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Announcements
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• Project presentations
➢ 7 minute presentation
o Background/motivation

o Related work

o Formal problem statement

o Results

o Future directions

➢ 3 minute in-class discussion



Announcements
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• Project reports
➢ Due April 15

➢ Page limit: 5 pages, excluding references and an optional 
appendix

➢ What to cover: same as presentation (motivation, related 
work, formal problem, results, future directions)



Game Theory
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• How do rational, self-interested agents act in a 
given environment?

• Each agent has a set of possible actions

• Rules of the game:
➢ Rewards for the agents as a function of the actions taken 

by all agents

• Noncooperative games
➢ No external trusted agency, no legal agreements



Normal Form Games
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• A set of players N = 1, … , 𝑛

• Each player 𝑖 has an action set 𝑆𝑖, chooses 𝑠𝑖 ∈ 𝑆𝑖

• 𝒮 = 𝑆1 × ⋯ × 𝑆𝑛. 

• Action profile Ԧ𝑠 = 𝑠1, … , 𝑠𝑛 ∈ 𝒮

• Each player 𝑖 has a utility function 𝑢𝑖: 𝒮 → ℝ
➢ Given the action profile Ԧ𝑠 = (𝑠1, … , 𝑠𝑛), each player 𝑖 gets 

a reward 𝑢𝑖 𝑠1, … , 𝑠𝑛



Normal Form Games
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Sam’s Actions
John’s Actions Stay Silent Betray

Stay Silent (-1 , -1) (-3 , 0)

Betray (0 , -3) (-2 , -2)

𝑢𝑆𝑎𝑚(𝐵𝑒𝑡𝑟𝑎𝑦, 𝑆𝑖𝑙𝑒𝑛𝑡) 𝑢𝐽𝑜ℎ𝑛(𝐵𝑒𝑡𝑟𝑎𝑦, 𝑆𝑖𝑙𝑒𝑛𝑡)

Prisoner’s dilemma 𝑆 = {Silent,Betray}

𝑠𝑆𝑎𝑚 𝑠𝐽𝑜ℎ𝑛



Player Strategies
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• Pure strategy
➢ Deterministic choice of an action, e.g., “Betray”

• Mixed strategy

➢ Randomized choice of an action, e.g., “Betray with 
probability 0.3, and stay silent with probability 0.7”



Dominant Strategies
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• For player 𝑖, 𝑠𝑖 dominates 𝑠𝑖
′ if 𝑠𝑖 is “better than” 

𝑠𝑖
′, irrespective of other players’ strategies.

• Two variants: weak and strict domination

➢ 𝑢𝑖 𝑠𝑖 , Ԧ𝑠−𝑖 ≥ 𝑢𝑖 𝑠𝑖
′, Ԧ𝑠−𝑖 , ∀ Ԧ𝑠−𝑖

➢ Strict inequality for some Ԧ𝑠−𝑖 ← Weak domination

➢ Strict inequality for all Ԧ𝑠−𝑖 ← Strict domination

• 𝑠𝑖 is a strictly (or weakly) dominant strategy for 
player 𝑖 if it strictly (or weakly) dominates every 
other strategy



Dominant Strategies
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• Q: How does this relate to strategyproofness?

• A: Strategyproofness means “truth-telling should 
be a weakly dominant strategy for every player”.



Example: Prisoner’s Dilemma
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• Recap:

Sam’s Actions
John’s Actions Stay Silent Betray

Stay Silent (-1 , -1) (-3 , 0)

Betray (0 , -3) (-2 , -2)

• Each player strictly wants to
➢ Betray if the other player will stay silent

➢ Betray if the other player will betray

• Betray = strictly dominant strategy for each player



Iterated Elimination
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• What if there are no dominant strategies?
➢ No single strategy dominates every other strategy

➢ But some strategies might still be dominated

• Assuming everyone knows everyone is rational…
➢ Can remove their dominated strategies

➢ Might reveal a newly dominant strategy

• Eliminating only strictly dominated vs eliminating 
weakly dominated



Iterated Elimination
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• Toy example:
➢ Microsoft vs Startup

➢ Enter the market or stay out?

• Q: Is there a dominant strategy for startup?

• Q: Do you see a rational outcome of the game?

Microsoft
Startup Enter Stay Out

Enter (2 , -2) (4 , 0)

Stay Out (0 , 4) (0 , 0)



Iterated Elimination
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• “Guess 2/3 of average”
➢ Each student guesses a real number between 0 and 100 

(inclusive)

➢ The student whose number is the closest to 2/3 of the 
average of all numbers wins!

• Piazza Poll: What would you do?



Nash Equilibrium
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• If we find dominant strategies, or a unique 
outcome after iteratively eliminating dominated 
strategies, it may be considered the rational 
outcome of the game.

• What if this is not the case?

Students
Professor Attend Be Absent

Attend (3 , 1) (-1 , -3)

Be Absent (-1 , -1) (0 , 0)



Nash Equilibrium
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• Instead of hoping to find strategies that players 
would play irrespective of what other players play,
we want to find strategies that players would play 
given what other players play. 

• Nash Equilibrium
➢ A strategy profile Ԧ𝑠 is in Nash equilibrium if 𝑠𝑖 is the best 

action for player 𝑖 given that other players are playing Ԧ𝑠−𝑖

𝑢𝑖 𝑠𝑖 , Ԧ𝑠−𝑖 ≥ 𝑢𝑖 𝑠𝑖
′, Ԧ𝑠−𝑖 , ∀𝑠𝑖

′



Recap: Prisoner’s Dilemma
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• Nash equilibrium?

• (Dominant strategies)

Sam’s Actions
John’s Actions Stay Silent Betray

Stay Silent (-1 , -1) (-3 , 0)

Betray (0 , -3) (-2 , -2)



Recap: Microsoft vs Startup
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• Nash equilibrium?

• (Iterated elimination of strongly dominated 
strategies)

Microsoft
Startup Enter Stay Out

Enter (2 , -2) (4 , 0)

Stay Out (0 , 4) (0 , 0)



Recap: Attend or Not
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• Nash equilibria?

• Lack of predictability

Students
Professor Attend Be Absent

Attend (3 , 1) (-1 , -3)

Be Absent (-1 , -1) (0 , 0)



Example: Rock-Paper-Scissor
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• Pure Nash equilibrium?

P2
P1 Rock Paper Scissor

Rock (0 , 0) (-1 , 1) (1 , -1)

Paper (1 , -1) (0 , 0) (-1 , 1)

Scissor (-1 , 1) (1 , -1) (0 , 0)



Nash’s Beautiful Result
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• Theorem: Every normal form game admits a mixed-
strategy Nash equilibrium.

• What about Rock-Paper-Scissor?

P2
P1 Rock Paper Scissor

Rock (0 , 0) (-1 , 1) (1 , -1)

Paper (1 , -1) (0 , 0) (-1 , 1)

Scissor (-1 , 1) (1 , -1) (0 , 0)



Indifference Principle
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• Derivation of rock-paper-scissor on the board.

• If the mixed strategy of player 𝑖 in a Nash 
equilibrium has support 𝑇𝑖, the expected payoff of 
player 𝑖 from each 𝑠𝑖 ∈ 𝑇𝑖 must be identical.



Stag-Hunt
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• Game
➢ Stag requires both hunters, food is good for 4 days for 

each hunter.

➢ Hare requires a single hunter, food is good for 2 days

➢ If they both catch the same hare, they share.

• Two pure Nash equilibria: (Stag,Stag), (Hare,Hare)

Hunter 2
Hunter 1 Stag Hare

Stag (4 , 4) (0 , 2)

Hare (2 , 0) (1 , 1)



Stag-Hunt
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• Two pure Nash equilibria: (Stag,Stag), (Hare,Hare)

➢ Other hunter plays “Stag” → “Stag” is best response

➢ Other hunter plays “Hare” → “Hare” is best reponse

• What about mixed Nash equilibria?

Hunter 2
Hunter 1 Stag Hare

Stag (4 , 4) (0 , 2)

Hare (2 , 0) (1 , 1)



Stag-Hunt
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• Symmetric: 𝑠 → {Stag w.p. 𝑝, Hare w.p. 1 − 𝑝}

• Indifference principle: 
➢ Given the other hunter plays 𝑠, equal 𝔼[reward] for Stag 

and Hare

➢ 𝔼 Stag = 𝑝 ∗ 4 + 1 − 𝑝 ∗ 0

➢ 𝔼 Hare = 𝑝 ∗ 2 + 1 − 𝑝 ∗1

➢ Equate the two ⇒ 𝑝 = 1/3

Hunter 2
Hunter 1 Stag Hare

Stag (4 , 4) (0 , 2)

Hare (2 , 0) (1 , 1)



Extra Fun 1: Cunning Airlines

CSC2556 - Nisarg Shah 25

• Two travelers lose their luggage.

• Airline agrees to refund up to $100 to each.

• Policy: Both travelers would submit a number 
between 2 and 99 (inclusive). 
➢ If both report the same number, each gets this value.

➢ If one reports a lower number (𝑠) than the other (𝑡), the 
former gets 𝑠+2, the latter gets 𝑠-2.

10099989796
s t

. . . . . . . . . . . 95



Extra Fun 2: Ice Cream Shop
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• Two brothers, each wants to set up an ice cream 
shop on the beach ([0,1]).

• If the shops are at 𝑠, 𝑡 (with 𝑠 ≤ 𝑡)

➢ The brother at 𝑠 gets 0,
𝑠+𝑡

2
, the other gets 

𝑠+𝑡

2
, 1

0 1s t



Nash Equilibria: Critique
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• Noncooperative game theory provides a 
framework for analyzing rational behavior.

• But it relies on many assumptions that are often 
violated in the real world.

• Due to this, human actors are observed to play 
Nash equilibria in some settings, but play 
something far different in other settings.



Nash Equilibria: Critique
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• Assumptions:

➢ Rationality is common knowledge.
o All players are rational.

o All players know that all players are rational.

o All players know that all players know that all players are rational.

o … [Aumann, 1976]

o Behavioral economics

➢ Rationality is perfect = “infinite wisdom”
o Computationally bounded agents

➢ Full information about what other players are doing.
o Bayes-Nash equilibria



Nash Equilibria: Critique
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• Assumptions:

➢ No binding contracts.
o Cooperative game theory

➢ No player can commit first.
o Stackelberg games (will study this in a few lectures)

➢ No external help.
o Correlated equilibria

➢ Humans reason about randomization using expectations.
o Prospect theory



Nash Equilibria: Critique
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• Also, there are often multiple equilibria, and no 
clear way of “choosing” one over another.

• For many classes of games, finding a single 
equilibrium is provably hard. 
➢ Cannot expect humans to find it if your computer cannot.



Nash Equilibria: Critique
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• Conclusion:
➢ For human agents, take it with a grain of salt.

➢ For AI agents playing against AI agents, perfect! 



Price of Anarchy and Stability
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• If players play a Nash equilibrium instead of 
“socially optimum”, how bad can it be?

• Objective function: sum of utilities/costs

• Price of Anarchy (PoA): compare the optimum to 
the worst Nash equilibrium

• Price of Stability (PoS): compare the optimum to 
the best Nash equilibrium



Price of Anarchy and Stability
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• Price of Anarchy (PoA)

Max social utility

Min social utility in any NE

• Price of Stability (PoS)

Max social utility

Max social utility in any NE

Costs  → flip: 
Nash equilibrium 

divided by optimum



Revisiting Stag-Hunt
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• Optimum social utility = 4+4 = 8

• Three equilibria:
➢ (Stag, Stag) : Social utility = 8

➢ (Hare, Hare) : Social utility = 2

➢ (Stag:1/3 - Hare:2/3, Stag:1/3 - Hare:2/3)
o Social utility = (1/3)*(1/3)*8 + (1-(1/3)*(1/3))*2 = Btw 2 and 8

• Price of stability? Price of anarchy?

Hunter 2
Hunter 1 Stag Hare

Stag (4 , 4) (0 , 2)

Hare (2 , 0) (1 , 1)



Cost Sharing Game
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• 𝑛 players on directed weighted graph 𝐺

• Player 𝑖
➢ Wants to go from 𝑠𝑖 to 𝑡𝑖

➢ Strategy set 𝑆𝑖 = {directed 𝑠𝑖 → 𝑡𝑖 paths}

➢ Denote his chosen path by 𝑃𝑖 ∈ 𝑆𝑖

• Each edge 𝑒 has cost 𝑐𝑒 (weight)
➢ Cost is split among all players taking edge 𝑒

➢ That is, among all players 𝑖 with 𝑒 ∈ 𝑃𝑖

1

1 1

1
𝑠1

𝑡1

10

𝑠2

𝑡2

1010



Cost Sharing Game

CSC2556 - Nisarg Shah 36

• Given strategy profile 𝑃, cost 𝑐𝑖 𝑃 to player 𝑖
is sum of his costs for edges 𝑒 ∈ 𝑃𝑖

• Social cost 𝐶 𝑃 = σ𝑖 𝑐𝑖 𝑃

➢ Note that 𝐶 𝑃 = σ
𝑒∈𝐸 𝑃

𝑐𝑒, where 

𝐸(𝑃)={edges taken in 𝑃 by at least one player}

• In the example on the right:
➢ What if both players take the direct paths? 

➢ What if both take the middle paths?

➢ What if only one player takes the middle path while 
the other takes the direct path?

1

1 1

1
𝑠1

𝑡1

10

𝑠2

𝑡2

1010



Cost Sharing: Simple Example
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• Example on the right: 𝑛 players

• Two pure NE
➢ All taking the n-edge: social cost = 𝑛

➢ All taking the 1-edge: social cost = 1
o Also the social optimum

• In this game, price of anarchy ≥ 𝑛

• We can show that for all cost sharing 
games, price of anarchy ≤ 𝑛

s

t

𝑛 1



Cost Sharing: PoA
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• Theorem: The price of anarchy of a cost sharing 
game is at most 𝑛.

• Proof:
➢ Suppose the social optimum is (𝑃1

∗, 𝑃2
∗, … , 𝑃𝑛

∗), in which 
the cost to player 𝑖 is 𝑐𝑖

∗.

➢ Take any NE with cost 𝑐𝑖 to player 𝑖.

➢ Let 𝑐𝑖
′ be his cost if he switches to 𝑃𝑖

∗. 

➢ NE  ⇒ 𝑐𝑖
′ ≥ 𝑐𝑖 (Why?)

➢ But  :  𝑐𝑖
′ ≤ 𝑛 ⋅ 𝑐𝑖

∗ (Why?)

➢ 𝑐𝑖 ≤ 𝑛 ⋅ 𝑐𝑖
∗ for each 𝑖 ⇒ no worse than 𝑛 × optimum

∎



Cost Sharing
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• Price of anarchy

➢ All cost-sharing games: PoA ≤ 𝑛

➢ ∃ example where PoA = 𝑛

• Price of stability? Later…

• Both examples we saw had 
pure Nash equilibria
➢ What about more complex 

games, like the one on the right?

10 players: 𝐸 → 𝐶
27 players: 𝐵 → 𝐷
19 players: 𝐶 → 𝐷

E
D

A

7

B

C
60

12

32

10

20



Good News
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• Theorem: All cost sharing games admit a pure Nash 
equilibrium.

• Proof:
➢ Via a “potential function” argument.



Step 1: Define Potential Fn

CSC2556 - Nisarg Shah 41

• Potential function: Φ ∶ ς𝑖 𝑆𝑖 → ℝ+

➢ For all pure strategy profiles 𝑃 = 𝑃1, … , 𝑃𝑛 ∈ ς𝑖 𝑆𝑖, …

➢ all players 𝑖, and …

➢ all alternative strategies 𝑃𝑖
′ ∈ 𝑆𝑖 for player 𝑖…

𝑐𝑖 𝑃𝑖
′, 𝑃−𝑖 − 𝑐𝑖 𝑃 = Φ 𝑃𝑖

′, 𝑃−𝑖 − Φ 𝑃

• When a single player changes his strategy, the 
change in his cost is equal to the change in the 
potential function
➢ Do not care about the changes in the costs to others



Step 2: Potential Fn → pure Nash Eq
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• All games that admit a potential function have a 
pure Nash equilibrium. Why?

➢ Think about 𝑃 that minimizes the potential function.

➢ What happens when a player deviates?
o If his cost decreases, the potential function value must also 

decrease.

o 𝑃 already minimizes the potential function value.

• Pure strategy profile minimizing potential function 
is a pure Nash equilibrium.



Step 3: Potential Fn for Cost-Sharing
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• Recall: 𝐸(𝑃) = {edges taken in 𝑃 by at least one player}

• Let 𝑛𝑒(𝑃) be the number of players taking 𝑒 in 𝑃

Φ 𝑃 = ෍

𝑒∈𝐸(𝑃)

෍

𝑘=1

𝑛𝑒(𝑃)
𝑐𝑒

𝑘

• Note: The cost of edge 𝑒 to each player taking 𝑒 is 

𝑐𝑒/𝑛𝑒(𝑃). But the potential function includes all 

fractions: 𝑐𝑒/1, 𝑐𝑒/2, …, 𝑐𝑒/𝑛𝑒 𝑃 .
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Φ 𝑃 = ෍

𝑒∈𝐸(𝑃)

෍

𝑘=1

𝑛𝑒(𝑃)
𝑐𝑒

𝑘

• Why is this a potential function?

➢ If a player changes path, he pays 
𝑐𝑒

𝑛𝑒 𝑃 +1
for each new 

edge 𝑒, gets back 
𝑐𝑓

𝑛𝑓 𝑃
for each old edge 𝑓.

➢ This is precisely the change in the potential function too.

➢ So Δ𝑐𝑖 = ΔΦ.

∎

Step 3: Potential Fn for Cost-Sharing



Potential Minimizing Eq.
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• There could be multiple pure Nash equilibria
➢ Pure Nash equilibria are “local minima” of the potential 

function. 

➢ A single player deviating should not decrease the 
function value.

• Is the global minimum of the potential function a 
special pure Nash equilibrium?



Potential Minimizing Eq.
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෍

𝑒∈𝐸(𝑃)

𝑐𝑒 ≤ Φ 𝑃 = ෍

𝑒∈𝐸(𝑃)

෍

𝑘=1

𝑛𝑒(𝑃)
𝑐𝑒

𝑘
≤ ෍

𝑒∈𝐸(𝑃)

𝑐𝑒 ∗ ෍

𝑘=1

𝑛
1

𝑘

Social cost

∀𝑃, 𝐶 𝑃 ≤ Φ 𝑃 ≤ 𝐶 𝑃 ∗ 𝐻 𝑛

𝐶 𝑃∗ ≤ Φ 𝑃∗ ≤ Φ 𝑂𝑃𝑇 ≤ 𝐶 𝑂𝑃𝑇 ∗ 𝐻(𝑛)

Harmonic function 𝐻(𝑛)
= σ𝑘=1

𝑛 1/𝑛 = 𝑂(log 𝑛)

Potential minimizing eq. Social optimum



Potential Minimizing Eq.
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• Potential minimizing equilibrium gives 𝑂(log 𝑛)

approximation to the social optimum

➢ Price of stability is 𝑂(log 𝑛)

o ∃ example where price of stability is Θ log 𝑛

➢ Compare to the price of anarchy, which can be 𝑛



Congestion Games
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• Generalize cost sharing games

• 𝑛 players, 𝑚 resources (e.g., edges)

• Each player 𝑖 chooses a set of resources 𝑃𝑖 (e.g., 
𝑠𝑖 → 𝑡𝑖 paths)

• When 𝑛𝑗 player use resource 𝑗, each of them get a 

cost 𝑓𝑗(𝑛𝑗)

• Cost to player is the sum of costs of resources used



Congestion Games
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• Theorem [Rosenthal 1973]: Every congestion game 
is a potential game.

• Potential function:

Φ 𝑃 = ෍

𝑗∈𝐸(𝑃)

෍

𝑘=1

𝑛𝑗 𝑃

𝑓𝑗 𝑘

• Theorem [Monderer and Shapley 1996]: Every 
potential game is equivalent to a congestion game.



Potential Functions
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• Potential functions are useful for deriving various 
results
➢ E.g., used for analyzing amortized complexity of 

algorithms

• Bad news: Finding a potential function that works 
may be hard.



The Braess’ Paradox
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• In cost sharing, 𝑓𝑗 is decreasing
➢ The more people use a resource, the less the cost to each.

• 𝑓𝑗 can also be increasing
➢ Road network, each player going from home to work

➢ Uses a sequence of roads

➢ The more people on a road, the greater the congestion, 
the greater the delay (cost)

• Can lead to unintuitive phenomena



The Braess’ Paradox
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• Due to Parkes and Seuken:
➢ 2000 players want to go from 1 to 4

➢ 1 → 2 and 3 → 4 are “congestible” roads

➢ 1 → 3 and 2 → 4 are “constant delay” roads

1 4

2

3



The Braess’ Paradox
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• Pure Nash equilibrium?
➢ 1000 take 1 → 2 → 4, 1000 take 1 → 3 → 4
➢ Each player has cost 10 + 25 = 35
➢ Anyone switching to the other creates a greater 

congestion on it, and faces a higher cost

1 4

2

3



The Braess’ Paradox
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• What if we add a zero-cost connection 2 → 3?
➢ Intuitively, adding more roads should only be helpful

➢ In reality, it leads to a greater delay for everyone in the 
unique equilibrium!

1 4

2

3

𝑐23 𝑛23 = 0



The Braess’ Paradox
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• Nobody chooses 1 → 3 as 1 → 2 → 3 is better 
irrespective of how many other players take it

• Similarly, nobody chooses 2 → 4

• Everyone takes 1 → 2 → 3 → 4, faces delay = 40!

1 4

2

3

𝑐23 𝑛23 = 0



The Braess’ Paradox
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• In fact, what we showed is:
➢ In the new game, 1 → 2 → 3 → 4 is a strictly dominant 

strategy for each firm!

1 4

2

3

𝑐23 𝑛23 = 0


