CSC2556

Lecture 4

Impartial Selection; PageRank; Facility Location

Announcements

- Hope to add a homework question by next lecture
- Proposal tentatively due around Feb end
 - > But it will help to decide the topic earlier, and start working.
- I'll put up a list of possible project ideas (in case you cannot find something related to your research)
 - Will also be available to have more meetings during the next two months to help select projects

Impartial Selection

Impartial Selection

- "How can we select k people out of n people?"
 - > Applications: electing a student representation committee, selecting k out of n grant applications to fund using peer review, ...

Model

- > Input: a *directed* graph G = (V, E)
- > Nodes $V = \{v_1, \dots, v_n\}$ are the *n* people
- ≻ Edge $e = (v_i, v_j) \in E: v_i$ supports/approves of v_j

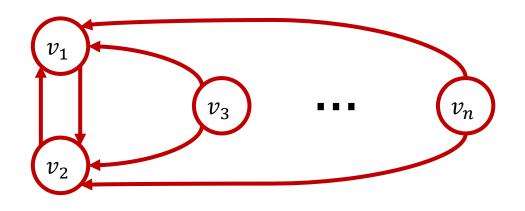
 \circ We do not allow or ignore self-edges (v_i, v_i)

- > Output: a subset $V' \subseteq V$ with |V'| = k
- ≻ $k \in \{1, ..., n 1\}$ is given

Impartial Selection

- Impartiality: A k-selection rule f is impartial if v_i ∈ f(G) does not depend on the outgoing edges of v_i
 v_i cannot manipulate his outgoing edges to get selected
 Q: But the definition says v_i can neither go from v_i ∉ f(G) to v_i ∈ f(G), nor from v_i ∈ f(G) to v_i ∉ f(G). Why?
- Societal goal: maximize the sum of in-degrees of selected agents $\sum_{v \in f(G)} |in(v)|$
 - in(v) = set of nodes that have an edge to v
 - > out(v) = set of nodes that v has an edge to
 - Note: OPT will pick the k nodes with the highest indegrees

Optimal \neq Impartial



- An optimal 1-selecton rule must select v_1 or v_2
- The other node can remove his edge to the winner, and make sure the optimal rule selects him instead
- This violates impartiality

Goal: Approximately Optimal

- α-approximation: We want a k-selection system that always returns a set with total indegree at least α times the total indegree of the optimal set
- Q: For k = 1, what about the following rule? Rule: "Select the lowest index vertex in $out(v_1)$. If $out(v_1) = \emptyset$, select v_2 ."
 - A. Impartial + constant approximation
 B. Impartial + bad approximation
 - C. Not impartial + constant approximation
 - D. Not impartial + bad approximation

• Theorem [Alon et al. 2011] For every $k \in \{1, ..., n - 1\}$, there is no impartial k-selection rule with a finite approximation ratio.

• Proof:

- > For small k, this is trivial. E.g., consider k = 1.
 - \circ What if G has two nodes v_1 and v_2 that point to each other, and there are no other edges?
 - $_{\odot}$ For finite approximation, the rule must choose either v_1 or v_2
 - \circ Say it chooses v_1 . If v_2 now removes his edge to v_1 , the rule must choose v_2 for any finite approximation.
 - Same argument as before. But applies to any "finite approximation rule", and not just the optimal rule.

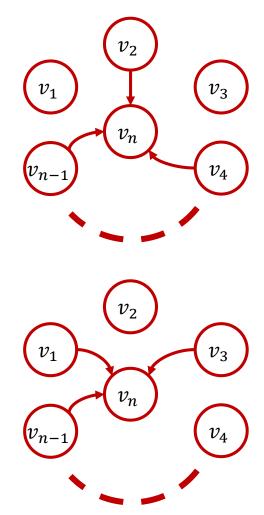
• Theorem [Alon et al. 2011] For every $k \in \{1, ..., n - 1\}$, there is no impartial k-selection rule with a finite approximation ratio.

• Proof:

- > Proof is more intricate for larger k. Let's do k = n 1.
 - $\circ k = n 1$: given a graph, "eliminate" a node.
- > Suppose for contradiction that there is such a rule f.
- > W.I.o.g., say v_n is eliminated in the empty graph.
- ➤ Consider a family of graphs in which a subset of {v₁, ..., v_{n-1}} have edges to v_n.

• Proof (k = n - 1 continued):

- Consider star graphs in which a non-empty subset of {v₁, ..., v_{n-1}} have edge to v_n, and there are no other edges
 Represented by bit strings {0,1}ⁿ⁻¹\{0 }
- > v_n cannot be eliminated in any star graph \circ Otherwise we have infinite approximation
- > $f \max \{0,1\}^{n-1} \setminus \{\overrightarrow{0}\} \text{ to } \{1, \dots, n-1\}$ \circ "Who will be eliminated?"
- > Impartiality: $f(\vec{x}) = i \iff f(\vec{x} + \vec{e}_i) = i$ \vec{e}_i has 1 at i^{th} coordinate, 0 elsewhere
 In words, *i* cannot prevent elimination by adding or removing his edge to v_n



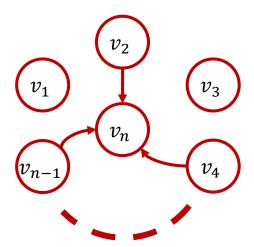
• Proof (k = n - 1 continued):

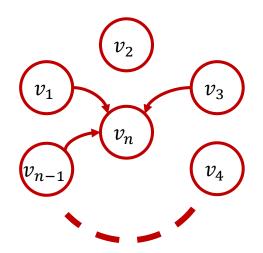
$$\succ f: \{0,1\}^{n-1} \backslash \{ \overrightarrow{0} \} \rightarrow \{1, \dots, n-1\}$$

>
$$f(\vec{x}) = i \iff f(\vec{x} + \vec{e}_i) = i$$

○ \vec{e}_i has 1 only in i^{th} coordinate

- > Pairing implies...
 - The number of strings on which f outputs i is even, for every i.
 - Thus, total number of strings in the domain must be even too.
 - \circ But total number of strings is $2^{n-1} 1$ (odd)
- > So impartiality must be violated for some pair of \vec{x} and $\vec{x} + \vec{e}_i$





Back to Impartial Selection

- Question: So what *can* we do to select impartially?
- Answer: Randomization!
 - > Impartiality now requires that the probability of an agent being selected be independent of his outgoing edges.
- Examples: Randomized Impartial Mechanisms
 - > Choose k nodes uniformly at random
 - $\,\circ\,$ Sadly, this still has arbitrarily bad approximation.
 - \circ Imagine having k special nodes with indegree n 1, and all other nodes having indegree 0.
 - Mechanism achieves $(k/n) * OPT \Rightarrow approximation = n/k$
 - \circ Good when k is comparable to n, but bad when k is small.

Random Partition

• Idea:

> What if we partition V into V_1 and V_2 , and select k nodes from V_1 based only on edges coming to them from V_2 ?

• Mechanism:

- > Assign each node to V_1 or V_2 i.i.d. with probability $\frac{1}{2}$
- ≻ Choose $V_i \in \{V_1, V_2\}$ at random
- Choose k nodes from V_i that have most incoming edges from nodes in V_{3-i}

Random Partition

- Analysis:
 - > We want to approximate I = # edges incoming to nodes in OPT.
 - Let $OPT_1 = OPT \cap V_1$, and $OPT_2 = OPT \cap V_2$.
 - Let I_1 = # edges incoming to OPT_1 from V_2 .
 - Let I_2 = # edges incoming to OPT_2 from V_1 .
 - > Note that $E[I_1 + I_2] = I/2$. (WHY?)
 - With probability ¹/₂, mechanism picks k nodes from V₁ that have most incoming edges from V₂ (thus at least I₁ incoming edges).
 Because they're at least as good as OPT₁.
 - > With probability $\frac{1}{2}$, mechanism picks k nodes from V_2 that have most incoming edges from V_1 (thus at least I_2 incoming edges).
 - > The expected total incoming edges is at least

$$\circ E\left[\left(\frac{1}{2}\right) \cdot I_1 + \left(\frac{1}{2}\right) \cdot I_2\right] = \left(\frac{1}{2}\right) \cdot E\left[I_1 + I_2\right] = \left(\frac{1}{2}\right) \cdot \frac{I}{2} = \frac{I}{4}$$

Random Partition

Generalization

> Divide into ℓ parts, and pick k/ℓ nodes from each part based on incoming edges from all other parts.

• Theorem [Alon et al. 2011]:

>
$$\ell = 2$$
 gives a 4-approximation.

> For $k \ge 2$, $\ell \sim k^{1/3}$ gives $1 + O\left(\frac{1}{k^{1/3}}\right)$ approximation.

Better Approximations

- Alon et al. [2011] conjectured that for randomized impartial 1-selection...
 - > (For which their mechanism is a 4-approximation)
 - > It should be possible to achieve a 2-approximation.
 - > Recently proved by Fischer & Klimm [2014]
 - > Permutation mechanism:
 - Select a random permutation $(\pi_1, \pi_2, ..., \pi_n)$ of the vertices.
 - Start by selecting $y = \pi_1$ as the "current answer".
 - At any iteration *t*, let $y \in \{\pi_1, ..., \pi_t\}$ be the current answer.
 - From $\{\pi_1, \dots, \pi_t\} \setminus \{y\}$, if there are more edges to π_{t+1} than to y, change the current answer to $y = \pi_{t+1}$.

Better Approximations

- 2-approximation is tight.
 - In an n-node graph, fix u and v, and suppose no other nodes have any incoming/outgoing edges.
 - > Three cases: only $u \rightarrow v$ edge, only $v \rightarrow u$, or both.

 $_{\odot}$ The best impartial mechanism selects u and v with probability $\frac{1}{2}$ in every case, and achieves 2-approximation.

- But this is because n 2 nodes are not voting!
 - > What if every node must have an outgoing edge?
 - > Fischer & Klimm [2014]:
 - \odot Permutation mechanism gives between $^{12}/_7$ and $^3/_2$ approximation.
 - \circ No mechanism gives better than 4/3 approximation.

PageRank Axiomatization

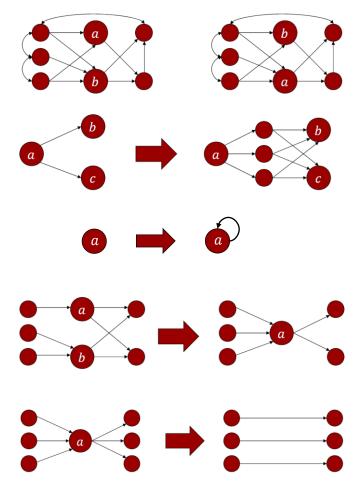
- An extension of the impartial selection problem
 > Instead of selecting k nodes, we want to rank all nodes
- The PageRank Problem: Given a directed graph, rank all nodes by their "importance".
 - Think of the web graph, where nodes are webpages, and a directed (u, v) edge means u has a link to v.
- Questions:
 - > What properties do we want from such a rule?
 - > What rule satisfies these properties?

- Here is the PageRank Algorithm:
 - > Start from any node in the graph.
 - > At each iteration, choose an outgoing edge of the current node, uniformly at random among all its outgoing edges.
 - > Move to the neighbor node on that edge.
 - > In the limit of $T \rightarrow \infty$ iterations, measure the fraction of time the "random walk" visits each node.
 - > Rank the nodes by these "stationary probabilities".
- Google uses (a version of) this algorithm
 - > It's seems a reasonable algorithm.
 - > What nice axioms might it satisfy?

- In a formal sense...
 - > Let p_i = stationary probability of visiting *i*.
 - > Let N(i) = set of nodes that have an edge to i.
 - > Then, $p_i = \sum_j p_j / outdeg(j) \Rightarrow n$ equations, n variables!
- Another way to do this:
 - > Let A be a matrix with $A_{i,j} = 1/outdeg(i)$ for every $(i,j) \in E$.
 - > Then, we are searching for a solution v such that Av = v.
 - > One method: start from any v_0 , and compute $\lim_{k \to \infty} A^k v_0$ \circ Note: A^k can be computed using log k matrix multiplications!

Axioms

- Axiom 1 (Isomorphism)
 - Permuting node names permutes the final ranking.
- Axiom 2 (Vote by Committee)
 - Voting through intermediate fake nodes cannot change the ranking.
- Axiom 3 (Self Edge)
 - v adding a self edge cannot change the ordering of the *other* nodes.
- Axiom 4 (Collapsing)
 - Merging identically voting nodes cannot change the ordering of the other nodes.
- Axiom 5 (Proxy)
 - If k nodes with equal score vote for k other nodes through a proxy, it should be no different than a direct 1-1 voting.



• Theorem [Altman and Tennenholtz, 2005]: An algorithm satisfies these five axioms if and only if it is PageRank.

Facility Location

Apprx Mechanism Design

- 1. Define the problem: agents, outcomes, values
- 2. Fix an objective function (e.g., maximizing sum of values)
- 3. Check if the objective function is maximized through a strategyproof mechanism
- 4. If not, find the strategyproof mechanism that provides the best worst-case approximation ratio of the objective function

Facility Location

- Set of agents N
- Each agent *i* has a true location $x_i \in \mathbb{R}$
- Mechanism f
 - > Takes as input reports $\tilde{x} = (\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n)$
 - > Returns a location $y \in \mathbb{R}$ for the new facility
- Cost to agent $i : c_i(y) = |y x_i|$
- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$

Facility Location

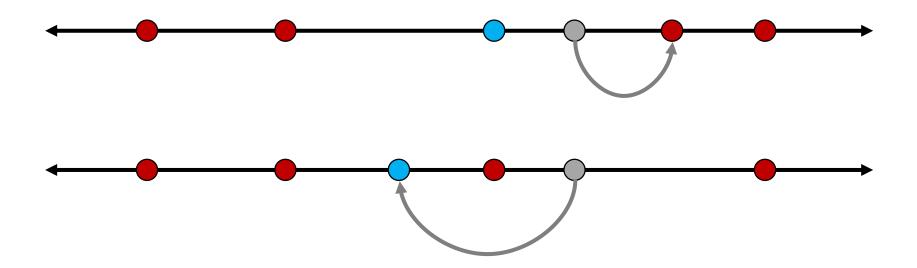
- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$
- Q: Ignoring incentives, what choice of y would minimize the social cost?
- A: The median location med(x₁, ..., x_n)
 > n is odd → the unique "(n+1)/2"th smallest value
 > n is even → "n/2"th or "(n/2)+1"st smallest value
 > Why?

Facility Location

- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y x_i|$
- Median is optimal (i.e., 1-approximation)
- What about incentives?
 - Median is also strategyproof (SP)!
 - Irrespective of the reports of other agents, agent i is best off reporting x_i

Median is SP

No manipulation can help



- A different objective function $C(y) = \max_{i} |y x_i|$
- Q: Again ignoring incentives, what value of y minimizes the maximum cost?
- A: The midpoint of the leftmost (min x_i) and the rightmost (max x_i) locations
- Q: Is this optimal rule strategyproof?
- A: No!

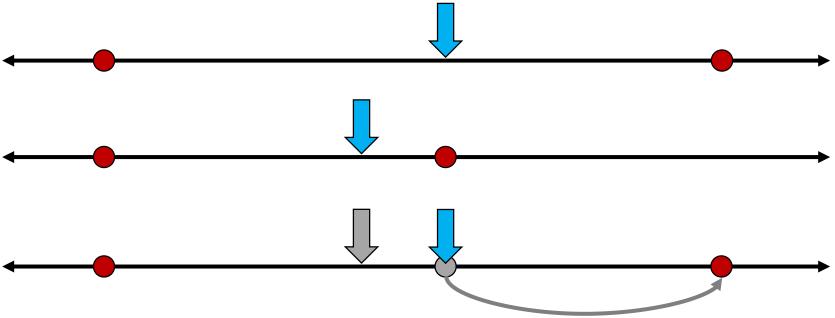
- $C(y) = \max_i |y x_i|$
- We want to use a strategyproof mechanism.
- Question: What is the approximation ratio of median for maximum cost?
 - 1. ∈ [1,2)
 - *2.* ∈ [2,3)
 - *3.* ∈ [3,4)
 - 4. ∈ [4,∞)

- Answer: 2-approximation
- Other SP mechanisms that are 2-approximation
 - > Leftmost: Choose the leftmost reported location
 - > Rightmost: Choose the rightmost reported location
 - > Dictatorship: Choose the location reported by agent 1

≻ ...

 Theorem [Procaccia & Tennenholtz, '09] No deterministic SP mechanism has approximation ratio < 2 for maximum cost.

• Proof:



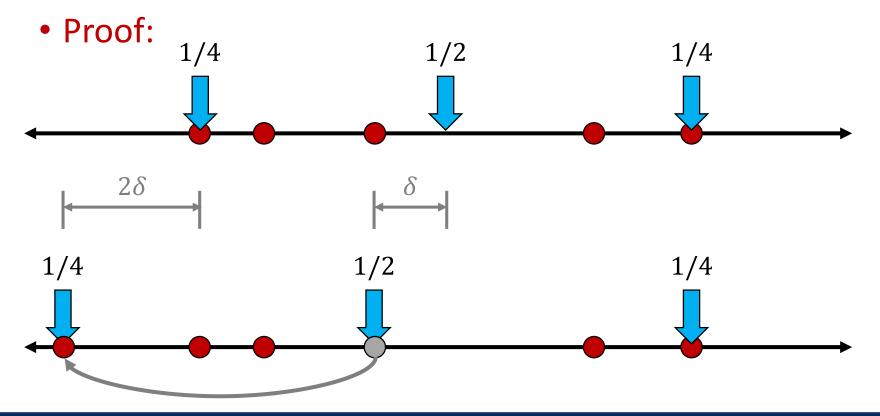
Max Cost + Randomized

- The Left-Right-Middle (LRM) Mechanism
 - > Choose $\min_{i} x_i$ with probability $\frac{1}{4}$
 - > Choose $\max x_i$ with probability $\frac{1}{4}$
 - > Choose $(\min_{i} x_i + \max_{i} x_i)/2$ with probability $\frac{1}{2}$
- Question: What is the approximation ratio of LRM for maximum cost?

• At most
$$\frac{(1/4)*2C+(1/4)*2C+(1/2)*C}{C} = \frac{3}{2}$$

Max Cost + Randomized

• Theorem [Procaccia & Tennenholtz, '09]: The LRM mechanism is strategyproof.



Max Cost + Randomized

• Exercise for you!

Try showing that no randomized SP mechanism can achieve approximation ratio < 3/2.