CSC2556

Lecture 6

Fair Division 1: Cake-Cutting

[Some illustrations due to: Ariel Procaccia]

Announcements

- Reminder
 - > Project proposal due by March 1st by 12:59PM
 - > If you want to run your idea by me, this is a good time to approach me.
- Remember to use office hours (drop me an email) if you're having any difficulty with homework questions.

Fair Division

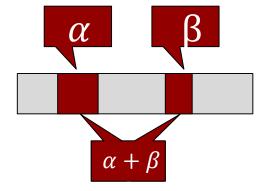
Cake-Cutting

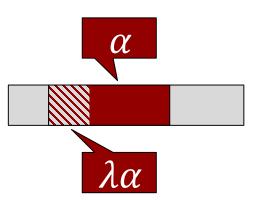
- A heterogeneous, divisible good
 - Heterogeneous: it may be valued differently by different individuals
 - Divisible: we can share/divide it between individuals
- Represented as [0,1]
 - > Almost without loss of generality
- Set of players $N = \{1, ..., n\}$
- Piece of cake $X \subseteq [0,1]$
 - > A finite union of disjoint intervals

Agent Valuations

• Each player i has a valuation V_i that is very much like a probability distribution over [0,1]

- Additive: For $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ and X, $\exists Y \subseteq X \text{ s.t. } V_i(Y) = \lambda V_i(X)$





Fairness Goals

- An allocation is a disjoint partition $A=(A_1,\ldots,A_n)$ of the cake
- We desire the following fairness properties from our allocation A:
- Proportionality (Prop):

$$\forall i \in N \colon V_i(A_i) \ge \frac{1}{n}$$

Envy-Freeness (EF):

$$\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$$

Fairness Goals

- Prop: $\forall i \in N: V_i(A_i) \geq 1/n$
- EF: $\forall i, j \in N: V_i(A_i) \geq V_i(A_j)$
- Question: What is the relation between proportionality and EF?
 - 1. Prop \Rightarrow EF
 - (2.) EF \Rightarrow Prop
 - 3. Equivalent
 - 4. Incomparable

CUT-AND-CHOOSE

• Algorithm for n=2 players

- Player 1 divides the cake into two pieces X,Y s.t. $V_1(X) = V_1(Y) = 1/2$
- Player 2 chooses the piece she prefers.

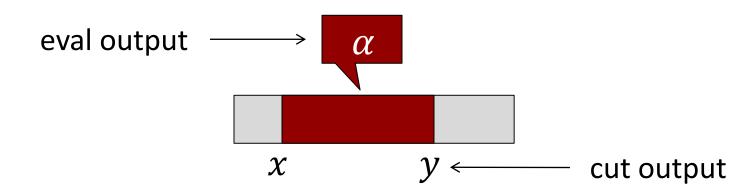
- This is EF and therefore proportional.
 - > Why?

Input Model

- How do we measure the "time complexity" of a cake-cutting algorithm for n players?
- Typically, time complexity is a function of the length of input encoded as binary.
- Our input consists of functions V_i , which requires infinite bits to encode.
- We want running time just as a function of n.

Robertson-Webb Model

- We restrict access to valuations V_i 's through two types of queries:
 - \triangleright Eval_i(x, y) returns $V_i([x, y])$
 - $ightharpoonup \operatorname{Cut}_i(x,\alpha)$ returns y such that $V_i([x,y])=\alpha$

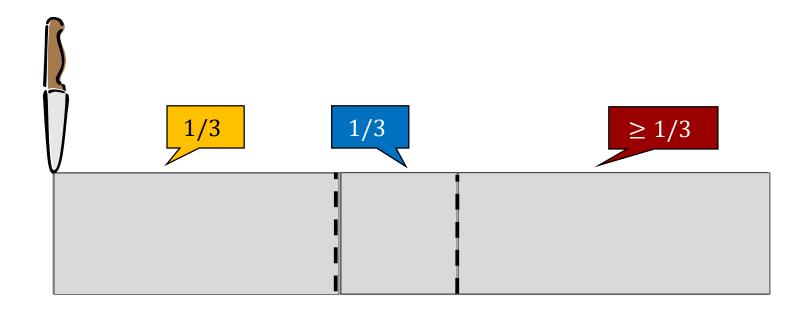


Robertson-Webb Model

- Two types of queries:
 - $\triangleright \text{Eval}_i(x, y) = V_i([x, y])$
 - $\succ \operatorname{Cut}_i(x, \alpha) = y \text{ s.t. } V_i([x, y]) = \alpha$
- Question: How many queries are needed to find an EF allocation when n=2?
- Answer: 2
 - > Why?

ullet Protocol for finding a proportional allocation for n players

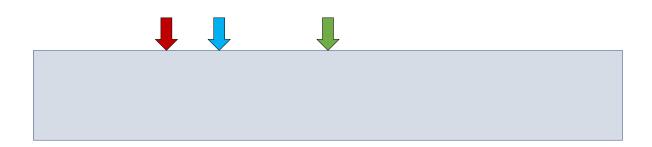
- Referee starts at 0, and continuously moves knife to the right.
- Repeat: when piece to the left of knife is worth 1
 /n to a player, the player shouts "stop", gets the piece, and exits.
- The last player gets the remaining piece.

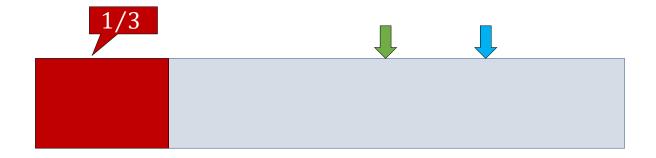


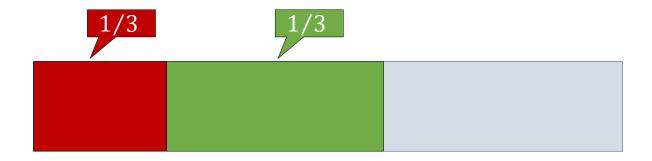
Moving knife is not really needed.

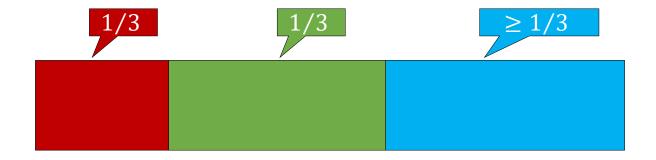
• At each stage, we can ask each remaining player a cut query to mark his 1/n point in the remaining cake.

Move the knife to the leftmost mark.









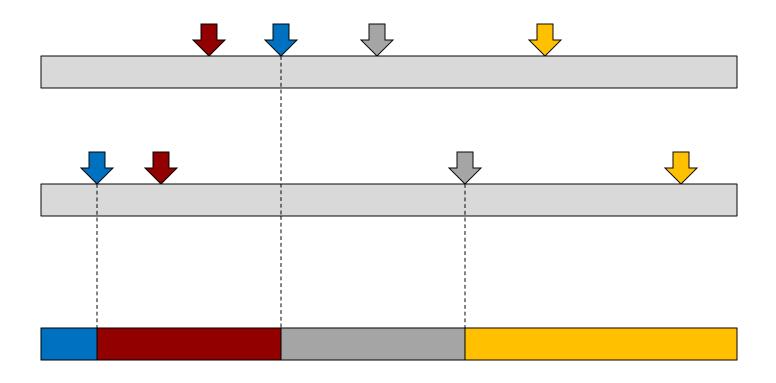
• Question: What is the complexity of the Dubins-Spanier protocol in the Robertson-Webb model?

- 1. $\Theta(n)$
- 2. $\Theta(n \log n)$
- $\Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

- Input: Interval [x, y], number of players n
 - \triangleright Assume $n=2^k$ for some k
- If n = 1, give [x, y] to the single player.
- Otherwise, let each player i mark z_i s.t.

$$V_i([x, z_i]) = \frac{1}{2} V_i([x, y])$$

- Let z^* be the n/2 mark from the left.
- Recurse on $[x, z^*]$ with the left n/2 players, and on $[z^*, y]$ with the right n/2 players.



• Theorem: EVEN-PAZ returns a Prop allocation.

Proof:

- > Inductive proof. We want to prove that if player i is allocated piece A_i when [x, y] is divided between n players, $V_i(A_i) \ge (1/n)V_i([x, y])$
 - o Then Prop follows because initially $V_i([x,y]) = V_i([0,1]) = 1$
- \triangleright Base case: n=1 is trivial.
- > Suppose it holds for $n = 2^{k-1}$. We prove for $n = 2^k$.
- > Take the 2^{k-1} left players.
 - Every left player i has $V_i([x, z^*]) \ge (1/2) V_i([x, y])$
 - If it gets A_i , by induction, $V_i(A_i) \ge \frac{1}{2^{k-1}} V_i([x, z^*]) \ge \frac{1}{2^k} V_i([x, y])$

• Question: What is the complexity of the Even-Paz protocol in the Robertson-Webb model?

- 1. $\Theta(n)$
- 2. $\Theta(n \log n)$
- 3. $\Theta(n^2)$
- 4. $\Theta(n^2 \log n)$

Complexity of Proportionality

• Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the Robertson-Webb model.

 Thus, the EVEN-PAZ protocol is (asymptotically) provably optimal!

Envy-Freeness?

- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For *n*-player EF cake-cutting:
 - > [Brams and Taylor, 1995] give an unbounded EF protocol.
 - \triangleright [Procaccia 2009] shows $\Omega(n^2)$ lower bound for EF.
 - Last year, the long-standing major open question of "bounded EF protocol" was resolved!
 - ➤ [Aziz and Mackenzie, 2016]: O(n^{nnⁿnⁿ}) protocol!
 Not a typo!

Other Desiderata

 There are two more properties that we often desire from an allocation.

Pareto optimality (PO)

- > Notion of efficiency
- Informally, it says that there should be no "obviously better" allocation
- Strategyproofness (SP)
 - No player should be able to gain by misreporting her valuation

Strategyproofness (SP)

- For deterministic mechanisms
 - "Strategyproof": No player should be able to increase her utility by misreporting her valuation, irrespective of what other players report.
- For randomized mechanisms
 - "Strategyproof-in-expectation": No player should be able to increase her expected utility by misreporting.
 - > For simplicity, we'll call this strategyproofness, and assume we mean "in expectation" if the mechanism is randomized.

Strategyproofness (SP)

- Deterministic
 - > Bad news!
 - Theorem [Menon & Larson '17]: No deterministic SP mechanism is (even approximately) proportional.
- Randomized
 - > Good news!
 - Theorem [Chen et al. '13, Mossel & Tamuz '10]: There is a randomized SP mechanism that always returns an envyfree allocation.

Perfect Partition

Theorem [Lyapunov '40]:

- > There always exists a "perfect partition" $(B_1, ..., B_n)$ of the cake such that $V_i(B_i) = {}^1/_n$ for every $i, j \in [n]$.
- > Every agent values every bundle equally.

Theorem [Alon '87]:

- > There exists a perfect partition that only cuts the cake at poly(n) points.
- > In contrast, Lyapunov's proof is non-constructive, and might need an unbounded number of cuts.

Perfect Partition

- Q: Can you use an algorithm for computing a perfect partition as a black-box to design a randomized SP+EF mechanism?
 - \triangleright Yes! Compute a perfect partition, and assign the n bundles to the n players uniformly at random.
 - > Why is this EF?
 - \circ Every agent values every bundle at $^{1}/_{n}$.
 - Why is this SP-in-expectation?
 - \circ Because an agent is assigned a random bundle, her expected utility is $^1/_n$, irrespective of what she reports.