CSC2556

Lecture 2

Manipulation in Voting

Credit for many visuals: Ariel D. Procaccia

CSC2556 - Nisarg Shah

Recap

- Voting
 - > *n* voters, *m* alternatives
 - > Each voter *i* expresses a ranked preference \succ_i
 - \succ Voting rule f
 - \circ Takes as input the collection of preferences $\overrightarrow{\succ}$
 - $\,\circ\,$ Returns a single alternative
- A plethora of voting rule
 - Plurality, Borda count, STV, Kemeny, Copeland, maximin,

. . .

Incentives

- Can a voting rule incentivize voters to truthfully report their preferences?
- Strategyproofness
 - > A voting rule is strategyproof if a voter cannot submit a false preference and get her more preferred alternative elected, irrespective of the preferences of other voters.
 - > Formally, a voting rule f is strategyproof if there is no preference profile $\overrightarrow{\succ}$, voter i, and false preference \succ'_i s.t.

$$f(\overrightarrow{\succ}_{-i},\succ'_i) \succ_i f(\overrightarrow{\succ})$$

Strategyproofness

- None of the rules we saw are strategyproof!
- Example: Borda Count

> In the true profile, b wins

> Voter 3 can make a win by pushing b to the end

Borda's Response to Critics

My scheme is intended only for honest men!

Random 18th century French dude

Strategyproofness

- Are there any strategyproof rules?
 > Sure
- Dictatorial voting rule
 - The winner is always the most preferred alternative of voter i
- Constant voting rule
 The winner is always the same
- Not satisfactory (for most cases)

Dictatorship

Constant function

Three Properties

- Strategyproof: Already defined. No voter has an incentive to misreport.
- Onto: Every alternative can win under some preference profile.
- Nondictatorial: There is no voter *i* such that $f(\overrightarrow{\succ})$ is always the alternative most preferred by voter *i*.

- Theorem: For m ≥ 3, no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously ☺
- **Proof**: We will prove this for n = 2 voters.
 - Step 1: Show that SP implies "strong monotonicity" [Assignment?]
 - > Strong Monotonicity (SM): If $f(\vec{\succ}) = a$, and $\vec{\succ}'$ is such that $\forall i \in N, x \in A: a \succ_i x \Rightarrow a \succ_i' x$, then $f(\vec{\succ}') = a$.

○ If *a* still defeats every alternative it defeated in every vote in $\overrightarrow{\succ}$, it should still win.

- Theorem: For m ≥ 3, no deterministic social choice function can be strategyproof, onto, and nondictatorial simultaneously ☺
- **Proof**: We will prove this for n = 2 voters.
 - Step 2: Show that SP+onto implies "Pareto optimality" [Assignment?]
 - ▶ Pareto Optimality (PO): If $a >_i b$ for all $i \in N$, then $f(\overrightarrow{>}) \neq b$.
 - If there is a different alternative that *everyone* prefers, your choice is not Pareto optimal (PO).

Proof for n=2: Consider problem instance I(a, b)

• Proof for n=2:

If f outputs a on instance I(a, b), voter 1 can get a elected whenever she puts a first.

 \circ In other words, voter 1 becomes dictatorial for a.

 \circ Denote this by D(1, a).

> If f outputs b on I(a, b)

 \circ Voter 2 becomes dictatorial for *b*, i.e., we have D(2, b).

• For every I(a, b), we have D(1, a) or D(2, b).

• Proof for n=2:

- > On some $I(a^*, b^*)$, suppose $D(1, a^*)$ holds.
- > Then, we show that voter 1 is a dictator. That is, D(1, b) must hold for every other b as well.
- ≻ Take $b \neq a^*$. Because $|A| \geq 3$, there exists $c \in A \setminus \{a^*, b\}$.
- > Consider I(b, c). We either have D(1, b) or D(2, c).
- > But D(2, c) is incompatible with $D(1, a^*)$
 - \circ Who would win if voter 1 puts a^* first and voter 2 puts c first?
- > Thus, we have D(1, b), as required.
- > QED!

Circumventing G-S

- Restricted preferences (later in the course)
 - > Not allowing all possible preference profiles
 - > Example: single-peaked preferences
 - Alternatives are on a line (say 1D political spectrum)
 - $\,\circ\,$ Voters are also on the same line
 - $\,\circ\,$ Voters prefer alternatives that are closer to them
- Use of money (later in the course)
 - Require payments from voters that depend on the preferences they submit
 - > Prevalent in auctions

Circumventing G-S

- Randomization (later in this lecture)
- Equilibrium analysis
 - > How will strategic voters act under a voting rule that is not strategyproof?
 - Will they reach an "equilibrium" where each voter is happy with the (possibly false) preference she is submitting?
- Restricting information
 - Can voters successfully manipulate if they don't know the votes of the other voters?

Circumventing G-S

- Computational complexity
 - > So we need to use a rule that is the rule is manipulable.
 - > Can we make it NP-hard for voters to manipulate? [Bartholdi et al., SC&W 1989]
 - > NP-hardness can be a good thing!
- f-MANIPULATION problem (for a given voting rule f):
 - Input: Manipulator *i*, alternative *p*, votes of other voters (non-manipulators)
 - Output: Can the manipulator cast a vote that makes p uniquely win under f?

Example: Borda

• Can voter 3 make *a* win?

1	2	3	1	2
b	b		b	b
а	а		а	а
С	С		С	С
d	d		d	d

A Greedy Algorithm

 Goal: The manipulator wants to make alternative p win uniquely

• Algorithm:

- \succ Rank p in the first place
- > While there are unranked alternatives:
 - \circ If there is an alternative that can be placed in the next spot without preventing p from winning, place this alternative.
 - \odot Otherwise, return false.

Example: Borda

1	2	3	1	2	3	1	2	3
b	b	а	b	b	а	b	b	а
а	а		а	а	b	а	а	С
С	С		С	С		С	С	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
1 b	2 b	3 a	1 b	2 b	3 a	1 b	2 b	3 a
b	b	а	b	b	а	b	b	а

1	2	3	4	5
а	b	е	е	а
b	а	С	С	
С	d	b	b	
d	е	а	а	
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	2	-	3	1
d	0	0	1	-	2
е	2	2	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	
d	е	а	а	
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	0	1	-	2
е	2	2	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	2	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	е
е	С	d	d	

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	-

1	2	3	4	5
а	b	е	е	а
b	а	С	С	С
С	d	b	b	d
d	е	а	а	е
е	С	d	d	b

Preference profile

	а	b	С	d	е
а	-	2	3	5	3
b	3	-	2	4	2
С	2	3	-	4	2
d	0	1	1	-	3
е	2	3	3	2	-

When does this work?

• Theorem [Bartholdi et al., SCW 89]:

Fix voter *i* and votes of other voters. Let *f* be a rule for which \exists function $s(\succ_i, x)$ such that:

1. For every \succ_i , f chooses a candidate x that uniquely maximizes $s(\succ_i, x)$.

2.
$$\{y : x \succ_i y\} \subseteq \{y : x \succ'_i y\} \Rightarrow s(\succ_i, x) \le s(\succ'_i, x)$$

Then the greedy algorithm solves f-MANIPULATION correctly.

• Question: What is the function *s* for plurality?

Proof of the Theorem

- Say the algorithm creates a partial ranking ≻_i and then fails, i.e., every next choice prevents p from winning
- Suppose for contradiction that \succ'_i could make p uniquely win
- $U \leftarrow \text{alternatives not ranked in} \succ_i$
- $u \leftarrow$ highest ranked alternative in U according to \succ'_i
- Complete \succ_i by adding u next, and then other alternatives arbitrarily

Proof of the Theorem

•
$$s(\succ_i, p) \ge s(\succ'_i, p)$$

> Property 2

• $s(\succ'_i, p) > s(\succ'_i, u)$ > Property 1 & p wins under \succ'_i

•
$$s(\succ'_i, u) \ge s(\succ_i, u)$$

> Property 2

- Conclusion
 - Putting u in the next position wouldn't have prevented p from winning
 - So the algorithm should have continued

Hard-to-Manipulate Rules

Natural rules

- Copeland with second-order tie breaking [Bartholdi et al. SCW 89]
 - In case of a tie, choose the alternative for which the sum of Copeland scores of defeated alternatives is *the largest*
- > STV [Bartholdi & Orlin, SCW 91]
- > Ranked Pairs [Xia et al., IJCAI 09]
 - Iteratively lock in pairwise comparisons by their margin of victory (largest first), ignoring any comparison that would form cycles.
 - $\,\circ\,$ Winner is the top ranked candidate in the final order.
- Can also "tweak" easy to manipulate voting rules [Conitzer & Sandholm, IJCAI 03]

Randomized Voting Rules

- Take as input a preference profile, output a distribution over alternatives
- To think about successful manipulations, we need numerical utilities
- \succ_i is consistent with u_i if $a \succ_i b \Leftrightarrow u_i(a) > u_i(b)$
- Strategyproofness: For all $i, u_i, \overrightarrow{\succ}_{-i}, \text{ and } \succ'_i$ $\mathbb{E}\left[u_i\left(f(\overrightarrow{\succ})\right)\right] \ge \mathbb{E}\left[u_i\left(f(\overrightarrow{\succ}_{-i}, \succ'_i)\right)\right]$

where \succ_i is consistent with u_i .

Randomized Voting Rules

- A (deterministic) voting rule is
 - unilateral if it only depends on one voter
 - duple if its range contains at most two alternatives
- A probability mixture f over rules $f_1, ..., f_k$ is a rule given by some probability distribution $(\alpha_1, ..., \alpha_k)$ s.t. on every profile $\overrightarrow{\succ}$, f returns $f_i(\overrightarrow{\succ})$ w.p. α_i .

Randomized Voting Rules

• Theorem [Gibbard 77]:

A randomized voting rule is strategyproof only if it is a probability mixture over unilaterals and duples.

• Example:

- > With probability 0.5, output the top alternative of a randomly chosen voter
- > With the remaining probability 0.5, output the winner of the pairwise election between a^* and b^*
- Question: What is a probability mixture over unilaterals and duples that is *not* strategyproof?

Approximating Voting Rules

- Idea: Can we use strategyproof voting rules to approximate popular voting rules?
- Fix a rule (e.g., Borda) with a clear notion of score denoted $sc(\overrightarrow{>}, a)$
- A randomized voting rule *f* is a *c*-approximation to sc if for every profile *>*

$$\frac{\mathbb{E}[\operatorname{sc}\left(\overrightarrow{\succ}, f(\overrightarrow{\succ})\right)}{\max_{a}\operatorname{sc}\left(\overrightarrow{\succ}, a\right)} \ge c$$

Approximating Borda

- Question: How well does choosing a random alternative approximate Borda?
 - 1. $\Theta(1/n)$ 2. $\Theta(1/m)$ 3. $\Theta(1/\sqrt{m})$ 4. $\Theta(1)$
- Theorem [Procaccia 10]:

No strategyproof voting rule gives $1/2 + \omega \left(1/\sqrt{m} \right)$ approximation to Borda.

Interlude: Zero-Sum Games

Interlude: Minimiax Strategies

- A minimax strategy for a player is
 - > a (possibly) randomized choice of action by the player
 - > that minimizes the expected loss (or maximizes the expected gain)
 - in the worst case over the choice of action of the other player
- In the previous game, the minimax strategy for each player is (1/2, 1/2). Why?

Interlude: Minimiax Strategies

- In the game above, if the shooter uses (p, 1 p):
 - > If goalie jumps left: $p \cdot \left(-\frac{1}{2}\right) + (1-p) \cdot 1 = 1 \frac{3}{2}p$
 - > If goalie jumps right: $p \cdot 1 + (1 p) \cdot (-1) = 2p 1$
 - > Shooter chooses p to maximize min $\left\{1 \frac{3p}{2}, 2p 1\right\}$

Interlude: Minimax Theorem

- Theorem [von Neumann, 1928]:
 - Every 2-player zero-sum game has a unique value v such that
 - Player 1 can guarantee value at least v
 - Player 2 can guarantee loss at most v

Yao's Minimax Principle

- Rows as inputs
- Columns as deterministic algorithms
- Cell numbers = running times
- Best randomized algorithm
 - > Minimax strategy for the column player

 $\min_{rand \ algo} \max_{input} E[time] =$

max min *E[time]* dist over inputs det algo

Yao's Minimax Principle

- To show a lower bound *T* on the best worst-case running time achievable through randomized algorithms:
 - Show a "bad" distribution over inputs D such that every deterministic algorithm takes time at least T on average, when inputs are drawn according to D

 $\min_{rand algo} \max_{input} E[time] =$

max min *E[time]* dist over inputs det algo

Randomized Voting Rules

Randomized Voting Rules

- Rows = unilaterals and duples
- Columns = preference profiles
- Cell numbers = approximation ratios
- The expected ratio of the best strategyproof rule (by Gibbard's theorem, distribution over unilaterals and duples) is at most...
 - The expected ratio of the best unilateral or duple rule when profiles are drawn from a "bad" distribution D

A Bad Distribution

- m = n + 1
- Choose a random alternative x^*
- Each voter i chooses a random number $k_i \in \{1, ..., \sqrt{m}\}$ and places x^* in position k_i
- The other alternatives are ranked cyclically

1	2	3
С	b	d
b	а	b
а	d	С
d	С	а

 $x^* = b$ $k_1 = 2$ $k_2 = 1$ $k_3 = 2$

A Bad Distribution

• Question: What is the best lower bound on $sc(\overrightarrow{>}, x^*)$ that holds for every profile $\overrightarrow{>}$ generated under this distribution?

1.
$$\sqrt{n}$$

2. \sqrt{m}
3. $n \cdot (m - \sqrt{m})$
4. $n \cdot m$

A Bad Distribution

• How bad are other alternatives?

> For every other alternative x, $sc(\overrightarrow{>}, x) \sim \frac{n(m-1)}{2}$

- How surely can a unilateral/duple rule return x^* ?
 - > Unilateral: By only looking at a single vote, the rule is essentially guessing x^* among the first \sqrt{m} positions, and captures it with probability at most $1/\sqrt{m}$.
 - > Duple: By fixing two alternatives, the rule captures x^* with probability at most 2/m.
- Putting everything together...

Quantitative GS Theorem

- Regarding the use of NP-hardness to circumvent GS
 - > NP-hardness is hardness in the worst case
 - > What happens in the average case?
- Theorem [Mossel-Racz '12]:

For every voting rule that is at least ϵ -far from being a dictatorship or having range of size 2, the probability that a profile chosen uniformly at random admits a manipulation is at least $p(n, m, 1/\epsilon)$ for some polynomial p.

Coalitional Manipulations

- What if multiple voters collude to manipulate?
 - > The following result applies to a wide family of voting rules called "generalized scoring rules".
- Theorem [Conitzer-Xia '08]:

Powerful = can manipulate with high probability

Interesting Tidbit

- Detecting a manipulable profile versus finding a beneficial manipulation
- Theorem [Hemaspaandra, Hemaspaandra, Menton '12] If integer factoring is NP-hard, then there exists a generalized scoring rule for which:
 - > We can efficiently check if there exists a beneficial manipulation.
 - > But finding such a manipulation is NP-hard.

Next Lecture

- Frameworks to compare voting rules
 - Even if we assume that voters will reveal their true preferences, we still don't know if there is one "right" way to choose the winner.
 - > There are reasonable profiles where most prominent voting rules return different winners [Assignment?]