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As part of a collaboration with a major California school district, we study the problem of fairly allocating
unused classrooms in public schools to charter schools. Our approach revolves around the randomized lex-
imin mechanism. We extend previous work to show that the leximin mechanism is proportional, envy-free,
Pareto optimal, and group strategyproof, not only in our classroom allocation setting, but in a general frame-
work that subsumes a number of settings previously studied in the literature. We also prove that the leximin
mechanism provides a (worst-case) 4-approximation to the maximum number of classrooms that can possi-
bly be allocated. Our experiments, which are based on real data, show that a nontrivial implementation of
the leximin mechanism scales gracefully in terms of running time (even though the problem is intractable
in theory), and performs extremely well with respect to a number of efficiency objectives. We establish the
practicability of our approach, and discuss issues related to its deployment.
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1. INTRODUCTION
Over the course of the last seven decades, the study of fair division has given rise to a
slew of elegant solutions to a variety of problems [Brams and Taylor 1996; Robertson
and Webb 1998; Moulin 2003], which span the practicability spectrum from abstract
(e.g., cake cutting [Procaccia 2013]) to everyday (e.g., rent division [Abdulkadiroğlu
et al. 2004]). Building on its rich history, the field of fair division — and computati-
onal fair division, in particular — is poised to make a significant impact on society
through applications that are beginning to emerge. For example, Budish’s fair division
approach [Budish 2011] — which leads to challenging computational questions [Oth-
man et al. 2010; Othman et al. 2014] — is now regularly used by the Wharton School
of the University of Pennsylvania to allocate seats in MBA courses. And the not-for-
profit website Spliddit (www.spliddit.org) — which offers provably fair solutions for
the division of goods, rent, and credit [Goldman and Procaccia 2014] — has already
been used by more than a hundred thousand people.

One of the beautiful consequences of these applications is that people have become
aware of fair division theory, and are reaching out with problems that are possibly
specialized, yet just as significant in terms of societal impact. This was foreseen by the
esteemed economist Hervé Moulin, who wrote to one of us (Procaccia) by email on June
3, 2013 (in the context of Spliddit’s early development):
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“I believe that, with few exceptions (school choice?) academics like us are not
going to invent from their armchair the best applications of our models, con-
cepts and solutions, although we have a good sense of the type of problems
where they can help. Thus the reward of helping people who have a real fair
division problem by explaining our solutions, is that they in return pose in-
teresting and difficult new questions, food for our thoughts. So if the website
lets users ask questions of their own, it could be a goldmine of ideas, as well
as a costly proposition if there are too many questions!”

This paper presents a solution to one of these “interesting and difficult new questi-
ons”, posed by a representative of one of the largest school districts in California. Since
the details are confidential, we will refer to the school district as the Pentos Unified
School District (PUSD), and to the representative as Illyrio Mopatis. Mr. Mopatis con-
tacted us in May 2014 after learning about Spliddit (and fair division, more generally)
from an article in the New York Times.1 He is tasked with the allocation of unused
space (most importantly, classrooms) in PUSD’s public schools to the district’s charter
schools, according to California’s Proposition 39, which states that “public school faci-
lities should be shared fairly among all public school pupils, including those in charter
schools”.2 While the law does not elaborate on what “fairly” means, Mr. Mopatis was
motivated by the belief that a provably fair solution would certainly fit the bill. He
asked us to design an automated allocation method that would be evaluated by PUSD,
and potentially replace the existing manual system.

To be a bit more specific, the setting consists of charter schools and facilities (public
schools). Each facility has a given number of unused classrooms — its capacity, and
each charter school has a number of required classrooms — its demand. In principle
the classrooms required by a charter school could be split across multiple facilities,
but such offers have always been declined in the past, so we assume that an agent’s
demand must be satisfied in a single facility (if it is satisfied at all). Other details are
less important and can be abstracted away. For example, classroom size turns out to
be a nonissue, and the division of time in shared space (such as the school gym or
cafeteria) can be handled ad hoc.

Of course, to talk of fairness we must also take into account the preferences of char-
ter schools, but preference representation is a modeling choice, intimately related to
the design and guarantees of the allocation mechanism. Moreover, fairness is not our
only concern: to be used in practice, the mechanism must be relatively intuitive (so it
can be explained to decision makers) and computationally feasible. The challenge we
address is therefore to

... design and implement a classroom allocation mechanism that is provably
fair as well as practicable.

1.1. Our Approach and Results
We model the preferences of charter schools as being dichotomous: charter schools
think of each facility as either acceptable or unacceptable. This choice is motivated by
current practice: Under the 2015/2016 request form issued by PUSD, charter schools
are essentially asked to indicate acceptable facilities (specifically, they are asked to
“provide a description of the district school site and/or general geographic area in
which the charter school wishes to locate” using free-form text). In other words, for-
mally eliciting dichotomous preferences — by having charter schools select acceptable

1http://goo.gl/Xp3omV
2http://goo.gl/bGH6dT
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facilities from the list of all facilities — is similar to the status quo, a fact that increases
the practicability of the approach.

A natural starting point, therefore, is the seminal paper of Bogomolnaia and Moulin
[2004], who study the special case of our setting with unit demands and capacities,
under dichotomous preferences. They propose the leximin mechanism, which returns
a random allocation with the following intuitive property: it maximizes the lowest
probability of any charter school having its demand satisfied in an acceptable facility;
subject to this constraint, it maximizes the second lowest probability; and so on.

In Section 3 we show that the leximin mechanism remains compelling in the class-
room allocation setting. Specifically, we prove that it satisfies the following properties:
(i) proportionality — each charter school receives its proportional share of available
classrooms; (ii) envy-freeness — each charter school prefers its own allocation to the al-
location of any other school; (iii) Pareto optimality (a.k.a. ex-ante efficiency) — no other
randomized allocation is at least as good for all charter schools, and strictly better for
at least one; and (iv) group strategyproofness — even coalitions of charter schools can-
not benefit by misreporting their preferences. The beauty of these properties, as well
as the leximin mechanism itself, is that they are intuitive and can easily be explained
to a layperson. This feature, once again, significantly contributes to the practicability
of the approach. As an interesting aside, we show that the leximin mechanism still
satisfies the foregoing properties in a much more general setting, thereby generalizing
results from a variety of other papers in fair division and mechanism design.

In Section 4, we study the leximin mechanism from a combinatorial optimization
viewpoint. The section’s main result is that the expected number of classrooms allo-
cated by the leximin mechanism is always at least 1/4 of the maximum number of
classrooms that can possibly be allocated. We do not view this result as enhancing the
practicability of our approach, but rather as significantly contributing to its intellec-
tual merit. We further conjecture that an improved bound of 1/2 is feasible.

In Section 5, we observe that the problem of computing a leximin allocation is NP-
hard in our setting, and describe our implementation of the leximin mechanism — a
task which has proved quite challenging. A naı̈ve approach to the computation of lexi-
min allocations solves a sequence of linear programs, each with an exponential number
of variables. On a high level, the crux of our implementation is that we work with the
duals of these linear programs — each with an exponential number of constraints —
and formulate a separation oracle as an integer linear program.

Finally, in Section 6, we present our experiments. Using an instance generator that
is grounded in historical data from PUSD, we show that our algorithm for compu-
ting leximin allocations scales quite gracefully. In particular, even when there are 300
charter schools (which is more than any school district in the US has), the algorithm
terminates in a few minutes on average. Remarkably, we also observe that, in our ex-
periments, the leximin mechanism satisfies (on average) at least 98% of the maximum
number of charter schools that can possibly be satisfied, and allocates (on average) at
least 98% of the maximum number of classrooms that can possibly be allocated.

1.2. Related Work
The problem of fairly dividing a set of indivisible goods has been studied extensively.
As an early, seminal example, Hylland and Zeckhauser [1979] propose a compelling
pseudo-market mechanism to compute a lottery over deterministic assignments, given
cardinal preferences. Their mechanism satisfies proportionality, envy-freeness, and
ex-ante efficiency, but fails to provide strategyproofness. A more serious objection to
their mechanism is that they elicit cardinal utilities from agents — a difficult task
in practice. A market approach also drives the work of Budish [2011] on approximate
competitive equilibrium from equal incomes. His approximation guarantees are practi-
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cal as long as the supply of each good is relatively large, which is not the case in the
classroom allocation setting (where the number of available classrooms in a facility is
typically small).

Bogomolnaia and Moulin [2001] study random assignment under ordinal preferen-
ces. They introduce the probabilistic serial (PS) mechanism, which satisfies ex-ante
efficiency as well as ordinal fairness. Informally, the probabilistic serial mechanism
allows agents to “eat” (at identical speeds) their shares of different goods one by one
in the order in which they rank the goods. However, similarly to the pseudo-market
mechanism of Hylland and Zeckhauser [1979], the probabilistic serial mechanism per-
tains to the basic setting of assigning n indivisible goods to n agents.

Budish et al. [2013] propose a general framework, which, by generalizing the classic
Birkhoff von-Neumann theorem [Birkhoff 1946; von Neumann 1953], extends both me-
chanisms to handle real-world combinatorial domains, e.g., with group quotas, endo-
genous capacities, multi-unit non-additive demands, scheduling constraints, etc. Their
extension of the probabilistic serial mechanism would be a potential starting point in
our setting, if we wished to elicit ordinal preferences from the agents. However, note
that in our setting a charter school demanding d classrooms must either receive all d
classrooms at a single facility or no classrooms at all — this restriction is incompatible
with the framework of Budish et al. [2013]. There are other extensions of the probabi-
listic serial mechanism with multi-unit demands [Kojima 2009; Che and Kojima 2010;
Aziz 2014; Pycia 2011], but all of them leverage the standard Birkhoff von-Neumann
theorem to allocate at most d goods to an agent, and cannot ensure that the agent re-
ceives exactly d goods (or no goods at all). We consider it an interesting open problem
to extend the probabilistic serial mechanism to the classroom allocation setting with
ordinal preferences.

As noted above, Bogomolnaia and Moulin [2004] show that if we move to a setting
with dichotomous preferences, much stronger guarantees can be provided. In parti-
cular, they show that for the classic setting with n agents and n goods the leximin
mechanism satisfies proportionality, envy-freeness, Pareto optimality, and strategyp-
roofness. We generalize (some of) their results by proving that the leximin mechanism
satisfies these four properties in our setting as well. Other properties established by
Bogomolnaia and Moulin [2004], such as the Lorenz dominance of the leximin proba-
bility vector, do not hold in our setting (as we demonstrate below).

Bogomolnaia et al. [2005] study a more general dichotomous preferences setting
where every agent essentially accepts a subset of feasible deterministic allocations.3
They propose the utilitarian mechanism, which uniformly randomizes over all de-
terministic allocations maximizing social welfare, and show that it satisfies envy-
freeness, Pareto optimality, and strategyproofness, but violates proportionality and
suffers from “tyranny of the majority”.4 This makes the mechanism highly undesira-
ble in our setting; see the discussion in Section 4.

2. THE MODEL
We begin by formalizing the classroom allocation setting that motivates our work. Let
N = {1, . . . , n} denote the set of charter schools (hereinafter, agents), and let M =
{1, . . . ,m} denote the set of public schools (hereinafter, facilities). We want to design
a mechanism for assigning the agents to the facilities. Each facility f has a capacity
cf , which is the number of units available at the facility (in our motivating example,

3As we discuss in Section 3.2, this general dichotomous preference setting captures our classroom allocation
setting, but our proofs extend to an extremely general setting that actually captures the general dichotomous
preference setting as a special case.
4Apparently, this result was later independently discovered by Freitas [2010].

ACM Transactions on Economics and Computation, Vol. A, No. A, Article A, Publication date: July 2017.



A:5

each unit is a classroom). The preferences of agent i are given by a pair (di, Fi), where
di ∈ N denotes the number of units demanded by agent i — or, simply, the demand
of agent i — and Fi ⊆ M denotes the set of facilities acceptable to agent i. Crucially,
we assume that agent i’s preferences are dichotomous in nature: the agent has utility
1 if it receives di units from any single facility f ∈ Fi (in this case, we say agent i
is assigned to facility f ), and 0 otherwise. Without loss of generality, we assume that
every agent i has an acceptable facility f ∈ Fi that has sufficient capacity to meet its
demand (i.e., cf ≥ di).5

A deterministic allocation is a mapping A : N → M ∪ {0}, where Ai = A(i) denotes
the facility to which agent i is assigned (and Ai = 0 means agent i is not assigned to
any facility). A is feasible if it respects the capacity constraint at each facility:

∀f ∈M,
∑

i∈N :Ai=f

di ≤ cf .

Let A denote the space of all feasible deterministic allocations. Formally, the utility to
agent i under a feasible deterministic allocation A ∈ A is given by

ui(Ai) =

{
1 if Ai ∈ Fi
0 otherwise.

A feasible randomized allocation is simply a distribution over feasible deterministic
allocations, and the utility to an agent is its expected utility under the randomized
allocation. Let ∆(A) be the space of all feasible randomized allocations. Crucially, note
that ∆(A) is a convex set, i.e., given randomized allocations A,A′ ∈ ∆(A) and 0 ≤ λ ≤
1, we can construct another randomized allocation A′′ = λ ·A+ (1− λ) ·A′ ∈ ∆(A) that
executes A with probability λ and A′ with probability 1− λ. Hereinafter, an allocation
is possibly randomized, unless explicitly specified otherwise.

As mentioned in Section 1, our setting deals with fair allocation of indivisible goods,
and generalizes the classic setting of random assignment under dichotomous prefe-
rences studied by Bogomolnaia and Moulin [2004]. In particular, their setting can be
recovered by setting all the demands and capacities to 1 (i.e., di = 1 and cf = 1 for all
i ∈ N , f ∈M ), with an equal number of agents and facilities (m = n).

Desiderata. The fair division literature offers a slew of desirable properties. We are
especially interested in four classic desiderata that have proved to be widely applicable
(with applications ranging from cake cutting [Procaccia 2013] to the division of com-
putational resources in clusters [Ghodsi et al. 2011; Parkes et al. 2015]), often satisfi-
able, and yet effective in leading to compelling mechanisms. We use these desiderata
to guide the search for a good mechanism in our setting. Let A denote an allocation
returned by a mechanism under consideration.

(1) Proportionality. This is a fairness requirement that states that every agent should
receive at least its proportional share of the available goods. Since the maximum
utility any agent can achieve is 1, a mechanism is called proportional if the utility
to each agent is at least 1/n, i.e., if ui(Ai) ≥ 1/n for all i ∈ N .

(2) Envy-freeness. This is another fairness requirement which states that every agent
should prefer its own allocation over the allocation of any other agent. In other
words, no agent should envy any other agent. Formally, a mechanism is called
envy-free if ui(Ai) ≥ ui(Aj) for all i, j ∈ N .

(3) Pareto optimality. This is a qualitative notion of efficiency which requires that it be
impossible to make an agent better off without making some other agent worse off.

5Agents violating this requirement can never achieve positive utility, and can effectively be disregarded.
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Formally, an allocation A is Pareto dominated by an allocation A′ (or A′ is a Pareto
improvement overA) if ui(A′i) ≥ ui(Ai) for every agent i ∈ N and ui(A′i) > ui(Ai) for
some agent i ∈ N . A mechanism is called Pareto optimal if the allocation it returns
is not Pareto dominated by any alternative allocation. In our context, Pareto opti-
mality denotes ex-ante efficiency, which is a strictly stronger notion than ex-post
efficiency, as the latter notion only requires an allocation to be a randomization
over deterministic Pareto optimal allocations.

(4) Strategyproofness. This property is a strong game-theoretic requirement. In our
setting, the preferences of agent i (both di and Fi) are its private information. We
would like to motivate each agent to report its preferences truthfully regardless of
the preferences reported by the other agents. A mechanism is called strategyproof
if truth-telling is a dominant strategy for every agent. Formally, let A denote the
allocation returned when the preferences reported by the agents are (d,F), and
let A′ denote the allocation returned when an agent i ∈ N changes its preferences
to (d′i, F

′
i ) while the preferences of the other agents remain unchanged. Then, we

require that ui(Ai) ≥ ui(A′i), where ui is the utility function induced by the original
preferences (di, Fi). A stronger notion called group strategyproofness requires that
if a subset of agents simultaneously report false preferences, at least one of the
agents in the subset must not be strictly better off.

Let us first consider an example illustrating the desiderata of our interest.

Example 2.1. First, let us consider a simple randomized mechanism that alloca-
tes all available units at all facilities to each agent with probability 1/n. Clearly, the
mechanism satisfies proportionality because it gives each agent utility 1/n. The me-
chanism is also envy-free because each agent has an identical allocation, and thus no
reason to envy any other agent. Since the mechanism operates independently of the
reported preferences of the agents, the mechanism is obviously (group) strategyproof.
However, the mechanism is not Pareto optimal. The reason is that the mechanism al-
locates all available units to an agent (with probability 1/n) even if the agent does not
require all the units. In this case, it may be possible to simultaneously satisfy another
agent, thus obtaining a Pareto improvement.

Next, consider a different mechanism that always returns a deterministic allocation
maximizing the number of units allocated. While this mechanism is very intuitive, we
can show that it violates all the desiderata except Pareto optimality. Suppose there is a
single facility with 4 available units, and two agents — namely, agents 1 and 2 — that
demand 3 and 2 units, respectively. Maximizing the number of units allocated would
require allocating 3 units to agent 1 and no units to agent 2. This already violates
both proportionality and envy-freeness with respect to agent 2. Further, agent 2 would
have a strict incentive to report a false demand of 4 units, which would lead to agent 2
receiving all 4 units from the facility. Thus, strategyproofness is also violated.

3. THE LEXIMIN MECHANISM
Let us consider the leximin mechanism proposed by Bogomolnaia and Moulin [2004]
(for the special case of random assignment under dichotomous preferences) in our
more general setting. Informally, the leximin mechanism first maximizes the mini-
mum utility that any agent achieves. Then, subject to this constraint, it maximizes the
second lowest utility, and so on. Formally, let (u1, u2, . . . , un) denote the vector of uti-
lities sorted in non-descending order. The leximin mechanism returns the allocation
that maximizes this vector in the lexicographic order; we say that this allocation is
leximin-optimal. The mechanism is presented as Algorithm 1. Note that Algorithm 1
is highly intractable in practice; we describe a practical implementation of the leximin
mechanism in Section 5.
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ALGORITHM 1: The Leximin Mechanism
Data: Demands {(di, Fi)}i∈N , Capacities {cf}f∈M
Result: The Leximin-Optimal Allocation A
For k ∈ {1, . . . , n}, let uk denote the kth lowest utility under an allocation;
for k = 1 to n do

ūk ←Max uk subject to uj = ūj for all j < k;
end
return an allocation where uk = ūk for all k ∈ {1, . . . , n};

In a sense, the leximin mechanism is an extension of the egalitarian equivalence
principle put forward by Pazner and Schmeidler [1978], in which one attempts to
equalize all agent utilities (and maximize this utility value). This is what the leximin
mechanism attempts in its first step of maximizing the minimum utility. However,
sometimes the solution obtained is not Pareto optimal. The subsequent steps amend
this solution to make it Pareto optimal, and eliminate any waste of resources. Without
loss of generality, assume that the leximin mechanism chooses a non-wasteful alloca-
tion, i.e., under every deterministic assignment in its support agent i either receives
di units from a facility in Fi or does not receive any units. Let us illustrate how the
leximin mechanism works through an example.

Example 3.1. Suppose there are two facilities a and b with capacities ca = 1 and
cb = 2, respectively, and four agents with demands d1 = 1, d2 = 1, d3 = 1, and d4 =
2. Suppose agent 1 only accepts facility a (F1 = {a}), agent 2 accepts both facilities
(F2 = {a, b}), and agents 3 and 4 only accept facility b (F3 = F4 = {b}). This is shown
in Figure 1a, where the agents are shown on the left with their demands, the facilities
are shown on the right with their capacities, and each agent is connected to each of its
acceptable facilities through a dashed line.

It is clear that the minimum utility cannot be greater than 1/2 because agents 3 and
4 must be assigned to facility b separately. The allocation shown in Figure 1b gives
utility 1/2 to all agents. However, this is not sufficient for the allocation to be the
leximin allocation. For instance, the allocation shown in Figure 1c increases the utility
to agent 2 while preserving the utilities to the other agents, and is therefore better
in a lexicographic comparison of the sorted utility vector. While this new allocation is
Pareto optimal, it is still not the leximin allocation. The leximin allocation is shown
in Figure 1d — it gives utility 1/2 to agents 3 and 4, and utility 3/4 to agents 1 and 2.
This achieves the same lowest and 2nd lowest utilities as the previous two allocations,
but a greater 3rd lowest utility than both previous allocations.

3.1. Properties of The Leximin Mechanism
Bogomolnaia and Moulin [2004] show that the leximin mechanism satisfies all four
desiderata proposed above in their classic setting with one-to-one matchings, and unit
demands and capacities. We now show that these properties continue to hold in our
setting with many-to-one matchings, and arbitrary demands and capacities. In fact, in
Section 3.2 we argue that they hold in an even more general setting.

THEOREM 3.2. The leximin mechanism satisfies proportionality, envy-freeness, Pa-
reto optimality, and group strategyproofness.

PROOF. We first formally establish an intuitive property of leximin allocations.

LEMMA 3.3. Let A denote the allocation returned by the leximin mechanism. Then
for utility function u induced by any dichotomous preferences, we have ui(Ai) ≥ u(Ai).
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d1 = 1

d2 = 1

d3 = 1

d4 = 2

ca = 1

cb = 2

Agents Facilities

(a) This is an instance of the classroom
allocation problem.

Pr = 1/2 Pr = 1/2

(b) This allocation is not Pareto optimal. Agents’
utilities (sorted) are (1/2, 1/2, 1/2, 1/2).

Pr = 1/2 Pr = 1/2

(c) This is Pareto optimal, but not
the leximin allocation. Agents’ utili-
ties (sorted) are (1/2, 1/2, 1/2, 1).

Pr = 1/2 Pr = 1/4 Pr = 1/4

(d) This allocation is the leximin allocation (and
is therefore Pareto optimal). Agents’ utilities
(sorted) are (1/2, 1/2, 3/4, 3/4).

Fig. 1: Illustration of Example 3.1.

PROOF. First, let A be deterministic. If Ai 6= 0, then due to the non-wastefulness of
the leximin allocation, we must have ui(Ai) = 1 ≥ u(Ai) for any utility function u. On
the other hand, Ai = 0 implies ui(Ai) = u(Ai) = 0 for all utility functions u. Hence,
the lemma holds for all deterministic allocations. For randomized allocations, taking
expectation on both sides yields that the lemma still holds. � (Proof of Lemma 3.3)

Proportionality. Consider the mechanism that allocates all available units to each
agent with probability 1/n, which gives each agent utility 1/n.6 Since the leximin me-
chanism maximizes the minimum utility that any agent receives, it must also give
each agent at least 1/n utility. Hence, the leximin mechanism is proportional.

Envy-freeness. Suppose for contradiction that under an allocation A returned by the
leximin mechanism, agent i envies agent j. That is, ui(Aj) > ui(Ai). Now, Lemma 3.3
implies uj(Aj) ≥ ui(Aj) > ui(Ai) ≥ 0. Let 0 < ε < (uj(Aj)− ui(Ai))/uj(Aj).

Construct another allocation A′ such that A′k = Ak for all k ∈ N \ {i, j}, A′i = Aj , and
A′j = 0. Since agent i envied agent j, we have di ≤ dj , implying that A′ is feasible. Note
that agent i now has higher utility because ui(A′i) = ui(Aj) > ui(Ai).

Construct an allocation A′′ that realizes A with probability 1 − ε and A′ with pro-
bability ε. Due to our construction of A′′, we have that for every agent k ∈ N \ {i, j},
uk(A′′) = uk(A′) = uk(A). Further, for agent i we have ui(A′′i ) > ui(Ai). Also, for agent

6This is because we assumed that the demand of every agent can be satisfied given all available units.
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j we have
uj(A

′′
j ) = (1− ε)uj(Aj) > ui(Ai).

Hence, switching from A to A′′ preserves the utility achieved by every agent except
agents i and j, and both agents i and j receive utility strictly greater than ui(Ai) =
min(ui(Ai), uj(Aj)). That is, allocation A′′ is strictly better than allocation A in the
leximin ordering, which contradicts the leximin-optimality of A.
Pareto optimality. This follows trivially from the definition of leximin-optimality.
Note that increasing the utility of an agent i without decreasing the utility of any
other agent would improve the allocation in the leximin ordering. Since the allocation
returned by the leximin mechanism is already leximin-optimal, it does not admit any
Pareto improvements. Hence, the leximin mechanism is Pareto optimal.
Group Strategyproofness. This is the most non-trivial property to establish among
the four desired properties. Under the true reports (dk, Fk)k∈N , let A denote the allo-
cation returned by the leximin mechanism. Suppose a subset of agents S ⊆ N , whom
we call manipulators, report false preferences (d′i, F

′
i )i∈S ; let (u′i)i∈S denote the utility

functions induced by the false preferences of the manipulators. Let A′ denote the al-
location returned by the leximin mechanism when agents in S misreport. Suppose for
contradiction that every agent in S is strictly better off (under their true utility functi-
ons) by misreporting, i.e., ui(A′i) > ui(Ai) for every i ∈ S. Now, Lemma 3.3 implies that
u′i(A

′
i) ≥ ui(A′i); thus, we have u′i(A′i) > ui(Ai) for every i ∈ S.

Before we derive a contradiction, we first observe that the leximin-optimality of
an allocation implies Pareto optimality of any prefix of its sorted utility vector. Let
prefA(i) = {j ∈ N | uj(Aj) ≤ ui(Ai)} denote the prefix of agent i in allocation A.

LEMMA 3.4 (PREFIX OPTIMALITY). For an allocation X returned by the leximin
mechanism and an agent i ∈ N , there does not exist an allocation X ′ such that some
agent in prefX(i) is strictly better off under X ′ and no agent in prefX(i) is worse off.

PROOF. Assume without loss of generality that ui(Xi) < maxj∈N uj(Xj), otherwise
the statement coincides with Pareto optimality. Suppose for contradiction that an allo-
cation X ′ as in the statement of the lemma exists. Choose ε such that

0 < ε <
1− ui(Xi)

min{uj(Xj) | uj(Xj) > ui(Xi)}
.

Consider the allocation X ′′ = (1 − ε) · X + ε · X ′. Due to our choice of ε, we can see
that for every agent j /∈ prefX(i), we have uj(X ′′j ) ≥ (1 − ε)uj(Xj) > ui(Xi). Further,
we have uj(X ′′j ) ≥ uj(Xj) for every agent j ∈ prefX(i) and uj(X

′′
j ) > uj(Xj) for some

j ∈ prefX(i).
We now show that X ′′ is strictly better than X in the leximin ordering. Choose agent

j∗ ∈ arg minj∈prefX(i):uj(X′′j )>uj(Xj) uj(Xj). Break ties by choosing an agent with the
smallest value of uj(X ′′j ), and if there are still ties, break them arbitrarily. Let t =
|{k ∈ prefX(i)|uk(Xk) < uj∗(Xj∗)}|+ |{k ∈ prefX(i)|uk(X ′′k ) = uk(Xk) = uj(Xj)}|. Then,
one can check that allocations X and X ′′ match in the t lowest utilities, and allocation
X ′′ has a strictly greater (t+1)st lowest utility. Thus,X ′′ is strictly better thanX in the
leximin ordering, which contradicts leximin-optimality of X. � (Proof of Lemma 3.4)

Fix a manipulator i ∈ S that minimizes ui(Ai) among all i ∈ S (break ties arbitra-
rily). Let us look at the set of all agents that are strictly better off under A′ compared
to A, and among these agents, choose an agent j that minimizes uj(Aj) (again, break
ties arbitrarily). Now, agent i is also strictly better off under A′. Hence, by the defini-
tion of agent j, we have uj(Aj) ≤ ui(Ai). Since agent j is strictly better off under A′, by

ACM Transactions on Economics and Computation, Vol. A, No. A, Article A, Publication date: July 2017.



A:10

prefix optimality of A (Lemma 3.4) we know there must exist an agent in prefA(j) that
is strictly worse off under A′. Among all agents in prefA(j) that are worse off under A′,
choose an agent k that minimizes uk(A′k) (again, break ties arbitrarily).

Now, we derive our contradiction by showing that prefix optimality of A′ is violated.
More precisely, we know that agent k is strictly better off under A compared to A′. We
show that no agent in prefA′(k) is worse off under A compared to A′.

First, note that for any manipulator l ∈ S, we have ul′(A
′
l) ≥ ul(A

′
l) > ul(Al) ≥

ui(Ai) ≥ uj(Aj) ≥ uk(Ak) > uk(A′k), where the third, fourth, and fifth transitions
hold due to our choice of agents i, j, and k, respectively. Thus, no manipulator belongs
to prefA′(k). In other words, for every agent l ∈ prefA′(k) we can denote its utility
function (which is common between A and A′) by ul. Take an agent l ∈ prefA′(k). If
ul(Al) < ul(A

′
l), then we have ul(Al) < ul(A

′
l) ≤ uk(A′k) < uk(Ak) ≤ uj(Aj). Thus,

agent l satisfies ul(Al) < uj(Aj), and is still better off under A′ compared to A, which
contradicts our choice of agent j. Therefore, ul(Al) ≥ ul(A′l) for every l ∈ prefA′(k), and
uk(Ak) > uk(A′k), contradicting prefix optimality of A′. � (Proof of Theorem 3.2)

While group strategyproofness is a strong game-theoretic requirement, an even
stronger requirement has been studied in the literature. Under this stronger require-
ment, a group of manipulators should not be able to report false preferences that would
lead to all manipulators being weakly happier and at least one manipulator being
strictly happier. Bogomolnaia and Moulin [2004] show that in the classical random
assignment setting under dichotomous preferences, the leximin mechanism is group
strategyproof according to this stronger requirement.7 Unfortunately, the following
example shows that this does not hold in our more general setting.

Example 3.5. Suppose there are 9 agents with demands

(d1, d2, d3, d4, d5, d6, d7, d8, d9) = (2, 4, 4, 4, 2, 2, 2, 1, 1),

and 3 facilities with capacities (c1, c2, c3) = (4, 2, 1). Let the dichotomous preferences
of the agents be as follows: Fi = {1} for i ∈ {1, 2, 3, 4}, F5 = {1, 2}, F6 = F7 = {2},
F8 = {2, 3}, and F9 = {3}.

In this case, it can be checked that under the leximin allocation, the utilities of
the agents are as follows: ui = 1/4 for i ∈ {1, 2, 3, 4}, u5 = u6 = u7 = 5/12, and
u8 = u9 = 1/2.

Suppose agent 1 manipulates, and increases its demand to d′1 = 3 units. Then, it
can be checked that under the new leximin allocation, the utility of agent 1 through 4
remains 1/4, the utility of agents 5 through 7 drops to 1/3, and the utility of agents 8
and 9 increases to 5/8. Thus, agent 1 and agent 9 form a successful group manipulation
in which no agent is worse off, but agent 9 is strictly better off.

Similarly, Bogomolnaia and Moulin [2004] also show that a leximin-optimal alloca-
tion always Lorenz-dominates any other allocation in their classic setting. Let us first
define Lorenz dominance among allocations.

Lorenz dominance. For k ∈ {1, . . . , n}, let uk and vk denote the kth lowest utility in
allocations A and B, respectively. We say that allocation A (weakly) Lorenz-dominates
allocation B if

∑k
i=1 u

i ≥
∑k
i=1 v

i for k ∈ {1, . . . , n}.
We now show that in our setting there may not exist an allocation that weakly

Lorenz-dominates every other allocation.

7While the strategyproofness result of Bogomolnaia and Moulin [2004] more generally applies to strategic
manipulations from both sides of the market, this is captured by our generalized results in Section 3.2.
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Example 3.6. Suppose there is a single facility with 3 available units, and there
are four agents — namely, agents 1 through 4 — such that agent 1 demands all 3
units from the facility, while the remaining agents demand a single unit each. Sup-
pose there exists an allocation A that weakly Lorenz-dominates every other feasible
allocation. Then, in particular, it must achieve the maximum possible lowest utility.
Hence, allocation A must assign agent 1 to the facility with probability 0.5, and assign
the remaining agents to the facility simultaneously with the remaining probability 0.5.
Thus, the sum of first three lowest utilities under A is 1.5. However, for the allocation
that assigns agents 2 through 4 to the facility with probability 1, the sum of the three
lowest utilities is 2, violating our assumption that A weakly Lorenz-dominates every
other feasible allocation. Thus, in this case there does not exist any allocation that
Lorenz-dominates every other allocation.

In general, the leximin allocation may not be unique, but all leximin allocations are
equivalent in a sense formalized in the next result, which is reminiscent of a num-
ber of similar results in the literature, e.g., uniqueness of the optimal utility vector
when a concave social welfare function (for instance, the Nash social welfare) is max-
imized over a convex space [Anari et al. 2016], uniqueness of the nucleolus in coope-
rative game theory [Driessen 1988], and the “rural hospital theorem” in two-sided
matching [Roth 1986].

THEOREM 3.7. The utility of an agent is identical under all leximin allocations.

PROOF. Suppose for contradiction that there exist leximin-optimal allocations A
andB such that the utilities of some agents do not match in the two allocations. Choose
agent i ∈ arg mini∈N :ui(Ai) 6=ui(Bi) ui(Ai), and break ties by choosing an agent with the
smallest ui(Bi) (further ties can be broken arbitrarily). First, prefix optimality of A
(Lemma 3.4) implies that agent i must be worse off under B, i.e., ui(Bi) < ui(Ai). This
is because otherwise there would exist an agent j ∈ prefA(i) that is strictly worse off
under B. Agent j would satisfy uj(Bj) < uj(Aj) ≤ ui(Ai) < ui(Bi), and thus contradict
our choice of agent i. Hence, we have ui(Bi) < ui(Ai).

Now, consider the prefix of agent i in B, i.e., prefB(i). For every agent j ∈ prefB(i),
either agent j has identical utility under A and B (i.e., uj(Aj) = uj(Bj)), or its utility
changes in which case we must have uj(Aj) ≥ ui(Ai) > ui(Bi) ≥ uj(Bj), where the
first transition holds due to our choice of agent i. Hence, no agent in prefB(i) is worse
off under A compared to B, and agent i is strictly better off under A compared to B.
This violates prefix-optimality of B, which is a contradiction. Hence, the utility of each
agent must be identical under all leximin-optimal allocations. �

Crucially, this also implies that all leximin-optimal allocations satisfy equal number
of agents in expectation, and allocate equal number of units in expectation.

3.2. A General Framework for Leximin
Theorem 3.2 established that the leximin mechanism satisfies four compelling deside-
rata in our classroom allocation setting. We observe that the proof of Theorem 3.2 only
uses four characteristics of the classroom allocation setting (which are listed below).
That is, the leximin mechanism (Algorithm 1) satisfies proportionality, envy-freeness,
Pareto optimality, and group strategyproofness in all domains of fair division and me-
chanism design without money — with divisible or indivisible (or both types of) re-
sources, and with deterministic or randomized allocations — that satisfy these four
requirements.

We briefly describe a general framework in which our result holds. Let N denote
the set of agents. There is a set of resources X, which may contain divisible resources,
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indivisible resources, or both. An allocation A assigns a disjoint subset of resources Ai
to each agent i.8 Denote the set of all feasible allocations by A. Note that the use of
randomized allocations may or may not be permitted in the domain; it does not affect
our result. There is a set P of possible preferences that the agents may have over
possible allocations. Fix a mapping from each preference P ∈ P to a utility function
uP consistent with P , and let U = {uP |P ∈ P} denote the corresponding set of possible
utility functions. Then, our four requirements can be formalized as follows.

(1) Convexity. The space of feasible allocations must be convex. That is, given two
allocations A,A′ ∈ A, and 0 ≤ λ ≤ 1, it should be possible to construct another
feasible allocation A′′ ∈ A such that ui(A′′i ) = λ ·ui(Ai) + (1−λ)ui(A

′
i) for all agents

ti ∈ N . This typically holds if randomized allocations are allowed, or if resources
are divisible.

(2) Equality. The maximum utility achievable by each agent must be identical. Thus,
for two agents i, j ∈ N , we require maxA∈A ui(Ai) = maxA∈A uj(Aj). This property
is required for proportionality, and is usually taken care of when translating the
ordinal preferences of agents into cardinal utility functions.

(3) Shifting Allocations. Given a feasible allocation A ∈ A and agents i, j ∈ N , it
should be possible to construct another feasible allocation A′ ∈ A where we take
the resources allocated to agent j, and allocate them to agent i. That is, we must
have uk(A′k) = uk(Ak) for all agents k ∈ N\{i, j}, and ui(A′i) ≥ ui(Aj). This property
is required for envy-freeness.

(4) Optimal utilization. Under a non-wasteful allocation A ∈ A, an agent must derive
the maximum possible utility from the allocation it receives. That is, we require
ui(Ai) ≥ u(Ai) for all possible utility functions u ∈ U . Lemma 3.3 proves that this
is satisfied in the classroom allocation setting. This assumption is perhaps the most
stringent, and is required for both envy-freeness and group strategyproofness.

Many papers study the leximin mechanism and establish (at least a subset of) the
properties listed in Theorem 3.2 in a variety of domains, including resource alloca-
tion [Ghodsi et al. 2011; Parkes et al. 2015; Li et al. 2014; Bochet et al. 2012; Bogo-
molnaia and Moulin 2004], cake cutting [Chen et al. 2013], and kidney exchange [Roth
et al. 2005]. It can be checked that these domains satisfy our four requirements, and
hence, Theorem 3.2 applied to the foregoing framework generalizes results from all of
these papers.

In addition, any general dichotomous preference setting — where each agent
“accepts” a subset of feasible allocations for which it has utility 1, and “rejects” the
rest for which it has utility 0 — is also captured under our general framework; and
when agents have ordinal preferences over allocations, we only need to establish one
translation to consistent cardinal utilities that satisfies the four requirements above.

Below, we briefly describe one special case of the general framework: fair resource
allocation under Leontief preferences [Ghodsi et al. 2011; Parkes et al. 2015]. Suppose
there are m divisible resources, and each agent i demands them in fixed proportions
given by a (normalized) demand vector d = (di,1, . . . , di,m) where maxr∈{1,...,m} di,r =
1. Thus, given an allocation Ai = (Ai,1, . . . , Ai,m) (where Ai,r ∈ [0, 1] denotes the
fraction of resource r allocated to agent i), the utility to agent i is given by ui(Ai) =
minr∈{1,...,m}Ai,r/di,r. To see that our four requirements are met, note that the space
of feasible allocations is convex due to divisibility of resources, every agent can achieve
a maximum utility of 1, and shifting allocations is permitted. Finally, a non-wasteful
allocation always allocates resources in the demanded proportion. Thus, the utility to

8Obviously, only divisible resources can be split among multiple agents.
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agent i is simply Ai,r/di,r (which is identical for all r). Under any other normalized
demand vector d′ = (d′1, . . . , d

′
m) with d′r∗ = 1, the utility achieved would be at most

Ai,r∗ ≤ Ai,r∗/di,r∗ . Hence, the requirement of optimal utilization also holds.
Ghodsi et al. [2011] prove that the leximin mechanism satisfies proportionality,

envy-freeness, Pareto optimality, and strategyproofness in the foregoing setting, and
Parkes et al. [2015] establish group strategyproofness. These results now directly fol-
low from Theorem 3.2. Further, Parkes et al. [2015] study the variant where agents
only derive utility for integral multiples of their required resource bundle, and show
that no deterministic mechanism satisfies all four desiderata. Indeed, in our frame-
work the convexity requirement is violated for deterministic allocations, but it is satis-
fied for randomized allocations. Hence, the randomized leximin mechanism would still
satisfy all four desiderata.

4. QUANTITATIVE EFFICIENCY OF THE LEXIMIN ALLOCATION
Theorem 3.2 establishes the leximin mechanism as a compelling solution, which si-
multaneously guarantees fairness, efficiency, and truthfulness. The fairness (proporti-
onality and envy-freeness) and truthfulness guarantees are strong. But the notion of
Pareto optimality is a relatively weak, qualitative notion of efficiency.

In our setting, there are two natural quantitative metrics of efficiency: the (expected)
number of agents whose demands are met, and the (expected) number of total units
allocated. Optimizing the former metric is clearly desirable as it represents the social
welfare achieved by the mechanism. The latter metric is important when the units
being allocated are valuable and scarce (this is clearly the case when the units in
question are classrooms). Furthermore, in the classroom allocation setting, the number
of units allocated is proportional to the number of students served.

Indeed, in our setting it is not unnatural to consider directly optimizing either me-
tric. In particular, such an optimization would always lead to a Pareto optimal allo-
cation. However, it is easy to observe that directly optimizing either metric fails to
achieve one or more of our four desired properties. Recall Example 2.1, which alre-
ady showed that maximizing the number of allocated units violates proportionality,
envy-freeness, and strategyproofness; the next example deals with the other metric.

Example 4.1 (Maximizing the number of satisfied agents). Suppose there is a sin-
gle facility with 2 available units, and there are four agents, namely, agents 1 through
4. Agents 1 through 3 each demand a single unit from the facility, while agent 4 de-
mands both units. In order to maximize the number of satisfied agents we must allo-
cate a single unit to two of the agents in {1, 2, 3}, while leaving agent 4 unallocated.
It is easy to see that both proportionality (with respect to agent 4) and envy-freeness
(with respect to the unallocated agent in {1, 2, 3}) are violated.

In the above example, proportionality is clearly violated, but it seems that the viola-
tion of envy-freeness is the result of tie-breaking. Indeed, as previously mentioned, the
utilitarian mechanism [Bogomolnaia et al. 2005; Freitas 2010] that uniformly rand-
omizes over all deterministic allocations maximizing the number of satisfied agents
achieves envy-freeness along with strategyproofness. We note that strategyproofness
would also hold if ties were broken according to a lexicographic order over the agents
(i.e., if ties are broken in favor of allocations satisfying the first agent in the ordering,
remaining ties are broken in favor of allocations satisfying the second agent in the or-
dering, and so on). Here, we provide a short proof of these results for curious readers.

OBSERVATION 4.2. The mechanism that returns an allocation maximizing the
number of satisfied agents and breaks ties according to a lexicographic preference over
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agents is strategyproof and Pareto optimal. Breaking ties uniformly at random preser-
ves these properties, and achieves envy-freeness.

PROOF. Both the deterministic and the randomized mechanisms are clearly Pareto
optimal. We now show strategyproofness of both mechanisms, and envy-freeness of
the randomized mechanism. Let A denote the allocation returned by the deterministic
mechanism.

Strategyproofness. Suppose agent i ∈ N is not satisfied under A. Suppose agent i
manipulates, which results in allocation A′ satisfying agent i. Let k and k′ denote the
number of agents satisfied in A and A′, respectively. Since agent i cannot decrease its
demanded number of units, any subset of agents satisfiable after the manipulation is
also satisfiable before the manipulation. Hence, k ≥ k′. However, allocation A does not
assign agent i to any facility, and therefore must be feasible after the manipulation.
Thus, k′ ≥ k, implying k = k′. Finally, note that the subset of agents satisfied by A′ was
feasible before manipulation, but was not chosen because the subset of agents satisfied
underAwas better in the lexicographic preference. SinceA is a feasible allocation after
manipulation, it would still be preferred toA′ under the same lexicographic preference,
thus establishing a contradiction.

Suppose the mechanism returns an allocation A that uniformly randomizes over all
allocations maximizing the number of satisfied agents. LetA′ denote the corresponding
(uniformly randomizing) allocation when agent i manipulates. If agent i is satisfied
with probability 1 under A, then it has no incentive to manipulate. Otherwise, there
exists an allocation in the support of A that does not satisfy agent i. Observing that
this allocation is feasible after manipulation, and that every subset of agents satisfi-
able after manipulation is also satisfiable before manipulation, we again get k = k′.
Moreover, since agent i cannot decrease its demand, the number of allocations in the
support of A′ in which agent i is satisfied is at most the number of such allocations
in A. Since both A and A′ uniformly randomize over allocations in their support, it is
clear that agent i cannot increase its utility by manipulating.

Envy-freeness. Consider agents i, j ∈ N . Suppose for contradiction that agent i envies
agent j. Let I denote the set of deterministic allocations in the support of A in which
agent i is assigned to a facility, while agent j is unassigned. Let J denote the set of
deterministic allocations in the support of A in which agent j is assigned to a facility
that is acceptable to agent i, while agent i is unassigned. Let pI and pJ denote the
probabilities by which A executes an assignment from I and J , respectively. Then, we
must have pJ > pI . However, since agent i envies agent j, we must have dj ≥ di. Thus,
taking an allocation from J , and replacing agent j with agent i must form a feasible
allocation. Thus, |I| ≥ |J |. Due to uniform randomization over all allocations in the
support, we get pI ≥ pJ , which is a contradiction. � (Proof of Observation 4.2)

While the utilitarian mechanism seems intriguing, recall that in Example 4.1 the
demand of agent 4 was met with zero probability, suggesting that the mechanism is
biased against agents with larger demands. Bogomolnaia et al. call this effect the “ty-
ranny of the majority”. While such a bias may be acceptable in some settings, in other
settings — classroom allocation, in particular — it is problematic. The bias is formally
captured by noting that the utilitarian mechanism violates proportionality.

The discussion above leads us to a natural question: How well does the leximin me-
chanism perform with respect to the two quantitative notions of efficiency, namely the
number of satisfied agents and the number of allocated units? We are interested in the
worst case over problem instances, but since the leximin mechanism is randomized, we
can consider the performance under the worst deterministic allocation in the support
of the randomized leximin allocation, and the performance in expectation. Unsurpri-
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singly, the worst allocation in the support can be simultaneously bad in terms of both
metrics; in the following example, both metrics achieve arbitrarily low fractions of
their respective optimums.

Example 4.3 (Efficiency of allocations in the support of the leximin allocation).
Suppose there are k + 4 agents and two facilities. The capacities of the two facilities
are c1 = k and c2 = k2. The preferences of the agents are as follows.

(di, Fi) =


(1, {1}) if i ∈ {1, . . . , k},
(k, {1}) if i = k + 1 or k + 2,

(1, {2}) if i = k + 3,

(k2, {2}) if i = k + 4.

Clearly, a maximum of k + 1 agents can be satisfied, and a maximum of k + k2 units
can be allocated. It is easy to check that under the leximin allocation, agents 1 through
k + 2 should be assigned to facility 1 with probability 1/3 each, while agents k + 3 and
k + 4 should be assigned to facility 2 with probability 1/2 each. However, this implies
that the support of the leximin allocation must include a deterministic allocation in
which agent k+3 is assigned to facility 2 while one of agents k+1 and k+2 is assigned
to facility 1 (and the remaining agents are unassigned). In this allocation, the number
of agents satisfied is a mere 2/(k+ 1) fraction of the optimum, and the number of units
allocated is also a mere (k + 1)/(k + k2) = 1/k fraction of the optimum. Thus, both
approximation ratios converge to 0 as k goes to infinity.

Let us therefore consider the worst-case (over instances) performance of the leximin
mechanism in expectation (over the randomness of the mechanism). We can show that
approximating (in expectation) the maximum number of satisfied agents is directly at
odds with proportionality — recall that this is exactly the property that the utilitarian
mechanism [Bogomolnaia et al. 2005; Freitas 2010] fails to achieve.

Example 4.4 (Proportionality and maximizing the number of satisfied agents).
Suppose there is a single facility with k units available, and there are k + k2 agents,
k of which require 1 unit each while the other k2 agents require all k units each.
Any proportional mechanism must allocate the k units to each of the k2 agents
demanding them with probability at least 1/(k + k2). Hence, such a mechanism
satisfies a single agent with probability at least k2/(k + k2), and at most k agents
with the remaining probability. Therefore, the expected number of satisfied agents is
at most k2/(k + k2) + k · k/(k + k2) ≤ 2. However, a maximum of k agents could be
satisfied simultaneously. Hence, any proportional mechanism (including the leximin
mechanism) achieves an approximation ratio of at most 2/k for the number of satisfied
agents. This ratio goes to 0 as k goes to infinity.

In contrast, we make the following conjecture for the expected number of units alloca-
ted by the leximin mechanism:

CONJECTURE 4.5. The expected number of units allocated by the leximin mecha-
nism 2-approximates the maximum number of units that can be allocated simultane-
ously by any non-wasteful allocation (in the worst case over instances).

The conjecture is based on millions of randomly generated instances. In all of these
instances, the leximin mechanism allocated, in expectation, at least half of the optimal
number of units. While the conjecture is still open, we are able to prove a slightly
weaker 4-approximation result.
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THEOREM 4.6. The expected number of units allocated by the leximin mechanism
4-approximates the maximum number of units that can be allocated simultaneously by
any non-wasteful allocation (in the worst case over instances).

PROOF. Let us first prove a 2-approximation in the case of a single facility to gain
some intuition. Let c denote the capacity of the facility, and D denote the maximum
number of units allocated by a non-wasteful allocation. If all the deterministic assig-
nments in the support of the leximin allocation allocate at least D/2 units, then the
result follows trivially. Suppose a deterministic assignment allocates t < D/2 ≤ c/2
units to agents in S ⊆ N , and is realized with probability p. Hence, it is clear that
N \ S 6= ∅. Due to Pareto optimality of the leximin allocation, an allocation that does
not assign any agent in N \ S to the facility must assign all agents in S to the facility.
That is, there is a unique such allocation, which is realized with probability p. Further,
due to the nature of the leximin allocation, every agent in N \ S must also be assigned
to the facility with probability at least p, implying that p ≤ 1/2. Thus, with probability
p ≤ 1/2 the mechanism allocates t units, and with the remaining probability 1− p the
mechanism assigns at least one agent in N \ S to the facility, thus allocating more
than c− t units (this is because every agent in N \ S must have demand greater than
c − t due to Pareto optimality of the leximin allocation). Hence, the expected number
of units allocated is at least t · 1/2 + (c− t) · 1/2 = c/2 ≥ D/2.

However, generalizing this proof to achieve a “per facility” constant approximation
is difficult. Instead, our proof below works in three steps.

(1) We fix an arbitrary (deterministic) allocation A∗ that maximizes the number of
units allocated.

(2) Next, after adding certain “virtual allocated units” to each facility (derived ba-
sed on A∗), the expected number of units allocated by the leximin mechanism 2-
approximates the number of units allocated under A∗ on each facility individually.

(3) Finally, we show that the expected number of virtual units added overall is no
more than the expected number of units allocated by the leximin mechanism, thus
establishing the 4-approximation result.

Let A∗ denote an arbitrary deterministic allocation that maximizes the number of
units allocated. For a facility f ∈M , let Z(f) = {i ∈ N |A∗i = f} denote the set of agents
assigned to facility f under A∗. Let L denote the leximin allocation, which executes
deterministic allocation Lk with probability pk for k ∈ {1, . . . , T}. We are now ready
for our main lemma. For a facility f ∈ M , the number of “virtual units” we add is
the expected number of units allocated by the leximin mechanism to the agents in
Z(f) (at any facility). We show that the expected number of units allocated by the
leximin mechanism at facility f and the number of virtual units for facility f together
2-approximate the number of units allocated by A∗ at facility f , for each f ∈M .

LEMMA 4.7. For a facility f ∈M we have:
T∑
k=1

pk

 ∑
i∈N :Lk

i =f

di +
∑

i∈Z(f):Lk
i 6=0

di

 ≥ 1

2

∑
i∈Z(f)

di.

PROOF. Let us consider two cases.
Case 1: For every i ∈ Z(f), di ≤ cf/2. In this case we can show that∑

i∈N :Lk
i =f

di +
∑

i∈Z(f):Lk
i 6=0

di ≥
1

2

∑
i∈Z(f)

di (1)
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for each k ∈ {1, . . . , T}. If Lki 6= 0 for every i ∈ Z(f), then the second term in the LHS of
Equation (1) is at least

∑
i∈Z(f) di. Otherwise, let Lk(γ) = 0 for some γ ∈ Z(f). By the

Pareto optimality of Lk, we know that the demand of agent γ must be greater than the
number of unallocated units at facility f in Lk, i.e.,

dγ > cf −
∑

i∈N :Lk
i =f

di.

Using dγ < cf/2, we get that the first term in the LHS of Equation (1) greater than the
RHS. Hence, in either case Equation (1) holds.

Case 2: There exists an agent γ ∈ Z(f) such that dγ > cf/2. Let us define two sets.

(1) I = {k ∈ {1, . . . , T} | Lkγ 6= 0}
(2) J = {k ∈ {1, . . . , T} | Lkγ = 0 and

∑
i∈N :Lk

i =f
di < cf/2}

Furthermore, let pI =
∑
k∈I pk and pJ =

∑
k∈J pk. We claim that pI ≥ pJ . Note that pI

is precisely the probability that agent γ is satisfied under the leximin allocation.
Suppose for contradiction that pI < pJ . Take some ` ∈ J , and let W = {i ∈ N | L`i =

f}. From the definition of J , we know that each agent i ∈ W must satisfy di < cf/2.
Further, for each k ∈ J facility f has more than cf/2 units unallocated in Lk. Hence, by
the Pareto optimality of the leximin allocation, every agent in W must be assigned to
some facility in Lk for every k ∈ J . Importantly, this implies that every agent in W has
probability at least pJ > pI of being assigned to a facility under the leximin allocation.

Now, fix a small ε > 0, and consider a new randomized allocation L̃ that execu-
tes deterministic allocations L1, . . . , Lk−1, Lk, Lk+1, . . . , LT , and LT+1 with probabilities
p1, . . . , pk−1, (1− ε)pk, pk+1, . . . , pT , and εpk, respectively, where

LT+1
i =


Lki if Lki 6= f

0 if Lki = f and i 6= γ

1 otherwise.

Note that f must be an acceptable facility to agent γ because γ ∈ Z(f). Hence, alloca-
tion LT+1

i respects the preferences of the agents. It is easy to check that the capacity
constraint at each facility (including facility f ) is also respected. Essentially, we re-
place all the agents assigned at facility f in Lk by a single agent γ. For a sufficiently
small ε > 0, we can see that:

(1) Agent γ has a strictly higher probability of being assigned to a facility under L̃
than under L (under L, it is assigned to a facility with probability exactly pI ).

(2) An agent i 6= γ that is assigned to a facility with probability p ≤ pI (thus, from the
above argument Lki 6= f ) has the same probability of being assigned to a facility
under L̃ as under L.

(3) All the remaining agents were assigned to a facility with probability strictly more
than pI under L, and their probabilities remain strictly greater than pI under L̃.

However, this contradicts the fact that L is a leximin-optimal allocation. This is essen-
tially a consequence of the prefix optimality of L (Lemma 3.4). Hence, we have pI ≥ pJ ,
as claimed.
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With this claim in hand, we can show the required inequality. Let us consider the
sum in the LHS.

T∑
k=1

pk

 ∑
i∈N :Lk

i =f

di +
∑

i∈Z(f):Lk
i 6=0

di

 .

We break the summation over k ∈ I, k ∈ J , and k ∈ {1, . . . , T} \ (I ∪ J). For each
k ∈ I, we have Lkγ 6= 0. Hence, the term inside the brackets is at least dγ . For each
k ∈ J , we have Lkγ = 0. Hence, the term inside the brackets, which is no less than the
number of units allocated at facility f in Lk, must be at least cf − dγ . Finally, from
definitions of I and J , it follows that the term inside the brackets is at least cf/2 for
every k ∈ {1, . . . , T} \ (I ∪ J). Hence, we have that the LHS is at least∑

k∈I

pk · dγ +
∑
k∈J

pk · (cf − dγ) +
∑

k∈{1,...,T}\(I∪J)

pk ·
cf
2

= pI · dγ + pJ · (cf − dγ) + (1− pI − pJ) · cf
2

= (pI − pJ) · dγ + (1− pI + pJ) · cf
2

≥ (pI − pJ) · cf
2

+ (1− pI + pJ) · cf
2

=
cf
2
≥ 1

2

∑
i∈Z(f)

di,

where the third transition holds because pI ≥ pJ and dγ ≥ cf/2. Thus, we have proved
that the lemma holds in both the cases we considered. � (Proof of Lemma 4.7)

Lemma 4.7 holds for every facility individually. Summing over all facilities, we get:

∑
f∈M

T∑
k=1

pk

 ∑
i∈N :Lk

i =f

di +
∑

i∈Z(f):Lk
i 6=0

di

 ≥ 1

2

∑
f∈M

∑
i∈Z(f)

di. (2)

In Equation (2), we have

LHS =

T∑
k=1

pk ·

∑
f∈M

∑
i∈N :Lk

i =f

di +
∑
f∈M

∑
i∈Z(f):Lk

i 6=0

di


=

T∑
k=1

pk ·

 ∑
i∈N :Lk

i 6=0

di +
∑

i∈N :A∗i 6=0,Lk
i 6=0

di


≤ 2 ·

T∑
k=1

pk

 ∑
i∈N :Lk

i 6=0

di

 ,

RHS =
1

2

∑
f∈M

∑
i∈Z(f)

di =
1

2

∑
i∈N :A∗i 6=0

di.

Note that LHS is at most twice the expected number of units allocated by the leximin
mechanism, and RHS is half the number of units allocated by A∗. Hence, the expected
number of units allocated by the leximin mechanism 4-approximates the maximum
number of units allocated by a non-wasteful allocation. �
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While we strongly believe that the approximation ratio of Theorem 4.6 can be im-
proved from 4 to 2, it can easily be seen that a proportional or envy-free mechanism
(including the leximin mechanism) cannot achieve an approximation ratio better than
2. Consider the case of a single facility with 2k units, and k + 1 agents, one of which
requires all 2k units while the rest require k + 1 units each. Clearly any proportional
or envy-free mechanism must assign each agent demanding k + 1 units alone to the
facility with probability at least 1/(k + 1). Hence, the expected number of allocated
units cannot be more than (k+ 1) ·k/(k+ 1) + 2k ·1/(k+ 1) ≤ k+ 2, while a maximum of
2k units can be allocated simultaneously. This lower bound on the approximation ratio
tends to 2 as k tends to infinity.

5. COMPLEXITY AND IMPLEMENTATION
Recall that our classroom allocation setting is a generalization of the classic setting
of random assignment under dichotomous preferences studied by Bogomolnaia and
Moulin [2004] (which can be viewed in our model as restricting agents to have unit
demands and facilities to have unit capacities). In the classic setting, leximin alloca-
tions can be computed in polynomial time by leveraging the Birkhoff von-Neumann
theorem [Birkhoff 1946; von Neumann 1953].

In contrast, an immediate reduction from PARTITION shows that computing the lex-
imin allocation is NP-hard in our generalized setting. Indeed, consider an instance of
PARTITION: given a set S of n integers that sum to 2T for T ∈ N, one needs to decide
if there exists a subset S′ ⊆ S whose elements sum to T . Construct an instance of
our problem in which a single facility has T available units and there are n agents
whose demands correspond to the elements of S. Then, the leximin allocation would
assign each agent to the facility with probability at least 1/2 if and only if there exists
a partition of S.

The standard approach to computing the leximin allocation (see, e.g., [Nace and Or-
lin 2007]) is to successively solve linear programs (LPs) in order to maximize the lowest
utility, subject to that maximize the second lowest utility, and so on. While previous
work focused on establishing polynomial running time of this approach in various dom-
ains, in our domain this task is NP-complete. Hence, in the remainder of the section,
we focus on designing optimized heuristics for computing the leximin allocation in the
classroom allocation setting. We use a variable pi to denote the probability that agent
i is satisfied, for every i ∈ N . In a naı̈ve implementation, we can include a variable xA
for every possible deterministic assignment A ∈ A that represents the probability of
executing A, and write pi =

∑
A∈A:Ai 6=0 xA. However, the number of feasible determi-

nistic allocations can be roughly (m+ 1)n, which makes the LPs extremely large even
for moderately large values of m and n.

Crucially, note that we only care about whether a given agent is satisfied in a de-
terministic allocation, and not about the facility to which the agent is assigned. In
other words, two deterministic allocations that satisfy identical subsets of agents are,
in some sense, equivalent. This is due to the dichotomous nature of the preferences
of agents over facilities. This observation leads us to our first algorithm, presented as
Algorithm LEXIMINPRIMAL, which works as follows. First, we compute the collection
of “feasible subsets” of agents, i.e., subsets of agents that can be satisfied simultane-
ously. Let S = {S ⊆ N | ∃A ∈ A s.t. ∀i ∈ S,Ai 6= 0}. Checking feasibility of a given
subset of agents S can be encoded as an integer linear program (ILP), presented as
FEASIBILITYILP in the algorithm, which checks if agents in S can be assigned to one
of their acceptable facilities while respecting the capacity constraints. Note that a fea-
sible solution to FEASIBILITYILP also provides an assignment AS that satisfies S.

ACM Transactions on Economics and Computation, Vol. A, No. A, Article A, Publication date: July 2017.



A:20

Finally, we form an LP, which we call PRIMALLP, in which variable xS denotes the
probability by which S ⊆ N is satisfied, and express the individual agent utilities as
pi =

∑
S⊆N :i∈S xS for i ∈ N . The algorithm maintains a set of agents R whose utilities

in the leximin allocation it has not yet found, and stores the utility of each agent
i ∈ N \R as p∗i . In each iteration, the algorithm maximizes the (next) minimum utility
of agents in R while keeping the utilities of agents in N \ R intact, stores the utilities
of agents that have the next minimum utility, and removes them from R.

ALGORITHM 2: LEXIMINPRIMAL

Data: Demands {(di, Fi)}i∈N , Capacities {cj}j∈M
Result: The Leximin Allocation A
Solve FEASIBILITYILP for each S ⊆ N , and let S ← the set of maximal feasible subsets of N ;
For each S ∈ S, AS ← the assignment returned by FEASIBILITYILP on S;
R = N ;
p∗i = 0, ∀i ∈ N ;
do

(M, {pi}i∈R, {xS}S∈S)← Strictly complementary solution to PRIMALLP in the box below;
p∗i = M , ∀i ∈ R : pi = M ;
R = R \ {i ∈ N |pi = M};
if R = ∅ then

return the randomized allocation where AS is executed with probability xS for each
S ∈ S;

end
while R 6= ∅;

PRIMALLP:

Maximize M
subject to
pi ≥M,∀i ∈ R
pi = p∗i , ∀i ∈ N \R
pi =

∑
S∈S,i∈S xS ,∀i ∈ N∑

S∈S xS = 1
xS ≥ 0, ∀S ∈ S

FEASIBILITYILP:∑
f∈Fi

yi,f ≥ 1,∀i ∈ S∑
i∈S:f∈Fi

di · yi,f ≤ cf ,∀f ∈M
yi,f ∈ {0, 1},∀i ∈ S, f ∈ Fi

The algorithm clearly terminates because any optimal solution to PRIMALLP must
set pi = M for at least one i ∈ R. Hence, |R| decreases by at least 1 in every iteration.
Further, if M is the optimal objective value of PRIMALLP, then an observation from
the convex optimization literature states that there must exist at least one j ∈ R that
has utility M in all optimal solutions to PRIMALLP, and in particular, in the actual
leximin allocation too.9 Our use of a strictly complementary solution to PRIMALLP
ensures that we have pj = M only if it holds in all optimal solutions.10 Thus, Algo-
rithm LEXIMINPRIMAL always makes “safe” choices, and correctly returns a leximin
allocation. Finally, note that the values of p∗i from one iteration are used to compute
p∗i in the next iteration. While this may lead to an exponential blowup in the length of
their binary representation, it does not affect the running time of our algorithm due to

9If for every j ∈ R there exists a solution to PRIMALLP with pj > M , a positive convex combination of these
solutions would be a feasible solution with a strictly greater objective value, which is a contradiction.
10Strictly complementary solutions can be found by using any interior point method based on the central
trajectory [Freund and Mizuno 2000], by using a trick due to Freund, Roundy, and Todd [1985] which requi-
res solving a single LP using any off-the-shelf solver, or by solving one LP for each i ∈ R to check if pi can
be made greater than M in some optimal solution to PRIMALLP.
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a result by Tardos [1986].11 Interestingly, note that the choices made by the algorithm
do not affect agent utilities in the returned leximin allocation due to Theorem 3.7.

We employ two further optimizations to reduce the running time of LEXIMINPRI-
MAL: i) solving FEASIBILITYILP on different subsets of agents in the decreasing order
of their sizes, and only solving it for S ⊆ N if none of its strict supersets are already
found to be feasible, and ii) only using maximal feasible subsets in S because Pareto
optimality prevents the leximin allocation from using any non-maximal subset.

ALGORITHM 3: LEXIMINDUAL

Data: Demands {(di, Fi)}i∈N , Capacities {cj}j∈M
Result: The Leximin Allocation A
R = N ;
p∗i = 0, ∀i ∈ N ;
do

(M, {αi}i∈R)← Strictly complementary solution to DUALLP in the box below;
p∗i = M , ∀i ∈ R : αi > 0;
R = R \ {i ∈ N |pi = M};

while R 6= ∅;
Ŝ ← {S ⊆ N | oracle of DUALLP was called on S in the last iteration of the loop};
For each S ∈ Ŝ, AS ← the assignment returned by the oracle when it was called on S;
{xS}S∈Ŝ ← Solution to FINALLP in the box below;
return the randomized allocation where AS is executed with probability xS for each S ∈ Ŝ;

DUALLP:

Min. M = δ −
∑

i∈N\R

p∗i · βi

subject to∑
i∈R αi = 1

−αi − γi = 0, ∀i ∈ R
−βi − γi = 0,∀i ∈ N \R
δ +

∑
i∈S γi ≥ 0, ∀S ∈ S

αi ≥ 0, ∀i ∈ R

Oracle for DUALLP:

Max.
∑
i∈N

γi ·

∑
j∈Fi

yi,j


subject to the constraints of
FEASIBILITYILP

FINALLP:

Find a feasible solution to
pi = p∗i ,∀i ∈ N
pi =

∑
S∈Ŝ,i∈S xS , ∀i ∈ N∑

S∈Ŝ xS = 1

xS ≥ 0, ∀S ∈ Ŝ

Next, we present another algorithm that, instead of solving PRIMALLP, solves its
dual. This is presented as Algorithm LEXIMINDUAL. Note that PRIMALLP has polyno-
mially many constraints and exponentially many variables. Correspondingly, its dual
(DUALLP) has polynomially many variables and exponentially many constraints (in
particular, one constraint for each S ∈ S). We can identify the tight primal constraints
(pi = M for i ∈ R) by simply checking if the corresponding dual variable is strictly po-
sitive (αi > 0) due to the strict complementary slackness conditions. We solve DUALLP
using the Ellipsoid algorithm [Khachiyan 1979], which makes polynomially many calls
to an “oracle” for finding a violated constraint (if one exists) given any values of the va-
riables. Crucially, we observe that finding S ∈ S that corresponds to the most violated
constraint can be encoded as an ILP, presented along with the algorithm. We use Ŝ to
denote the polynomial-size collection of subsets of agents on which the oracle is called
by the Ellipsoid algorithm. There are three special advantages of the oracle:

11This result shows that the running time of an interior point method is independent of the bit length of
values on the right hand side of an LP, which is where the p∗i are used in PRIMALLP.
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(1) Since the oracle includes feasibility constraints, we can avoid the initial (computa-
tionally expensive) stage of LEXIMINPRIMAL solving FEASIBILITYILP for 2n sub-
sets of agents, and instead solve only polynomially many ILPs for subsets in Ŝ.

(2) Since LEXIMINDUAL makes only polynomially many calls to the oracle, the over-
all space complexity is polynomial. In particular, the returned leximin allocation
randomizes over polynomially many subsets of agents (i.e., it is sparse), making it
more feasible to store and implement the allocation in practice.

(3) In special cases such as the case of unit demands and capacities (i.e., the classic
random assignment setting studied by Bogomolnaia and Moulin [2004]), the oracle
can be encoded as a polynomial-size LP by leveraging the Birkhoff von-Neumann
theorem [Birkhoff 1946; von Neumann 1953], which would automatically make the
overall running time of LEXIMINDUAL polynomial.

In the next section, we show that LEXIMINDUAL is actually drastically superior to
LEXIMINPRIMAL in terms of running time.

6. EXPERIMENTS
Our goal in this section is to empirically compare algorithms LEXIMINPRIMAL and
LEXIMINDUAL, as well as evaluate the performance of the leximin allocation in terms
of the number of satisfied agents and the number of allocated units.

In our experiments, we vary the number of agents n from 5 to 300.12 Note that the
largest school district in the US (by the number of charter schools) is the Los Angeles
Unified School District (LAUSD) which has 241 charter schools.13 We observe that in
practice the number of facilities varies from about 5n (for LAUSD) to about 20n (for
PUSD). Thus, we select m uniformly at random from the interval [5n, 20n]. Next, we fit
Poisson distributions to the real-world demands and capacities data from PUSD, and
use them to generate demands and capacities in our experiments. For the dichotomous
preferences of agents over facilities, we observe that in the PUSD data certain facilities
were inherently more desirable than others, and were accordingly accepted by many
charter schools. We thus generate a “quality parameter” for each facility in [0, 1] from
the beta distribution with both parameters equal to 5, and have each agent accept the
facilities (which have sufficient capacity to meet its demand) with probabilities propor-
tional to their qualities. For each value of n, the values in all our graphs are averaged
over 500 simulations. We use MATLAB to obtain strictly complementary solutions to
linear programs, and CPLEX to solve integer linear programs. Our experiments are
performed on an Intel PC with dual core, 3.10 GHz processors, and 8 GB RAM.

Figure 2 compares the running time of algorithms LEXIMINPRIMAL and LEXIMIN-
DUAL. Note that the running time of LEXIMINPRIMAL increases extremely quickly as
n grows, making it infeasible to run the algorithm beyond n = 15. In contrast, LEXI-
MINDUAL solves instances with n = 300 (recall that this is larger than any real-world
instance) in just a little over 3 minutes. This is a direct result of the fact that LEXI-
MINDUAL ends up solving less than 1% of the ILPs solved by LEXIMINPRIMAL, and
solving ILPs is the bottleneck in both algorithms. Another interesting fact is that the
number of times the loop in LEXIMINDUAL (or in LEXIMINPRIMAL) runs is equal to
the number of distinct utility values in the leximin solution, because all agents with
identical utilities are removed in a single iteration. The number of iterations required
is less than 3 on average in our simulations. We also remark that even if the Propo-
sition 39 process scaled to the state level, California has approximately 1130 charter

12We use n = 5, 10, 15 for LEXIMINPRIMAL as it fails to run beyond that, and evaluate LEXIMINDUAL
further on n = 50, 100, 150, 200, 250, 300.
13Refer to http://goo.gl/Bu0pz9 and http://goo.gl/ILJupc
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Fig. 2: Running time of LEXIMINPRI-
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Fig. 3: Performance of the leximin allo-
cation as a fraction of the optimum.

schools overall,13 and LEXIMINDUAL can also solve such huge instances in less than 2
hours (this result is averaged over 10 simulations).

Next, in Figure 3 we show the ratios of the expected number of agents satisfied and
the expected number of units allocated by the leximin mechanism to the maximum pos-
sible values of the respective metrics. Remarkably, both ratios stay above a whopping
0.98 on average, which is significantly better than the upper bounds on the worst-case
(over possible instances) performance of the leximin mechanism (almost 0 for the ex-
pected number of agents satisfied and 1/2 for the expected number of units allocated).
The error bars show confidence intervals for the performance of the deterministic allo-
cations in the support of the leximin allocation. Specifically, we remove the best (resp.
the worst) deterministic allocations with an aggregate probability of at most 0.1 from
the support, and then measure the best (resp. the worst) performance of any determi-
nistic allocation in the support. A final remark is that the size of the support of the
leximin allocation is less than 8 on average in our simulations. A randomization over
at most 8 deterministic allocations can easily be stored and implemented in practice,
which further supports the practicability of the leximin mechanism.

7. EPILOGUE AND DISCUSSION OF PRACTICAL ASPECTS
In January 2015, PUSD asked charter schools to formally report dichotomous prefe-
rences, in addition to the free-text preferences submitted through the usual request
form. The plan was to evaluate our approach by comparing its output on the collected
explicit dichotomous preferences against human-generated allocations based on the
free-text preferences. Despite the promising outlook, sadly, in April 2015 the collabo-
ration was terminated by PUSD, for reasons unknown to us. Nonetheless, we were
informed that this initiative helped PUSD build a good rapport with local charter
schools.

Meanwhile, Mr. Mopatis put us in touch with representatives of the Los Angeles Uni-
fied School District (LAUSD), the largest school district in California with 274 charter
schools and over 900 public schools, which is perfect for highlighting the advantages of
our automated approach over human-generated allocations. We are planning to reach
out to additional school districts, and, while the process of deploying our algorithm
is slower and more complicated than we initially expected, we are hopeful that our
approach will be evaluated in the future.
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On a practical level, the simplicity of the leximin mechanism, and the intuitiveness
of the properties of proportionality, envy-freeness, Pareto optimality, and strategyp-
roofness, have made the approach more likely to be adopted. On the other hand, the
use of randomization, though absolutely necessary in order to guarantee fairness in
allocating indivisible goods such as classrooms, has been a somewhat harder sell. Iro-
nically, this seems to be the result of presenting the mechanism as a “lottery”, which
makes it easier to comprehend on the one hand, but on the other hand raises negative
connotations and legal objections — even though many charter schools use a (straig-
htforward) lottery system to admit students. In terms of lessons learned, it actually
seems better to use more technical terms in this context.

In conclusion, redesigning the way California’s school districts allocate classrooms
to charter schools is a major project with the potential for societal impact. This paper
presents a detailed technical approach, but deployment of this approach is still in its
infancy; we hope to continue working with school districts for years to come.
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