CSC2556

Lecture 10

Noncooperative Games 1:

Nash Equilibria, Price of Anarchy, Cost-Sharing Games

Announcements

- Project presentations
 - > 7 minute presentation
 - Background/motivation
 - \circ Related work
 - Formal problem statement
 - \circ Results
 - Future directions
 - > 3 minute in-class discussion

Announcements

- Project reports
 - > Due April 15
 - Page limit: 5 pages, excluding references and an optional appendix
 - > What to cover: same as presentation (motivation, related work, formal problem, results, future directions)

Game Theory

- How do rational, self-interested agents act in a given environment?
- Each agent has a set of possible actions
- Rules of the game:
 - Rewards for the agents as a function of the actions taken by all agents
- Noncooperative games
 - > No external trusted agency, no legal agreements

Normal Form Games

- A set of players $N = \{1, ..., n\}$
- Each player *i* has an action set S_i , chooses $s_i \in S_i$
- $S = S_1 \times \cdots \times S_n$.
- Action profile $\vec{s} = (s_1, \dots, s_n) \in S$
- Each player i has a utility function $u_i: S \to \mathbb{R}$
 - > Given the action profile $\vec{s} = (s_1, ..., s_n)$, each player *i* gets a reward $u_i(s_1, ..., s_n)$

Normal Form Games

Prisoner's dilemma

$S = \{\text{Silent,Betray}\}$

Player Strategies

- Pure strategy
 - > Deterministic choice of an action, e.g., "Betray"
- Mixed strategy
 - > Randomized choice of an action, e.g., "Betray with probability 0.3, and stay silent with probability 0.7"

Dominant Strategies

- For player i, s_i dominates s'_i if s_i is "better than" s'_i , irrespective of other players' strategies.
- Two variants: weak and strict domination

$$\succ u_i(s_i, \vec{s}_{-i}) \ge u_i(s'_i, \vec{s}_{-i}), \forall \vec{s}_{-i}$$

- > Strict inequality for some \vec{s}_{-i} \leftarrow Weak domination
- > Strict inequality for all \vec{s}_{-i} \leftarrow Strict domination
- s_i is a strictly (or weakly) dominant strategy for player *i* if it strictly (or weakly) dominates every other strategy

Dominant Strategies

- Q: How does this relate to strategyproofness?
- A: Strategyproofness means "truth-telling should be a weakly dominant strategy for every player".

Example: Prisoner's Dilemma

• Recap:

John's Actions Sam's Actions	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 , -2)

- Each player strictly wants to
 - > Betray if the other player will stay silent
 - > Betray if the other player will betray
- Betray = strictly dominant strategy for each player

Iterated Elimination

- What if there are no dominant strategies?
 - No single strategy dominates every other strategy
 - > But some strategies might still be dominated
- Assuming everyone knows everyone is rational...
 - Can remove their dominated strategies
 - > Might reveal a newly dominant strategy
- Eliminating only strictly dominated vs eliminating weakly dominated

Iterated Elimination

- Toy example:
 - > Microsoft vs Startup
 - > Enter the market or stay out?

- Q: Is there a dominant strategy for startup?
- Q: Do you see a rational outcome of the game?

Iterated Elimination

- "Guess 2/3 of average"
 - Each student guesses a real number between 0 and 100 (inclusive)
 - The student whose number is the closest to 2/3 of the average of all numbers wins!
- Piazza Poll: What would you do?

Nash Equilibrium

- If we find dominant strategies, or a unique outcome after iteratively eliminating dominated strategies, it *may* be considered the rational outcome of the game.
- What if this is not the case?

Professor Students	Attend	Be Absent
Attend	(3 , 1)	(-1 , -3)
Be Absent	(-1 , -1)	(0,0)

Nash Equilibrium

- Instead of hoping to find strategies that players would play *irrespective of what other players play,* we want to find strategies that players would play *given what other players play.*
- Nash Equilibrium
 - > A strategy profile \vec{s} is in Nash equilibrium if s_i is the best action for player *i* given that other players are playing \vec{s}_{-i}

$$u_i(s_i, \vec{s}_{-i}) \ge u_i(s'_i, \vec{s}_{-i}), \forall s'_i$$

Recap: Prisoner's Dilemma

John's Actions Sam's Actions	Stay Silent	Betray
Stay Silent	(-1 , -1)	(-3 , 0)
Betray	(0 , -3)	(-2 , -2)

- Nash equilibrium?
- (Dominant strategies)

Recap: Microsoft vs Startup

- Nash equilibrium?
- (Iterated elimination of strongly dominated strategies)

Recap: Attend or Not

Professor Students	Attend	Be Absent
Attend	(3 , 1)	(-1 , -3)
Be Absent	(-1 , -1)	t (0 , 0)

- Nash equilibria?
- Lack of predictability

Example: Rock-Paper-Scissor

P1 P2	Rock	Paper	Scissor
Rock	(0,0)	(-1 , 1)	(1 , -1)
Paper	(1 , -1)	(0 , 0)	(-1 , 1)
Scissor	(-1 , 1)	(1 , -1)	(0,0)

• Pure Nash equilibrium?

Nash's Beautiful Result

- Theorem: Every normal form game admits a mixedstrategy Nash equilibrium.
- What about Rock-Paper-Scissor?

P1 P2	Rock	Paper	Scissor
Rock	(0,0)	(-1 , 1)	(1 , -1)
Paper	(1 , -1)	(0,0)	(-1 , 1)
Scissor	(-1 , 1)	(1 , -1)	(0,0)

Indifference Principle

• If the mixed strategy of player i in a Nash equilibrium has support T_i , the expected payoff of player i from each $s_i \in T_i$ must be identical.

• Derivation of rock-paper-scissor on the board.

Stag-Hunt

Hunter 1 Hunter 2	Stag	Hare
Stag	(4 , 4)	(0 , 2)
Hare	(2 , 0)	(1 , 1)

- Game
 - Stag requires both hunters, food is good for 4 days for each hunter.
 - > Hare requires a single hunter, food is good for 2 days
 - > If they both catch the same hare, they share.
- Two pure Nash equilibria: (Stag, Stag), (Hare, Hare)

Stag-Hunt

- Two pure Nash equilibria: (Stag,Stag), (Hare,Hare)
 > Other hunter plays "Stag" → "Stag" is best response
 > Other hunter plays "Hare" → "Hare" is best reponse
- What about mixed Nash equilibria?

Stag-Hunt

Hunter 1 Hunter 2	Stag	Hare
Stag	(4 , 4)	(0 , 2)
Hare	(2 , 0)	(1,1)

- Symmetric: $s \rightarrow \{ \text{Stag w.p. } p, \text{ Hare w.p. } 1 p \}$
- Indifference principle:
 - Given the other hunter plays s, equal E[reward] for Stag and Hare
 - $\succ \mathbb{E}[\text{Stag}] = p * 4 + (1 p) * 0$
 - > $\mathbb{E}[\text{Hare}] = p * 2 + (1 p) * 1$
 - \succ Equate the two $\Rightarrow p = 1/3$

Extra Fun 1: Cunning Airlines

- Two travelers lose their luggage.
- Airline agrees to refund up to \$100 to each.
- Policy: Both travelers would submit a number between 2 and 99 (inclusive).
 - > If both report the same number, each gets this value.
 - If one reports a lower number (s) than the other (t), the former gets s+2, the latter gets s-2.

Extra Fun 2: Ice Cream Shop

- Two brothers, each wants to set up an ice cream shop on the beach ([0,1]).
- If the shops are at s, t (with $s \leq t$)

> The brother at s gets
$$\left[0, \frac{s+t}{2}\right]$$
, the other gets $\left[\frac{s+t}{2}, 1\right]$

- Noncooperative game theory provides a framework for analyzing rational behavior.
- But it relies on many assumptions that are often violated in the real world.
- Due to this, human actors are observed to play Nash equilibria in some settings, but play something far different in other settings.

• Assumptions:

Rationality is common knowledge.

- All players are rational.
- $\,\circ\,$ All players know that all players are rational.
- $\,\circ\,$ All players know that all players know that all players are rational.
- o ... [Aumann, 1976]
- Behavioral economics
- > Rationality is perfect = "infinite wisdom"
 - Computationally bounded agents
- Full information about what other players are doing.
 Bayes-Nash equilibria

- Assumptions:
 - No binding contracts.
 - Cooperative game theory
 - > No player can commit first.
 - Stackelberg games (will study this in a few lectures)
 - No external help.
 - Correlated equilibria
 - > Humans reason about randomization using expectations.
 - Prospect theory

- Also, there are often multiple equilibria, and no clear way of "choosing" one over another.
- For many classes of games, finding a single equilibrium is provably hard.
 - > Cannot expect humans to find it if your computer cannot.

• Conclusion:

- > For human agents, take it with a grain of salt.
- > For AI agents playing against AI agents, perfect!

Price of Anarchy and Stability

- If players play a Nash equilibrium instead of "socially optimum", how bad can it be?
- Objective function: sum of utilities/costs
- Price of Anarchy (PoA): compare the optimum to the worst Nash equilibrium
- Price of Stability (PoS): compare the optimum to the best Nash equilibrium

Price of Anarchy and Stability

• Price of Anarchy (PoA)

Revisiting Stag-Hunt

Hunter 1 Hunter 2	Stag	Hare
Stag	(4 , 4)	(0 , 2)
Hare	(2 , 0)	(1,1)

- Optimum social utility = 4+4 = 8
- Three equilibria:
 - > (Stag, Stag) : Social utility = 8
 - > (Hare, Hare) : Social utility = 2
 - > (Stag:1/3 Hare:2/3, Stag:1/3 Hare:2/3)

 \circ Social utility = $(1/3)^{*}(1/3)^{*8} + (1-(1/3)^{*}(1/3))^{*2} = Btw 2 and 8$

• Price of stability? Price of anarchy?

Cost Sharing Game

- n players on directed weighted graph G
- Player *i*
 - > Wants to go from s_i to t_i
 - > Strategy set $S_i = \{ \text{directed } s_i \rightarrow t_i \text{ paths} \}$
 - > Denote his chosen path by $P_i \in S_i$
- Each edge e has cost c_e (weight)
 > Cost is split among all players taking edge e
 > That is, among all players i with e ∈ P_i

Cost Sharing Game

- Given strategy profile \vec{P} , cost $c_i(\vec{P})$ to player *i* is sum of his costs for edges $e \in P_i$
- Social cost $C(\vec{P}) = \sum_{i} c_i(\vec{P})$
 - > Note that $C(\vec{P}) = \sum_{e \in E(\vec{P})} c_e$, where $E(\vec{P})$ ={edges taken in \vec{P} by at least one player}
- In the example on the right:
 - > What if both players take the direct paths?
 - > What if both take the middle paths?
 - What if only one player takes the middle path while the other takes the direct path?

Cost Sharing: Simple Example

- Example on the right: n players
- Two pure NE
 - All taking the n-edge: social cost = n
 - > All taking the 1-edge: social cost = 1
 - $\,\circ\,$ Also the social optimum
- In this game, price of anarchy $\geq n$
- We can show that for all cost sharing games, price of anarchy $\leq n$

	S	
n		1
	t	

Cost Sharing: PoA

- Theorem: The price of anarchy of a cost sharing game is at most *n*.
- Proof:
 - > Suppose the social optimum is $(P_1^*, P_2^*, ..., P_n^*)$, in which the cost to player *i* is c_i^* .
 - > Take any NE with cost c_i to player *i*.
 - > Let c'_i be his cost if he switches to P_i^* .

$$ightarrow NE \Rightarrow c'_i \ge c_i$$
 (Why?)

> But
$$: c_i' \leq n \cdot c_i^*$$
 (Why?)

> $c_i ≤ n \cdot c_i^*$ for each $i \Rightarrow$ no worse than n × optimum

Cost Sharing

- Price of anarchy
 - > All cost-sharing games: $PoA \le n$
 - > \exists example where PoA = n
- Price of stability? Later...
- Both examples we saw had pure Nash equilibria
 - > What about more complex games, like the one on the right?

Good News

- Theorem: All cost sharing games admit a pure Nash equilibrium.
- Proof:

> Via a "potential function" argument.

Step 1: Define Potential Fn

- Potential function: $\Phi : \prod_i S_i \to \mathbb{R}_+$
 - > For all pure strategy profiles $\vec{P} = (P_1, ..., P_n) \in \prod_i S_i, ...$ > all players *i*, and ...
 - ≻ all alternative strategies $P'_i \in S_i$ for player *i*...

$$c_i(P'_i, \vec{P}_{-i}) - c_i(\vec{P}) = \Phi(P'_i, \vec{P}_{-i}) - \Phi(\vec{P})$$

• When a single player changes his strategy, the change in *his* cost is equal to the change in the potential function

> Do not care about the changes in the costs to others

Step 2: Potential $F^n \rightarrow pure Nash Eq$

- All games that admit a potential function have a pure Nash equilibrium. Why?
 - > Think about \vec{P} that minimizes the potential function.
 - > What happens when a player deviates?
 - $\,\circ\,$ If his cost decreases, the potential function value must also decrease.
 - $\circ \vec{P}$ already minimizes the potential function value.
- Pure strategy profile minimizing potential function is a pure Nash equilibrium.

Step 3: Potential Fⁿ for Cost-Sharing

- Recall: $E(\vec{P}) = \{ edges taken in \vec{P} by at least one player \}$
- Let $n_e(\vec{P})$ be the number of players taking e in \vec{P}

$$\Phi(\vec{P}) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k}$$

• Note: The cost of edge *e* to each player taking *e* is $c_e/n_e(\vec{P})$. But the potential function includes all fractions: $c_e/1$, $c_e/2$, ..., $c_e/n_e(\vec{P})$.

Step 3: Potential Fⁿ for Cost-Sharing

$$\Phi(\vec{P}) = \sum_{e \in E(\vec{P})} \sum_{k=1}^{n_e(\vec{P})} \frac{c_e}{k}$$

- Why is this a potential function?
 - > If a player changes path, he pays ^c_e/_{n_e(P)+1} for each new edge e, gets back ^c_f/_{n_f(P)} for each old edge f. > This is precisely the change in the potential function too.
 - > So $\Delta c_i = \Delta \Phi$.

Potential Minimizing Eq.

- There could be multiple pure Nash equilibria
 - Pure Nash equilibria are "local minima" of the potential function.
 - > A single player deviating should not decrease the function value.
- Is the *global minimum* of the potential function a special pure Nash equilibrium?

Potential Minimizing Eq.

Potential Minimizing Eq.

- Potential minimizing equilibrium gives O(log n) approximation to the social optimum
 - > Price of stability is $O(\log n)$
 - $\circ \exists$ example where price of stability is $\Theta(\log n)$
 - Compare to the price of anarchy, which can be n

Congestion Games

- Generalize cost sharing games
- *n* players, *m* resources (e.g., edges)
- Each player *i* chooses a set of resources P_i (e.g., $s_i \rightarrow t_i$ paths)
- When n_j player use resource j, each of them get a cost $f_j(n_j)$
- Cost to player is the sum of costs of resources used

Congestion Games

- Theorem [Rosenthal 1973]: Every congestion game is a potential game.
- Potential function:

$$\Phi(\vec{P}) = \sum_{j \in E(\vec{P})} \sum_{k=1}^{n_j(\vec{P})} f_j(k)$$

• Theorem [Monderer and Shapley 1996]: Every potential game is equivalent to a congestion game.

Potential Functions

- Potential functions are useful for deriving various results
 - E.g., used for analyzing amortized complexity of algorithms
- Bad news: Finding a potential function that works may be hard.

- In cost sharing, f_j is decreasing
 - > The more people use a resource, the less the cost to each.
- f_j can also be increasing
 - > Road network, each player going from home to work
 - > Uses a sequence of roads
 - > The more people on a road, the greater the congestion, the greater the delay (cost)
- Can lead to unintuitive phenomena

- Due to Parkes and Seuken:
 - > 2000 players want to go from 1 to 4
 - > 1 \rightarrow 2 and 3 \rightarrow 4 are "congestible" roads
 - $\succ 1 \rightarrow 3 \text{ and } 2 \rightarrow 4 \text{ are "constant delay" roads}$

- Pure Nash equilibrium?
 - > 1000 take $1 \rightarrow 2 \rightarrow 4$, 1000 take $1 \rightarrow 3 \rightarrow 4$
 - > Each player has cost 10 + 25 = 35
 - > Anyone switching to the other creates a greater congestion on it, and faces a higher cost

- What if we add a zero-cost connection $2 \rightarrow 3$?
 - > Intuitively, adding more roads should only be helpful
 - In reality, it leads to a greater delay for everyone in the unique equilibrium!

- Nobody chooses $1 \rightarrow 3$ as $1 \rightarrow 2 \rightarrow 3$ is better irrespective of how many other players take it
- Similarly, nobody chooses $2 \rightarrow 4$
- Everyone takes $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$, faces delay = 40!

- In fact, what we showed is:
 - > In the new game, $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ is a strictly dominant strategy for each firm!

