up the goods on [0,1] → piecewise uniform 

valuations



Interlude: 
Homogeneous Divisible Goods
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• Nash-optimal solution:

Maximize σ𝑖 log 𝑈𝑖

𝑈𝑖 = Σ𝑔 𝑥𝑖,𝑔 ∗ 𝑣𝑖,𝑔 ∀𝑖

Σ𝑖 𝑥𝑖,𝑔 = 1 ∀𝑔

𝑥𝑖,𝑔 ∈ [0,1] ∀𝑖, 𝑔

• Gale-Eisenberg Convex Program

➢ Polynomial time solvable



Indivisible Goods
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• Goods which cannot be shared among players
➢ E.g., house, painting, car, jewelry, …

• Problem: Envy-free allocations may not exist!



Indivisible Goods: Setting
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8 7 20 5

9 11 12 8

9 10 18 3

We assume additive values. So, e.g., 𝑉 , = 8 + 7 = 15

Given such a matrix of numbers, assign each good to a player.



8 7 20 5

9 11 12 8

9 10 18 3

Indivisible Goods

CSC2556 - Nisarg Shah 11



8 7 20 5

9 11 12 8

9 10 18 3

Indivisible Goods
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Indivisible Goods
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Indivisible Goods
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Indivisible Goods
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• Envy-freeness up to one good (EF1): 

∀𝑖, 𝑗 ∈ 𝑁, ∃𝑔 ∈ 𝐴𝑗 ∶ 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗\{𝑔}

➢ Technically, we need either this or 𝐴𝑗 = ∅.

➢ “If 𝑖 envies 𝑗, there must be some good in 𝑗’s bundle such 
that removing it would make 𝑖 envy-free of 𝑗.”

• Does there always exist an EF1 allocation?



EF1
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• Yes! We can use Round Robin.

➢ Agents take turns in cyclic order: 1,2,… , 𝑛, 1,2,… , 𝑛, …

➢ In her turn, an agent picks the good she likes the most 
among the goods still not picked by anyone.

• Observation: This always yields an EF1 allocation.
➢ Informal proof on the board.

• Sadly, on some instances, this returns an allocation 
that is not Pareto optimal.



EF1+PO?
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• Nash welfare to rescue!

• Theorem [Caragiannis et al. ‘16]:
➢ The allocation argmax𝐴 ς𝑖∈𝑁𝑉𝑖 𝐴𝑖 is EF1 + PO.

➢ Note: This maximization is over only “integral” allocations 
that assign each good to some player in whole. 

➢ Note: Subtle tie-breaking if all allocations have zero Nash 
welfare.
o Step 1: Choose a subset of players 𝑆 ⊆ 𝑁 with largest |𝑆| such that 

it is possible to give a positive utility to every player in 𝑆
simultaneously.

o Step 2: Choose argmax𝐴 ς𝑖∈𝑆𝑉𝑖 𝐴𝑖



8 7 20 5

9 11 12 8

9 10 18 3

Integral Nash Allocation
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8 7 20 5

9 11 12 8

9 10 18 3

20 * 8 * (9+10) = 3040
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8 7 20 5

9 11 12 8

9 10 18 3

(8+7) * 8 * 18 = 2160
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8 7 20 5

9 11 12 8

9 10 18 3

8 * (12+8) * 10 = 1600
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8 7 20 5

9 11 12 8

9 10 18 3

20 * (11+8) * 9 = 3420
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Computation
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• For indivisible goods, Nash-optimal solution is 
strongly NP-hard to compute
➢ That is, remains NP-hard even if all values in the matrix 

are bounded

• Open Question: If our goal is EF1+PO, is there a 
different polynomial time algorithm? 
➢ Not sure. But a recent paper gives a pseudo-polynomial 

time algorithm for EF1+PO
o Time is polynomial in 𝑛, 𝑚, and max

𝑖,𝑔
𝑉𝑖 𝑔 .



Other Fairness Notions
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• Maximin Share Guarantee (MMS):
➢ Generalization of “cut and choose” for 𝑛 players

➢ MMS value of player 𝑖 = 
o The highest value player 𝑖 can get…

o If she divides the goods into 𝑛 bundles…

o But receives the worst bundle for her (“worst case guarantee”)

➢ Let 𝒫𝑛 𝑀 denote the family of partitions of the set of 
goods 𝑀 into 𝑛 bundles.

𝑀𝑀𝑆𝑖 = max
𝐵1,…,𝐵𝑛 ∈𝒫𝑛 𝑀

min
𝑘∈ 1,…,𝑛

𝑉𝑖(𝐵𝑘) .

➢ An allocation is 𝛼-MMS if every player 𝑖 receives value at 
least 𝛼 ∗ 𝑀𝑀𝑆𝑖.



Other Fairness Notions
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• Maximin Share Guarantee (MMS)
➢ [Procaccia, Wang ’14]: 

There is an example in which no MMS allocation exists.

➢ [Procaccia, Wang ’14]: 
A Τ2 3 - MMS allocation always exists.

➢ [Ghodsi et al. ‘17]:
A Τ3 4 - MMS allocation always exists.

➢ [Caragiannis et al. ’16]: 

The Nash-optimal solution is 
2

1+ 4𝑛−3
−MMS, and this is 

the best possible guarantee.



Stronger Fairness
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• Open Question: Does there always exist an EFx
allocation?

• EF1: ∀𝑖, 𝑗 ∈ 𝑁, ∃𝑔 ∈ 𝐴𝑗 ∶ 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗\{𝑔}
➢ Intuitively, 𝑖 doesn’t envy 𝑗 if she gets to remove her most 

valued item from 𝑗’s bundle.

• EFx: ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑔 ∈ 𝐴𝑗 ∶ 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗\{𝑔}
➢ Note: Need to quantify over 𝑔 such that 𝑉𝑖 𝑔 > 0.

➢ Intuitively, 𝑖 doesn’t envy 𝑗 even if she removes her least 
positively valued item from 𝑗’s bundle.



Stronger Fairness
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• The difference between EF1 and EFx:
➢ Suppose there are two players and three goods with 

values as follows.

➢ If you give {A} → P1 and {B,C} → P2, it’s EF1 but not EFx.
o EF1 because if P1 removes C from P2’s bundle, all is fine.

o Not EFx because removing B doesn’t eliminate envy.

➢ Instead, {A,B} → P1 and {C} → P2 would be EFx.

A B C

P1 5 1 10

P2 0 1 10



Allocation of Bads
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• Negative utilities (costs instead of values)
➢ Let 𝑐𝑖,𝑏 be the cost of player 𝑖 for bad 𝑏.
o 𝐶𝑖 𝑆 = σ𝑏∈𝑆 𝑐𝑖,𝑏

➢ EF: ∀𝑖, 𝑗 𝐶𝑖 𝐴𝑖 ≤ 𝐶𝑖 𝐴𝑗
➢ PO: There should be no alternative allocation in which no 

player has more cost, and some player has less cost.

• Divisible bads
➢ EF + PO allocation always exists, like for divisible goods.
o One way to achieve is through “Competitive Equilibria” (CE).

o For divisible goods, Nash-optimal allocation is the unique CE.

o For bads, exponentially many CE.



Allocation of Bads
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• Indivisible bads
➢ EF1: ∀𝑖, 𝑗 ∃𝑏 ∈ 𝐴𝑖 𝑐𝑖 𝐴𝑖\ 𝑏 ≤ 𝑐𝑖 𝐴𝑗

➢ EFx: ∀𝑖, 𝑗 ∀𝑏 ∈ 𝐴𝑖 𝑐𝑖 𝐴𝑖\ 𝑏 ≤ 𝑐𝑖 𝐴𝑗
o Note: Again, we need to restrict to 𝑏 such that 𝑐𝑖,𝑏 > 0

➢ Open Question 1: 
o Does an EF1 + PO allocation always exist?

➢ Open Question 2:
o Does an EFx allocation always exist?

➢ More open questions related to relaxations of 
proportionality
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Leximin (DRF)



Computational Resources
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• Resources: Homogeneous divisible resources like 
CPU, RAM, or network bandwidth

• Valuations: Each player wants the resources in a 
fixed proportion (Leontief preferences)

• Example:
➢ Player 1 requires (2 CPU, 1 RAM) for each copy of task

➢ Indifferent between (4,2) and (5,2), but prefers (5,2.5)

➢ “fractional” copies are allowed



Model
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• Set of players 𝑁 = {1,… , 𝑛}

• Set of resources 𝑅, 𝑅 = 𝑚

• Demand of player 𝑖 is 𝑑𝑖 = (𝑑𝑖1, … , 𝑑𝑖𝑚)
➢ 0 < 𝑑𝑖𝑟 ≤ 1 for every 𝑟, 𝑑𝑖𝑟 = 1 for some 𝑟
o “For every 1% of the total available CPU you give me, I need 0.5% 

of the total available RAM”

• Allocation: 𝐴𝑖 = (𝐴𝑖1, … , 𝐴𝑖𝑚) where 𝐴𝑖𝑟 is the 
fraction of available resource 𝑟 allocated to 𝑖
➢ Utility to player 𝑖 ∶ 𝑢𝑖 𝐴𝑖 = min

𝑟∈𝑅
𝐴𝑖𝑟/𝑑𝑖𝑟.

➢ We’ll assume a non-wasteful allocation
o Allocates resources proportionally to the demand.



Dominant Resource Fairness
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• Dominant resource of 𝑖 is 𝑟 such that 𝑑𝑖𝑟 = 1

• Dominant share of 𝑖 is 𝐴𝑖𝑟, where 𝑟 = dominant 
resource of 𝑖

• Dominant Resource Fairness (DRF) Mechanism 
➢ Allocate maximal resources while maintaining equal 

dominant shares.



DRF animated

36

Total 1 2
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Properties of DRF
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• Envy-free: 𝑢𝑖 𝐴𝑖 ≥ 𝑢𝑖 𝐴𝑗 , ∀𝑖, 𝑗
➢ Why? [Note: EF no longer implies proportionality.]

• Proportionality: 𝑢𝑖 𝐴𝑖 ≥ 1/𝑛, ∀𝑖
➢ Why?

• Pareto optimality (Why?)

• Group strategyproofness:
➢ If a group of players manipulate, it can’t be that none of 

them lose, and at least one of them gains.

➢ We’ll skip this proof.



The Leximin Mechanism
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• Generalizes the DRF Mechanism

• Mechanism:
➢ Choose an allocation 𝐴 that 
o Maximizes min

𝑖
𝑢𝑖 𝐴𝑖

o Among all minimizers, breaks ties in favor of higher second 
minimum utility.

o Among all minimizers, breaks ties in favor of higher third minimum 
utility.

o And so on…

• Maximizes the egalitarian welfare



The Leximin Mechanism
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• DRF is the leximin mechanism
➢ In the previous illustration, we didn’t need tie-breaking 

because we assumed 𝑑𝑖𝑟 > 0 for every 𝑖 ∈ 𝑁, 𝑟 ∈ 𝑅.

➢ In practice, not all the players need all the resources.

➢ When 𝑑𝑖𝑟 = 0 is allowed, we need to continue allocating 
even after some agents are saturated. 
o Not all agents have equal dominant shares in the end.

• Theorem [Parkes, Procaccia, S ‘12]:
➢ When 𝑑𝑖𝑟 = 0 is allowed, the leximin mechanism still 

retains all four properties (proportionality, envy-freeness, 
Pareto optimality, group strategyproofness).



A Note on Dynamic Settings
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• We assumed that all agents are present from the 
start, and we want a one-shot allocation.

• Real-life environments are dynamic. Agents arrive 
and depart, and their demands change over time. 

• Theorem [Kash, Procaccia, S ‘14]:
➢ A dynamic version of the leximin mechanism satisfies 

proportionality, Pareto optimality, and strategyproofness 
along with a relaxed version of envy-freeness when 
agents arrive one-by-one.



A Note on Dynamic Settings
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• Dynamic mechanism design
➢ Designing fair, efficient, and game-theoretic mechanisms 

in dynamic environments is a relatively new research 
area, and we do not know much.

➢ E.g., what if agents can depart, demands can change over 
time, or agents can submit and withdraw multiple jobs 
over time?

➢ Lots of open questions!
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Leximin (Dichotomous Matching)



Matching + Dichotomous Prefs
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• Recall the stable matching setting of matching 𝑛
men to 𝑛 women.

➢ We assumed ranked preferences, and showed that the 
Gale-Shapley algorithm produces a stable matching.

➢ What if agent preferences weren’t ranked?

• Suppose the men and women have dichotomous 
preferences over each other.

➢ Each man finds a subset of women “acceptable” (utility 
1), and the rest “unacceptable” (utility 0).

➢ Same for women’s preferences over men. 



Matching + Dichotomous Prefs
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• Dichotomous preferences induce a bipartite graph 
betwee men and women.
➢ If a perfect matching exists, it’s awesome.

➢ What if there is no perfect matching?
o Any deterministic matching unfairly gives 0 utility to some agents.

o Solution: randomize! 

• Under a random matching, utility to an agent = 
probability of being matched to an acceptable 
partner.



Matching + Dichotomous Prefs
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• (Integral) Matching:
➢ “Select” or “not select” each edge such that the number 

of selected edges incident on each vertex is at most 1.

• Fractional Matchings:
➢ “Put a weight” on each edge such that the total weight of 

edges incident on each vertex is at most 1.

• Birkoff von-Neumann Theorem:
➢ Every fractional matching can be “implemented” as a 

probability distribution over integral matchings.



Matching + Dichotomous Prefs
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• Randomized leximin mechanism:
➢ Compute the leximin fractional matching, and implement 

it as a distribution over integral matchings.

➢ Both steps are doable in polynomial time!

• Theorem [Bogomolnaia, Moulin ‘04]:
➢ The randomized leximin mechanism satisfies 

proportionality, envy-freeness, Pareto optimality, and 
group-strategyproofness (for both sides).

• In contrast: For ranked preferences, no algorithm 
can be strategyproof for both sides.



Matching with Capacities
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• Proposition 39 in California
➢ “Unused resources in public schools should be fairly

allocated to local charter schools that desire them.” 

• Each charter school (agent) 𝑖 wants 𝑑𝑖 unused 
classrooms at one of the acceptable public schools 
(facilities) 𝐹𝑖.
➢ If the demand is met, the charter school can relocate to 

the public school facility. 

• Each facility 𝑗 has 𝑐𝑗 unused classrooms.
➢ We assume facilities don’t have preferences over agents.
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Leximin (Classroom Allocation)



Model

FacilitiesAgents

have
capacities

have
demands

Preferences are dichotomous

Number of 
unused 

classrooms

6

3

8

4

11

7

2015/2016 request form: 
“provide a description of 
the district school site 
and/or general 
geographic area in
which the charter school 
wishes to locate”
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Leximin Strikes Again
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• Utility of agent 𝑖 under a randomized allocation = 
probability of being allocated 𝑑𝑖 classrooms at one 
of the facilities in 𝐹𝑖 .

• Theorem [Kurokawa, Procaccia, S ‘15]:
➢ The randomized leximin mechanism satisfies 

proportionality, envy-freeness, Pareto optimality, and 
group strategyproofness.

• Computing this allocation is NP-hard.
➢ Unlike DRF and matching under dichotomous 

preferences. 



Leximin Strikes Again
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• The result holds in a generic domain which satisfies:
➢ Convexity: If two utility vectors are feasible, then so should be their convex 

combinations.
o Holds if fractional or randomized allocations are allowed.

➢ Equality: The maximum utility of each agent should be the same.
o Normalize utilities.

➢ Shifting Allocations: Swapping allocations of two agents should be allowed.

➢ Maximal Utilization: No agent should have a higher utility for agent 𝑖’s 
allocation than agent 𝑖 has.
o This should hold after the normalization. This is the most restrictive assumption.

• Captures DRF, matching with dichotomous preferences, classroom 
allocation, and many other settings from the literature.


