CSC2556
Lecture 4
Impartial Selection;
PageRank; Facility Location
Announcements

• Hope to add a homework question by next lecture

• Reports tentatively due around Feb end
 ➢ But it will help to decide the topic earlier, and start working.

• I’ll put up a list of possible project ideas (in case you cannot find something related to your research)
 ➢ Will also be available to have more meetings during the next two months to help select projects
Recap

- **Utilities:** Voters have underlying numerical utilities
 - Utility of voter \(i \) for alternative \(a = u_i(a) \)
 - Normalization: \(\sum_a u_i(a) = 1 \) for all voters \(i \)

- **Preferences:** Observed ranked preferences of voters are consistent with their implicit utilities
 - \(a \succ_i b \iff u_i(a) > u_i(b) \)

- **Goal:** maximize the (utilitarian) social welfare
 - Ideally, select \(a^* \in \arg\max_a \sum_i u_i(a) \)
 - Cannot achieve this given only ranked preferences
Recap

• **Modified goal:** Achieve the best worst-case approximation to social welfare
 - Denote the utilities of all voters collectively by \(\tilde{u} \)
 - \(\mathcal{U}(P) = \) set of \(\tilde{u} \) consistent with preference profile \(P \)
 - \(sw(a, \tilde{u}) = \sum_i u_i(a) \)
 - **Distortion** when choosing \(a \) is worst-case approximation:

\[
\max_{\tilde{u} \in \mathcal{U}(P)} \frac{\max_b sw(b, \tilde{u})}{sw(a, \tilde{u})}
\]

• **Uniquely optimal rule**
 - Given profile \(P \), choose \(a \) that minimizes the above term
Recap

• **Theorem** [Boutilier et al. ‘12]: Given ranked preferences, the optimal randomized voting rule has distortion $O(\sqrt{m} \cdot \log^* m)$, $\Omega(\sqrt{m})$.

• **Proof:**
 - **Lower bound:** Construct a profile on which every randomized voting rule $\Omega(\sqrt{m})$ distortion.
 - **Upper bound:** Show *some* randomized voting rule that has $O(\sqrt{m} \cdot \log^* m)$ distortion
 - We’ll do the much simpler $O(\sqrt{m} \cdot \log m)$ distortion
Recap

• Proof (lower bound):
 ➢ Consider a similar profile:
 o \sqrt{m} special alternatives
 o Voting rule must choose one of them (say a^*) w.p. at most $1/\sqrt{m}$

 ➢ Bad utility profile \vec{u}:
 o All voters ranking a^* first give utility 1 to a^*
 o All other voters give utility $1/m$ to each alternative
 o $\frac{n}{\sqrt{m}} \leq sw(a^*, \vec{u}) \leq \frac{2n}{\sqrt{m}}$
 o $sw(a, \vec{u}) \leq n/m$ for every other a.
 o Distortion lower bound: $\sqrt{m}/3$ (proof on the board!)
• Proof (upper bound):
 ➢ Given profile P, define the harmonic score $sc(a, P)$:
 o Each voter gives $1/k$ points to her k^{th} most preferred alternative
 o Take the sum of points across voters
 o $sw(a, \bar{u}) \leq sc(a, P)$ (WHY?)
 o $\sum_a sc(a, P) = n \cdot \sum_{k=1}^{m} 1/k \leq n \cdot (\ln m + 1)$

➢ Golden rule:
 o W.p. $\frac{1}{2}$: Choose every a w.p. proportional to $sc(a, P)$
 o W.p. $\frac{1}{2}$: Choose every a w.p. $1/m$ (uniformly at random)

➢ Distortion $\leq 2\sqrt{m \cdot (\ln m + 1)}$ (proof on the board!)
 o Two cases by comparing $sc(a, P)$ to $n \sqrt{m \cdot (\ln m + 1)/m}$
Recap: Voting in General

• Incentives: a bit tricky to set right
 ➢ Gibbard-Satterthwaite impossibility
 ➢ Ways to circumvent it, but on average, manipulations are not that hard to find

• Approaches to voting
 ➢ Even if we forget about incentives, how do we select a reasonable voting rule?

• Today: Voting in restricted domains
Impartial Selection
Impartial Selection

• “How can we select k people out of n people?”
 ➢ Applications: electing a student representation committee, selecting k out of n grant applications to fund using peer review, ...

• Model
 ➢ Input: a directed graph $G = (V, E)$
 ➢ Nodes $V = \{v_1, \ldots, v_n\}$ are the n people
 ➢ Edge $e = (v_i, v_j) \in E$: v_i supports/approves of v_j
 o We do not allow or ignore self-edges (v_i, v_i)
 ➢ Output: a subset $V' \subseteq V$ with $|V'| = k$
 ➢ $k \in \{1, \ldots, n - 1\}$ is given
Impartial Selection

• Impartiality: A \(k \)-selection rule \(f \) is impartial if \(v_i \in f(G) \) does not depend on the outgoing edges of \(v_i \)
 - \(v_i \) cannot manipulate his outgoing edges to get selected
 - Q: But the definition says \(v_i \) can neither go from \(v_i \not\in f(G) \) to \(v_i \in f(G) \), nor from \(v_i \in f(G) \) to \(v_i \not\in f(G) \). Why?

• Societal goal: maximize the sum of in-degrees of selected agents \(\sum_{v \in f(G)} |in(v)| \)
 - \(in(v) \) = set of nodes that have an edge to \(v \)
 - \(out(v) \) = set of nodes that \(v \) has an edge to
 - Note: OPT will pick the \(k \) nodes with the highest indegrees
Optimal ≠ Impartial

• An optimal 1-selection rule must select v_1 or v_2
• The other node can remove his edge to the winner, and make sure the optimal rule selects him instead
• This violates impartiality
Goal: Approximately Optimal

• α-approximation: We want a k-selection system that always returns a set with total indegree at least α times the total indegree of the optimal set

• Q: For $k = 1$, what about the following rule?

 Rule: “Select the lowest index vertex in $\text{out}(v_1)$. If $\text{out}(v_1) = \emptyset$, select v_2.”

 ➢ A. Impartial + constant approximation
 ➢ B. Impartial + bad approximation
 ➢ C. Not impartial + constant approximation
 ➢ D. Not impartial + bad approximation
No Finite Approximation 😞

• **Theorem** [Alon et al. 2011]
 For every $k \in \{1, \ldots, n - 1\}$, there is no impartial k-selection rule with a finite approximation ratio.

• **Proof:**
 - For small k, this is trivial. E.g., consider $k = 1$.
 - What if G has two nodes v_1 and v_2 that point to each other, and there are no other edges?
 - For finite approximation, the rule must choose either v_1 or v_2
 - Say it chooses v_1. If v_2 now removes his edge to v_1, the rule must choose v_2 for any finite approximation.
 - Same argument as before. But applies to any “finite approximation rule”, and not just the optimal rule.
No Finite Approximation 😞

• **Theorem** [Alon et al. 2011]
 For every $k \in \{1, \ldots, n - 1\}$, there is no impartial k-selection rule with a finite approximation ratio.

• **Proof:**
 - Proof is more intricate for larger k. Let’s do $k = n - 1$.
 - $k = n - 1$: given a graph, “eliminate” a node.
 - Suppose for contradiction that there is such a rule f.
 - W.l.o.g., say v_n is eliminated in the empty graph.
 - Consider a family of graphs in which a subset of $\{v_1, \ldots, v_{n-1}\}$ have edges to v_n.
No Finite Approximation 😞

• Proof ($k = n - 1$ continued):
 ➢ Consider star graphs in which a non-empty subset of $\{v_1, \ldots, v_{n-1}\}$ have edge to v_n, and there are no other edges
 o Represented by bit strings $\{0,1\}^{n-1}\setminus\{0\}$
 ➢ v_n cannot be eliminated in any star graph
 o Otherwise we have infinite approximation
 ➢ f maps $\{0,1\}^{n-1}\setminus\{0\}$ to $\{1, \ldots, n - 1\}$
 o “Who will be eliminated?”
 ➢ Impartiality: $f(\vec{x}) = i \Leftrightarrow f(\vec{x} + \vec{e}_i) = i$
 o \vec{e}_i has 1 at i^{th} coordinate, 0 elsewhere
 o In words, i cannot prevent elimination by adding or removing his edge to v_n
No Finite Approximation 😞

• Proof ($k = n - 1$ continued):

 $f: \{0,1\}^{n-1}\setminus\{\vec{0}\} \to \{1, \ldots, n - 1\}$

 $f(\vec{x}) = i \iff f(\vec{x} + \vec{e}_i) = i$

 $\circ \vec{e}_i$ has 1 only in i^{th} coordinate

 Pairing implies...

 \circ The number of strings on which f outputs i is even, for every i.
 \circ Thus, total number of strings in the domain must be even too.
 \circ But total number of strings is $2^{n-1} - 1$ (odd)

 So impartiality must be violated for some pair of \vec{x} and $\vec{x} + \vec{e}_i$
Back to Impartial Selection

• **Question:** So what *can* we do to select impartially?
• **Answer:** Randomization!
 ➢ Impartiality now requires that the probability of an agent being selected be independent of his outgoing edges.

• **Examples:** Randomized Impartial Mechanisms
 ➢ Choose k nodes uniformly at random
 o Sadly, this still has arbitrarily bad approximation.
 o Imagine having k special nodes with indegree $n - 1$, and all other nodes having indegree 0.
 o Mechanism achieves $(k/n) \times OPT \Rightarrow$ approximation $= n/k$
 o Good when k is comparable to n, but bad when k is small.
Random Partition

• **Idea:**
 - What if we partition V into V_1 and V_2, and select k nodes from V_1 based only on edges coming to them from V_2?

• **Mechanism:**
 - Assign each node to V_1 or V_2 i.i.d. with probability $\frac{1}{2}$
 - Choose $V_i \in \{V_1, V_2\}$ at random
 - Choose k nodes from V_i that have most incoming edges from nodes in V_{3-i}
Random Partition

• Analysis:
 ➢ We want to approximate $I = \# \text{ edges incoming to nodes in } OPT$.
 o Let $OPT_1 = OPT \cap V_1$, and $OPT_2 = OPT \cap V_2$.
 o Let $I_1 = \# \text{ edges incoming to } OPT_1 \text{ from } V_2$.
 o Let $I_2 = \# \text{ edges incoming to } OPT_2 \text{ from } V_1$.

 ➢ Note that $E[I_1 + I_2] = I/2$. (WHY?)

 ➢ With probability $\frac{1}{2}$, mechanism picks k nodes from V_1 that have most incoming edges from V_2 (thus at least I_1 incoming edges).
 o Because they’re at least as good as OPT_1.

 ➢ With probability $\frac{1}{2}$, mechanism picks k nodes from V_2 that have most incoming edges from V_1 (thus at least I_2 incoming edges).

 ➢ The expected total incoming edges is at least
 o $E\left[\left(\frac{1}{2}\right) \cdot I_1 + \left(\frac{1}{2}\right) \cdot I_2\right] = \left(\frac{1}{2}\right) \cdot E[I_1 + I_2] = \left(\frac{1}{2}\right) \cdot \frac{I}{2} = \frac{I}{4}$
Random Partition

- **Generalization**
 - Divide into ℓ parts, and pick k/ℓ nodes from each part based on incoming edges from all other parts.

- **Theorem [Alon et al. 2011]**:
 - $\ell = 2$ gives a 4-approximation.
 - For $k \geq 2$, $\ell \sim k^{1/3}$ gives $1 + O\left(\frac{1}{k^{1/3}}\right)$ approximation.
Better Approximations

• Alon et al. [2011] conjectured that for randomized impartial 1-selection...
 ➢ (For which their mechanism is a 4-approximation)
 ➢ It should be possible to achieve a 2-approximation.
 ➢ Recently proved by Fischer & Klimm [2014]
 ➢ Permutation mechanism:
 o Select a random permutation \((\pi_1, \pi_2, ..., \pi_n)\) of the vertices.
 o Start by selecting \(y = \pi_1\) as the “current answer”.
 o At any iteration \(t\), let \(y \in \{\pi_1, ..., \pi_t\}\) be the current answer.
 o From \(\{\pi_1, ..., \pi_t\}\setminus\{y\}\), if there are more edges to \(\pi_{t+1}\) than to \(y\), change the current answer to \(y = \pi_{t+1}\).
Better Approximations

• 2-approximation is tight.
 ➢ In an n-node graph, fix u and v, and suppose no other nodes have any incoming/outgoing edges.
 ➢ Three cases: only $u \rightarrow v$ edge, only $v \rightarrow u$, or both.
 o The best impartial mechanism selects u and v with probability $1/2$ in every case, and achieves 2-approximation.

• But this is because $n - 2$ nodes are not voting!
 ➢ What if every node must have an outgoing edge?
 ➢ Fischer & Klimm [2014]:
 o Permutation mechanism gives $12/7 = 1.714$ approximation.
 o No mechanism gives better than $2/3$ approximation.
 o Open question to achieve better than $12/7$.
PageRank
Axiomatization
PageRank

• An extension of the impartial selection problem
 ➢ Instead of selecting \(k \) nodes, we want to rank all nodes

• The PageRank Problem: Given a directed graph, rank all nodes by their “importance”.
 ➢ Think of the web graph, where nodes are webpages, and a directed \((u, v) \) edge means \(u \) has a link to \(v \).

• Questions:
 ➢ What properties do we want from such a rule?
 ➢ What rule satisfies these properties?
PageRank

• Here is the PageRank Algorithm:
 ➢ Start from any node in the graph.
 ➢ At each iteration, choose an outgoing edge of the current node, uniformly at random among all its outgoing edges.
 ➢ Move to the neighbor node on that edge.
 ➢ In the limit of $T \to \infty$ iterations, measure the fraction of time the “random walk” visits each node.
 ➢ Rank the nodes by these “stationary probabilities”.

• Google uses (a version of) this algorithm
 ➢ It’s seems a reasonable algorithm.
 ➢ What nice axioms might it satisfy?
PageRank

• In a formal sense...
 ➢ Let p_i = stationary probability of visiting i.
 ➢ Let $N(i)$ = set of nodes that have an edge to i.
 ➢ Then, $p_i = \sum_j p_j / \text{outdeg}(j) \Rightarrow n$ equations, n variables!

• Another way to do this:
 ➢ Let A be a matrix with $A_{i,j} = 1 / \text{outdeg}(i)$ for every $(i,j) \in E$.
 ➢ Then, we are searching for a solution v such that $Av = v$.
 ➢ One method: start from any v_0, and compute $\lim_{k \to \infty} A^k v_0$
 o Note: A^k can be computed using $\log k$ matrix multiplications!
Axioms

• Axiom 1 (Isomorphism)
 ➢ Permuting node names permutes the final ranking.

• Axiom 2 (Vote by Committee)
 ➢ Voting through intermediate fake nodes cannot change the ranking.

• Axiom 3 (Self Edge)
 ➢ v adding a self edge cannot change the ordering of the other nodes.

• Axiom 4 (Collapsing)
 ➢ Merging identically voting nodes cannot change the ordering of the other nodes.

• Axiom 5 (Proxy)
 ➢ If k nodes with equal score vote for k other nodes through a proxy, it should be no different than a direct 1-1 voting.
PageRank

• Theorem [Altman and Tennenholtz, 2005]: An algorithm satisfies these five axioms if and only if it is PageRank.
Facility Location
Apprx Mechanism Design

1. Define the problem: agents, outcomes, values

2. Fix an objective function (e.g., maximizing sum of values)

3. Check if the objective function is maximized through a strategyproof mechanism

4. If not, find the strategyproof mechanism that provides the best worst-case approximation ratio of the objective function
Facility Location

- Set of agents \(N \)
- Each agent \(i \) has a true location \(x_i \in \mathbb{R} \)
- Mechanism \(f \)
 - Takes as input reports \(\tilde{x} = (\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_n) \)
 - Returns a location \(y \in \mathbb{R} \) for the new facility
- Cost to agent \(i \) : \(c_i(y) = |y - x_i| \)
- Social cost \(C(y) = \sum_i c_i(y) = \sum_i |y - x_i| \)
• Social cost \(C(y) = \sum_i c_i(y) = \sum_i |y - x_i| \)

• **Q:** Ignoring incentives, what choice of \(y \) would minimize the social cost?

• **A:** The median location \(\text{med}(x_1, \ldots, x_n) \)
 - \(n \) is odd → the unique \(\text{“}(n+1)/2\text{”}^{\text{th}} \) smallest value
 - \(n \) is even → \(\text{“}n/2\text{”}^{\text{th}} \) or \(\text{“}(n/2)+1\text{”}^{\text{st}} \) smallest value
 - Why?
Facility Location

- Social cost $C(y) = \sum_i c_i(y) = \sum_i |y - x_i|$
- Median is optimal (i.e., 1-approximation)

What about incentives?

- Median is also strategyproof (SP)!
- Irrespective of the reports of other agents, agent i is best off reporting x_i
Median is SP

No manipulation can help
Max Cost

• A different objective function $C(y) = \max_{i} |y - x_i|$

• Q: Again ignoring incentives, what value of y minimizes the maximum cost?

• A: The midpoint of the leftmost ($\min_{i} x_i$) and the rightmost ($\max_{i} x_i$) locations

• Q: Is this optimal rule strategyproof?

• A: No!
Max Cost

- \(C(y) = \max_i |y - x_i| \)

- We want to use a strategyproof mechanism.

- **Question:** What is the approximation ratio of median for maximum cost?
 1. \(\in [1,2) \)
 2. \(\in [2,3) \)
 3. \(\in [3,4) \)
 4. \(\in [4,\infty) \)
Max Cost

• **Answer:** 2-approximation

• Other SP mechanisms that are 2-approximation
 - Leftmost: Choose the leftmost reported location
 - Rightmost: Choose the rightmost reported location
 - Dictatorship: Choose the location reported by agent 1
 - ...

Max Cost

• Theorem [Procaccia & Tennenholtz, ‘09]
 No deterministic SP mechanism has approximation ratio < 2 for maximum cost.

• Proof:
Max Cost + Randomized

• The Left-Right-Middle (LRM) Mechanism
 ➢ Choose $\min x_i$ with probability $\frac{1}{4}$
 ➢ Choose $\max x_i$ with probability $\frac{1}{4}$
 ➢ Choose $(\min x_i + \max x_i)/2$ with probability $\frac{1}{2}$

• Question: What is the approximation ratio of LRM for maximum cost?

• At most \(\frac{(1/4)*2C+(1/4)*2C+(1/2)*C}{C} = \frac{3}{2} \)
Max Cost + Randomized

• Theorem [Procaccia & Tennenholtz, ‘09]: The LRM mechanism is strategyproof.

• Proof:

\[1/4\] \quad 2\delta \quad \delta \quad 1/4 \]

\[1/4\] \quad 1/2 \quad 1/4\]
Max Cost + Randomized

- Exercise for you!
 Try showing that no randomized SP mechanism can achieve approximation ratio $< 3/2$.