CSC2556
Lecture 2
Manipulation in Voting

Credit for many visuals: Ariel D. Procaccia
Recap

• Voting
 ➢ n voters, m alternatives
 ➢ Each voter i expresses a ranked preference \succ_i
 ➢ Voting rule f
 o Takes as input the collection of preferences \succ
 o Returns a single alternative

• A plethora of voting rule
 ➢ Plurality, Borda count, STV, Kemeny, Copeland, maximin, ...

CSC2556 - Nisarg Shah
Incentives

• Can a voting rule incentivize voters to truthfully report their preferences?

• Strategyproofness

- A voting rule is strategyproof if a voter cannot submit a false preference and get her more preferred alternative elected, irrespective of the preferences of other voters.

- Formally, a voting rule f is strategyproof if there is no preference profile \succ, voter i, and false preference \succ'_{i} s.t.

$$f(\succ_{-i}, \succ'_{i}) \succ_{i} f(\succ)$$
Strategyproofness

• None of the rules we saw are strategyproof!

• Example: Borda Count
 ➢ In the true profile, b wins
 ➢ Voter 3 can make a win by pushing b to the end
Borda’s Response to Critics

My scheme is intended only for honest men!

Random 18th century French dude
Strategyproofness

• Are there any strategyproof rules?
 ➢ Sure

• Dictatorial voting rule
 ➢ The winner is always the most preferred alternative of voter i

• Constant voting rule
 ➢ The winner is always the same

• Not satisfactory (for most cases)
Three Properties

- **Strategyproof**: Already defined. No voter has an incentive to misreport.

- **Onto**: Every alternative can win under some preference profile.

- **Nondictatorial**: There is no voter i such that $f(\succ)$ is always the alternative most preferred by voter i.
Gibbard-Satterthwaite

• **Theorem:** For \(m \geq 3 \), no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously 😞

• **Proof:** We will prove this for \(n = 2 \) voters.

 ➢ **Step 1:** Show that SP implies “strong monotonicity” [Assignment?]

 ➢ **Strong Monotonicity (SM):** If \(f(\succeq) = a \), and \(\succeq' \) is such that \(\forall i \in N, x \in A: a \succ_i x \Rightarrow a \succ'_i x \), then \(f(\succeq') = a \).

 o If \(a \) still defeats every alternative it defeated in every vote in \(\succeq \), it should still win.
Gibbard-Satterthwaite

• **Theorem:** For $m \geq 3$, no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously 😞

• **Proof:** We will prove this for $n = 2$ voters.

 ➢ **Step 2:** Show that SP+onto implies “Pareto optimality” [Assignment?]

 ➢ **Pareto Optimality (PO):** If $a \succ_i b$ for all $i \in N$, then $f(\succ) \neq b$.

 o If there is a different alternative that *everyone* prefers, your choice is not Pareto optimal (PO).
• **Proof for n=2:** Consider problem instance $I(a, b)$

\[
\begin{array}{|c|c|}
\hline
>_{1} & >_{2} \\
\hline
a & b \\
b & a \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
>_{1} & >'_{2} \\
\hline
a & b \\
b & a \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
>_{1}'' & >_{2}'' \\
\hline
a & A \\
A & N \\
N & Y \\
\hline
\end{array}
\]

$f(>_{1}, >_{2}) \in \{a, b\}$

\Rightarrow PO

Say $f(>_{1}, >_{2}) = a$

$f(>_{1}, >'_{2}) = a$

- PO: $f(>_{1}, >'_{2}) \in \{a, b\}$
- SP: $f(>_{1}, >'_{2}) \neq b$

- Due to strong monotonicity

\[
\begin{array}{|c|c|}
\hline
>_{1}'' & >_{2}'' \\
\hline
a & A \\
A & N \\
N & Y \\
\hline
\end{array}
\]

$f(>''') = a$
• **Proof for n=2:**
 - If f outputs a on instance $I(a, b)$, voter 1 can get a elected whenever she puts a first.
 - In other words, voter 1 becomes dictatorial for a.
 - Denote this by $D(1, a)$.
 - If f outputs b on $I(a, b)$
 - Voter 2 becomes dictatorial for b, i.e., we have $D(2, b)$.

• For every $I(a, b)$, we have $D(1, a)$ or $D(2, b)$.
Gibbard-Satterthwaite

• Proof for n=2:
 ➢ On some $I(a^*, b^*)$, suppose $D(1, a^*)$ holds.
 ➢ Then, we show that voter 1 is a dictator. That is, $D(1, b)$ must hold for every other b as well.
 ➢ Take $b \neq a^*$. Because $|A| \geq 3$, there exists $c \in A \{a^*, b\}$.
 ➢ Consider $I(b, c)$. We either have $D(1, b)$ or $D(2, c)$.
 ➢ But $D(2, c)$ is incompatible with $D(1, a^*)$
 o Who would win if voter 1 puts a^* first and voter 2 puts c first?
 ➢ Thus, we have $D(1, b)$, as required.
 ➢ QED!
Circumventing G-S

• Restricted preferences (later in the course)
 ➢ Not allowing all possible preference profiles
 ➢ Example: single-peaked preferences
 o Alternatives are on a line (say 1D political spectrum)
 o Voters are also on the same line
 o Voters prefer alternatives that are closer to them

• Use of money (later in the course)
 ➢ Require payments from voters that depend on the preferences they submit
 ➢ Prevalent in auctions
Circumventing G-S

• Randomization (later in this lecture)

• Equilibrium analysis
 ➢ How will strategic voters act under a voting rule that is not strategyproof?
 ➢ Will they reach an “equilibrium” where each voter is happy with the (possibly false) preference she is submitting?

• Restricting information
 ➢ Can voters successfully manipulate if they don’t know the votes of the other voters?
Circumventing G-S

• Computational complexity
 ➢ So we need to use a rule that is the rule is manipulable.
 ➢ Can we make it NP-hard for voters to manipulate? [Bartholdi et al., SC&W 1989]
 ➢ NP-hardness can be a good thing!

• f-MANIPULATION problem (for a given voting rule f):
 ➢ Input: Manipulator i, alternative p, votes of other voters (non-manipulators)
 ➢ Output: Can the manipulator cast a vote that makes p uniquely win under f?
Example: Borda

• Can voter 3 make a win?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>d</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
A Greedy Algorithm

• **Goal:** The manipulator wants to make alternative p win uniquely

• **Algorithm:**
 - Rank p in the first place
 - While there are unranked alternatives:
 - If there is an alternative that can be placed in the next spot without preventing p from winning, place this alternative.
 - Otherwise, return false.
Example: Borda

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>a</td>
<td>c</td>
</tr>
<tr>
<td>3</td>
<td>c</td>
<td>c</td>
<td>d</td>
</tr>
<tr>
<td>4</td>
<td>d</td>
<td>d</td>
<td></td>
</tr>
</tbody>
</table>
Example: Copeland

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>b</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>a</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preference profile

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>2</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pairwise elections
Example: Copeland

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>e</td>
<td>e</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>b</td>
<td>b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>a</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preference profile

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pairwise elections
Example: Copeland

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>a</td>
<td>a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preference profile

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

Pairwise elections
Example: Copeland

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>e</td>
<td>e</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>b</td>
<td>b</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>a</td>
<td>a</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preference profile

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pairwise elections
Example: Copeland

Preference profile

| 1 | 2 | 3 | 4 | 5
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>e</td>
<td>e</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>c</td>
<td>d</td>
<td>b</td>
<td>b</td>
<td>d</td>
</tr>
<tr>
<td>d</td>
<td>e</td>
<td>a</td>
<td>a</td>
<td>e</td>
</tr>
<tr>
<td>e</td>
<td>c</td>
<td>d</td>
<td>d</td>
<td>b</td>
</tr>
</tbody>
</table>

Pairwise elections

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>-</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>-</td>
<td>2</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>3</td>
<td>-</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

CSC2556 - Nisarg Shah
When does this work?

• **Theorem** [Bartholdi et al., SCW 89]:

 Fix voter i and votes of other voters. Let f be a rule for which \exists function $s(\succ_i, x)$ such that:

 1. For every \succ_i, f chooses a candidate x that uniquely maximizes $s(\succ_i, x)$.
 2. $\{y : x \succ_i y\} \subseteq \{y : x \succ_i' y\} \Rightarrow s(\succ_i, x) \leq s(\succ_i', x)$

 Then the greedy algorithm solves f-MANIPULATION correctly.

• **Question:** What is the function s for plurality?
Proof of the Theorem

• Say the algorithm creates a partial ranking \succ_i and then fails, i.e., every next choice prevents p from winning.

• Suppose for contradiction that \succ'_i could make p uniquely win.

• $U \leftarrow$ alternatives not ranked in \succ_i

• $u \leftarrow$ highest ranked alternative in U according to \succ'_i

• Complete \succ_i by adding u next, and then other alternatives arbitrarily.
Proof of the Theorem

• \(s(\succ_i, p) \geq s(\succ'_i, p) \)
 ➢ Property 2

• \(s(\succ'_i, p) > s(\succ'_i, u) \)
 ➢ Property 1 & \(p \) wins under \(\succ'_i \)

• \(s(\succ'_i, u) \geq s(\succ_i, u) \)
 ➢ Property 2

• Conclusion
 ➢ Putting \(u \) in the next position wouldn't have prevented \(p \) from winning
 ➢ So the algorithm should have continued
Hard-to-Manipulate Rules

• Natural rules
 ➢ Copeland with second-order tie breaking [Bartholdi et al. SCW 89]
 o In case of a tie, choose the alternative for which the sum of Copeland scores of defeated alternatives is the largest
 ➢ STV [Bartholdi & Orlin, SCW 91]
 ➢ Ranked Pairs [Xia et al., IJCAI 09]
 o Iteratively lock in pairwise comparisons by their margin of victory (largest first), ignoring any comparison that would form cycles.
 o Winner is the top ranked candidate in the final order.

• Can also “tweak” easy to manipulate voting rules [Conitzer & Sandholm, IJCAI 03]
Example: Ranked Pairs

![Graph showing relationships between elements a, b, c, and d with ranked pairs.]

- a ranks higher than b by 6
- b ranks higher than c by 4
- c ranks higher than d by 2
- d ranks higher than a by 8
- a ranks higher than d by 10
- b ranks higher than a by 12
Example: Ranked Pairs
Example: Ranked Pairs

![Diagram](image-url)
Example: Ranked Pairs
Example: Ranked Pairs

a → b
a → d
d → a
d → c
c → d
b → a
b → c
b → d
4
2
Example: Ranked Pairs
Example: Ranked Pairs
Randomized Voting Rules

• Take as input a preference profile, output a distribution over alternatives
• To think about successful manipulations, we need numerical utilities

• \succ_i is consistent with u_i if
 \[a \succ_i b \iff u_i(a) > u_i(b) \]

• Strategyproofness: For all i, u_i, \succ_{-i}, and \succ'_i
 \[\mathbb{E} \left[u_i \left(f(\succ')\right)\right] \geq \mathbb{E} \left[u_i \left(f(\succ_{-i}, \succ'_i)\right)\right] \]
 where \succ_i is consistent with u_i.
Randomized Voting Rules

• A (deterministic) voting rule is
 ➢ **unilateral** if it only depends on one voter
 ➢ **dupe** if its range contains at most two alternatives

• A **probability mixture** f over rules f_1, \ldots, f_k is a rule given by some probability distribution $(\alpha_1, \ldots, \alpha_k)$ s.t. on every profile \succ, f returns $f_j(\succ)$ w.p. α_j.
Randomized Voting Rules

• **Theorem [Gibbard 77]:**
 A randomized voting rule is strategyproof only if it is a probability mixture over unilaterals and duples.

• **Example:**
 - With probability 0.5, output the top alternative of a randomly chosen voter
 - With the remaining probability 0.5, output the winner of the pairwise election between a^* and b^*

• **Question:** What is a probability mixture over unilaterals and duples that is not strategyproof?
Approximating Voting Rules

• **Idea:** Can we use strategyproof voting rules to approximate popular voting rules?

• Fix a rule (e.g., Borda) with a clear notion of score denoted $sc(\succ, a)$

• A randomized voting rule f is a c-approximation to sc if for every profile \succ

$$\frac{\mathbb{E}[sc(\succ, f(\succ))]}{\max_a sc(\succ, a)} \geq c$$
Approximating Borda

• Question: How well does choosing a random alternative approximate Borda?
 1. $\Theta(1/n)$
 2. $\Theta(1/m)$
 3. $\Theta(1/\sqrt{m})$
 4. $\Theta(1)$

• Theorem [Procaccia 10]:
 No strategyproof voting rule gives $\frac{1}{2} + \omega \left(\frac{1}{\sqrt{m}}\right)$ approximation to Borda.
Interlude: Zero-Sum Games

![Zero-Sum Game Diagram]
Interlude: Minimiax Strategies

• A minimax strategy for a player is
 ➢ a (possibly) randomized choice of action by the player
 ➢ that minimizes the expected loss (or maximizes the expected gain)
 ➢ in the worst case over the choice of action of the other player

• In the previous game, the minimax strategy for each player is \((1/2, 1/2)\). Why?
Interlude: Minimiax Strategies

- In the game above, if the shooter uses \((p, 1 - p)\):
 - If goalie jumps left: \(p \cdot \left(-\frac{1}{2}\right) + (1 - p) \cdot 1 = 1 - \frac{3}{2}p\)
 - If goalie jumps right: \(p \cdot 1 + (1 - p) \cdot (-1) = 2p - 1\)
 - Shooter chooses \(p\) to maximize \(\min \left\{ 1 - \frac{3p}{2}, 2p - 1 \right\}\)
Theorem
[von Neumann, 1928]:

Every 2-player zero-sum game has a unique value ν such that

- Player 1 can guarantee value at least ν
- Player 2 can guarantee loss at most ν
Yao’s Minimax Principle

• Rows as inputs
• Columns as deterministic algorithms
• Cell numbers = running times
• Best randomized algorithm
 ➢ Minimax strategy for the column player

\[
\min_{\text{rand algo}} \max_{\text{input}} E[\text{time}] = \max_{\text{dist over inputs}} \min_{\text{det algo}} E[\text{time}]
\]
Yao’s Minimax Principle

• To show a lower bound T on the best worst-case running time achievable through randomized algorithms:
 ➢ Show a “bad” distribution over inputs D such that every deterministic algorithm takes time at least T on average, when inputs are drawn according to D

$$\min_{\text{rand algo}} \max_{\text{input}} E[\text{time}] = \max_{\text{dist over inputs}} \min_{\text{det algo}} E[\text{time}]$$
Next Lecture

• Finish the proof of Borda inapproximability result

• We’ll later see other ways to circumvent G-S.

• Frameworks to compare voting rules
 ➢ Even if we assume that voters will reveal their true preferences, we still don’t know if there is one “right” way to choose the winner.
 ➢ There are reasonable profiles where most prominent voting rules return different winners [Assignment?]