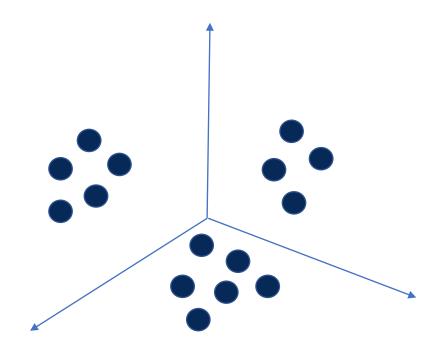
CSC2421 Fairness in Clustering

Evi Micha

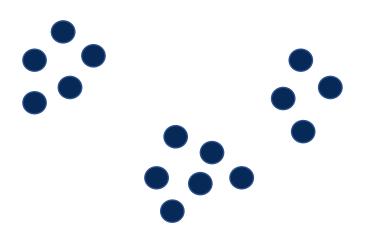
Clustering



Clustering in ML/Data Analysis

Goal:

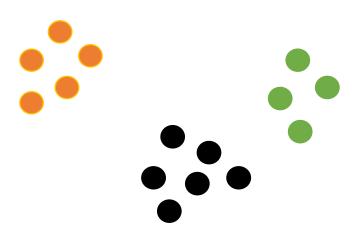
- > Analyze data sets to summarize their characteristics
- > Objects in the same group are similar



Clustering in ML/Data Analysis

Goal:

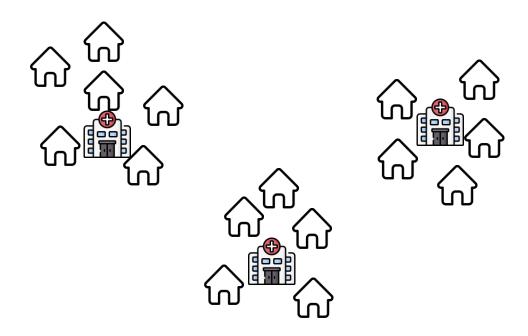
- > Analyze data sets to summarize their characteristics
- > Objects in the same group are similar



Clustering in Economics/OR

• Goal:

> Allocate a set of facilities that serve a set of agents (e.g. hospitals)



Center-Based Clustering

Input:

- \triangleright Set N of n data points
- > Set M of m feasible cluster centers
- $\triangleright \forall i, j \in N \cup M$: we have d(i, j) (which forms a *Metric Space*)
 - $d(i, i) = 0, \forall i \in N \cup M$
 - $d(i,j) = d(j,i), \forall i,j \in N \cup M$
 - $d(i,j) \le d(i,\ell) + d(\ell,j)$, $\forall i,j,\ell \in N \cup M$, (Triangle Inequality)

Output:

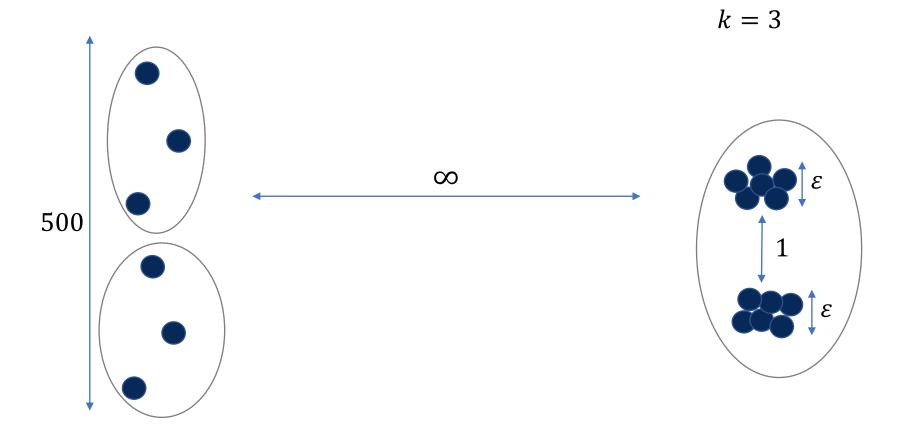
- \triangleright A set $C \subseteq M$ of k centers, i.e. $C = \{c_1, \dots, c_k\}$
- > Each data point is assigned to its closest cluster center
 - $C(i) = argmin_{c \in C} d(i, c)$

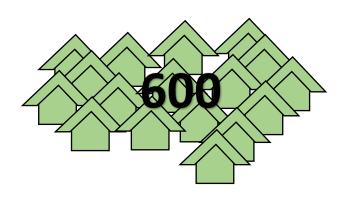
Famous Objective Functions

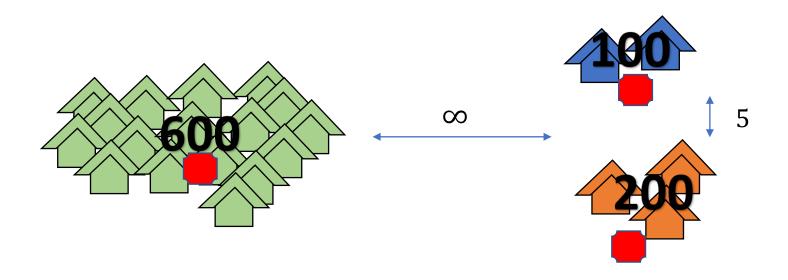
- k-median: Minimizes the sum of the distances
 - $\min_{\substack{C \subseteq M: \\ |C| \le k}} \sum_{i \in N} d(i, C(i))$
- k-means: Minimizes the sum of the square of the distances
 - $\min_{\substack{C \subseteq M: \\ |C| \le k}} \sum_{i \in N} d^2(i, C(i))$
- k-center: Minimizes the maximum distance
 - $\min_{\substack{C \subseteq M: \ i \in N}} \max_{i \in N} d(i, C(i))$

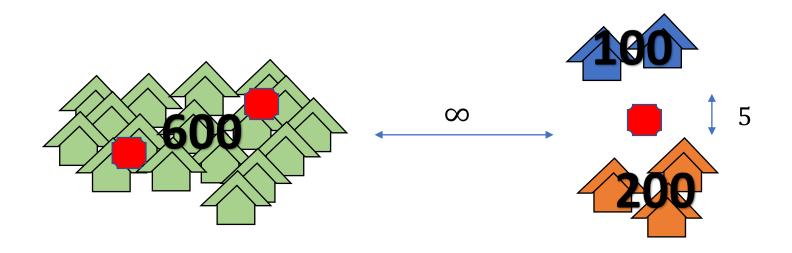
- ☐ Why do we need fairness:
 - Many decisions are made at least (partly) using algorithms

- Each point wishes to be as close as possible to some center
- ML applications: Closer to center ⇒ better represented by the center
- FL applications: Closer to the center ⇒ less travel distance to the facility









Fairness Through Proportionality

- Proportionally Fair Clustering:
 - Every x% of the data points can select x% of the cluster centers
 - Every group of n/k agents "deserves" its own cluster center

- Definition in Committee Selection: W is in the core if
 - \triangleright For all $S \subseteq N$ and $T \subseteq M$
 - ightharpoonup If $|S| \ge |T| \cdot n/k$ (large)
 - ightharpoonup Then, $|A_i \cap W| \ge |A_i \cap T|$ for some $i \in S$
 - "If a group can afford T, then T should not be a (strict) Pareto improvement for the group"
 - \Box Let B(x,y) denotes the ball centered in x and has radius y
 - \square Given clustering solution C, C(i) denotes the closest center to $i \in N$
- Definition in Clustering: C is in the core if
 - For all $S \subseteq N$ and $y \subseteq M$
 - ightharpoonup If $|S| \ge n/k$ (large)
 - ightharpoonup Then, $d(i,C(i)) \leq d(i,y)$ for some $i \in S$
 - "If a group can afford a center y, then y should not be a (strict) Pareto improvement for the group"

Example

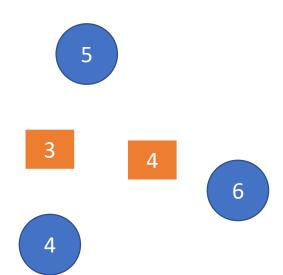
k=2

Example

k=2

CSC2421 - Evi Micha

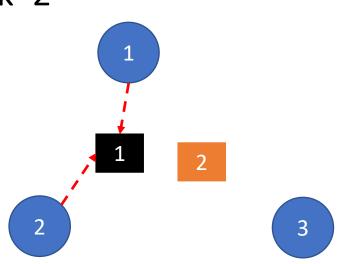
Example

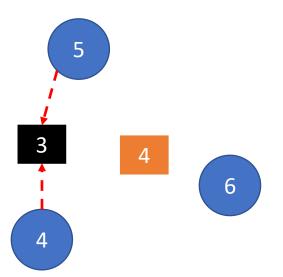


Example

k=2

Example

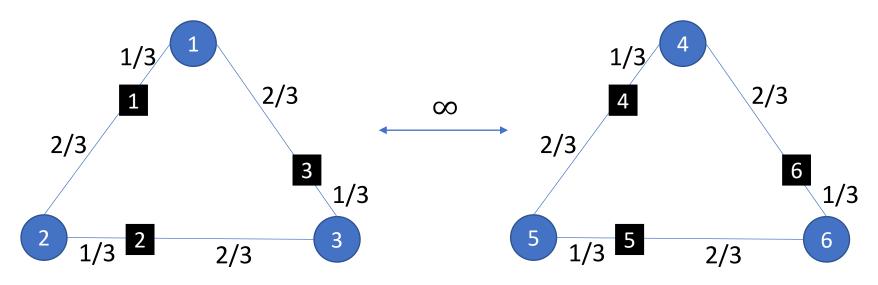




Example

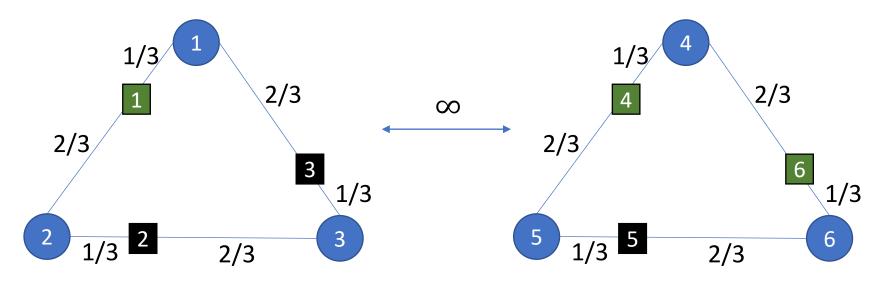
• Theorem: A clustering solution in the core does not always exist

Proof:



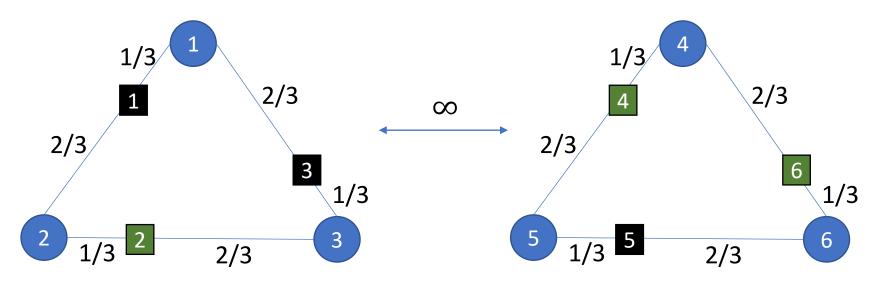
• Theorem: A clustering solution in the core does not always exist

Proof:



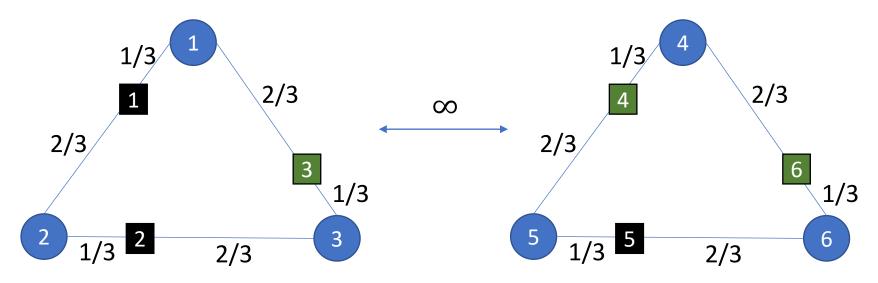
• Theorem: A clustering solution in the core does not always exist

Proof:



• Theorem: A clustering solution in the core does not always exist

• Proof:

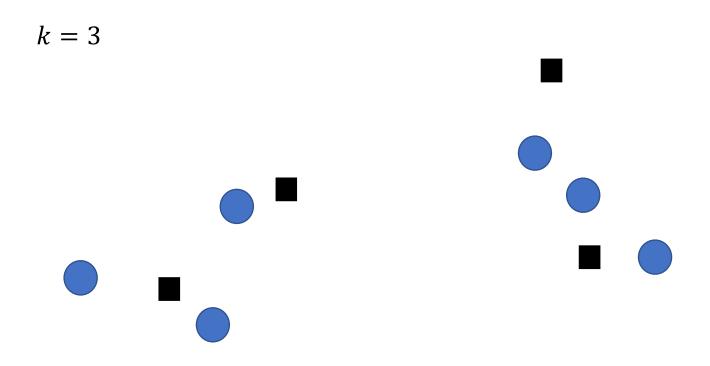


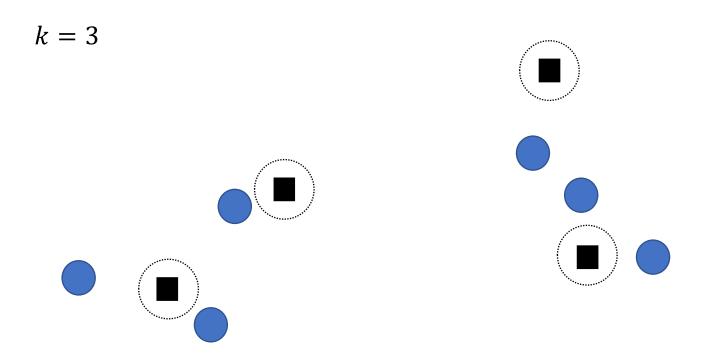
- Definition in Clustering: C is in the core if
 - \triangleright For all $S \subseteq N$ and $y \subseteq M$
 - ightharpoonup If $|S| \ge n/k$ (large)
 - ightharpoonup Then, $d(i,C(i)) \le \alpha \cdot d(i,y)$ for some $i \in S$
 - If a group can afford a center y, then y should not be a (strict) Pareto improvement for the group"

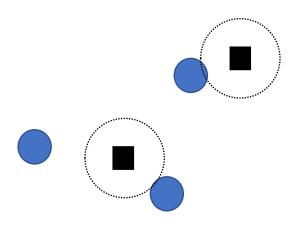
α-Core:

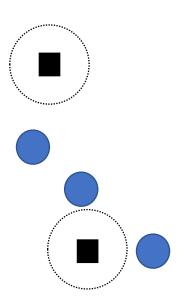
A solution C is in the α -core, with $\alpha \geq 1$ if there is **no** group of points $S \subseteq N$ with $|S| \geq n/k$ and $y \in M$ such that:

$$\forall i \in S, \alpha \cdot d(i, y) < d(i, C(i))$$

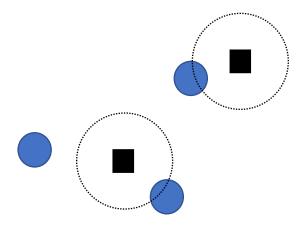


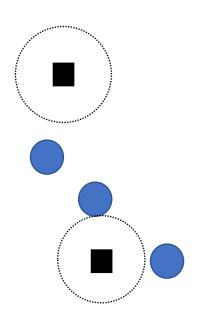




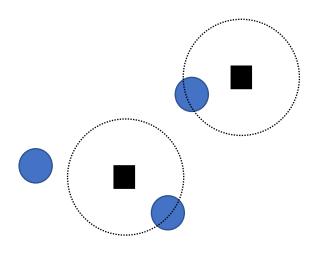


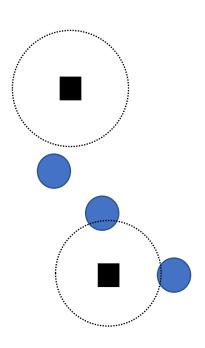
$$k = 3$$



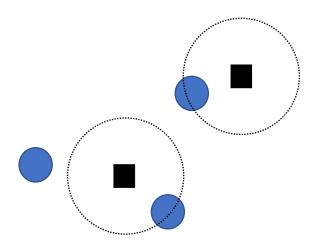


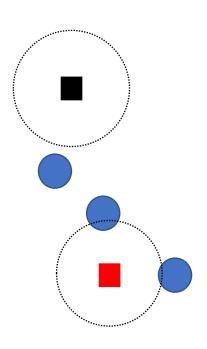
$$k = 3$$



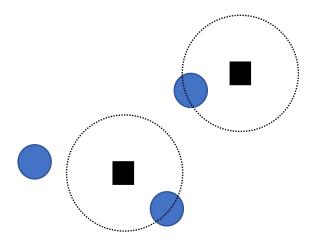


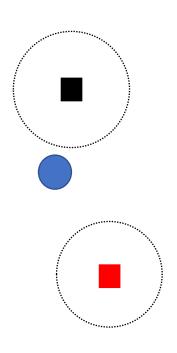
$$k = 3$$



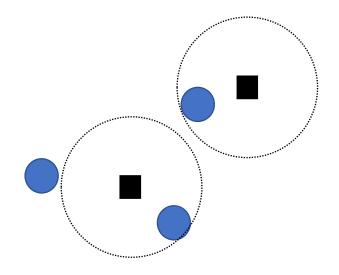


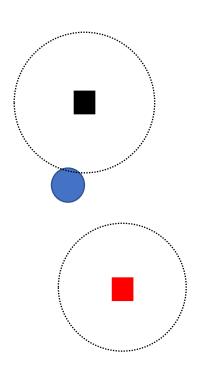
$$k = 3$$



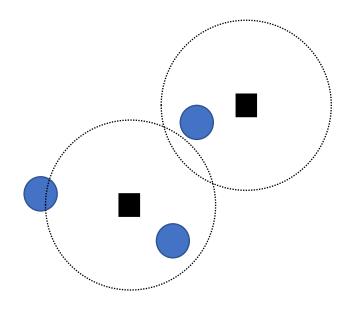


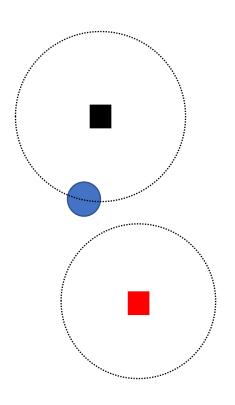
$$k = 3$$



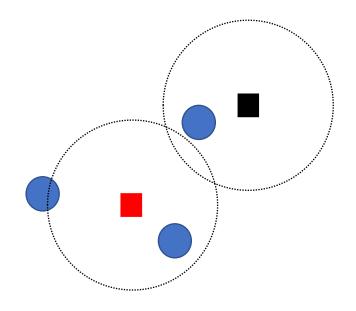


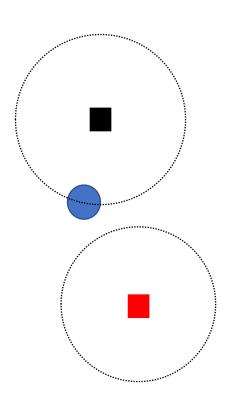
$$k = 3$$



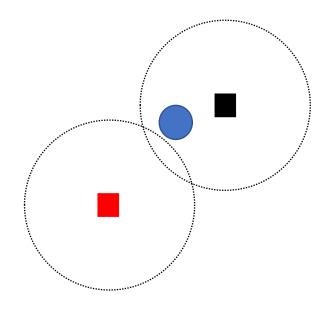


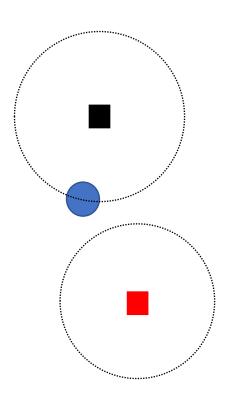
$$k = 3$$



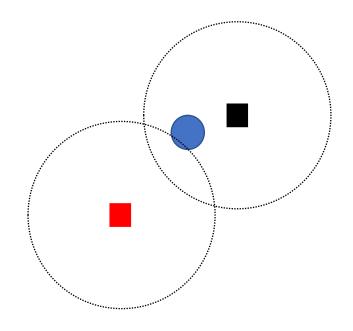


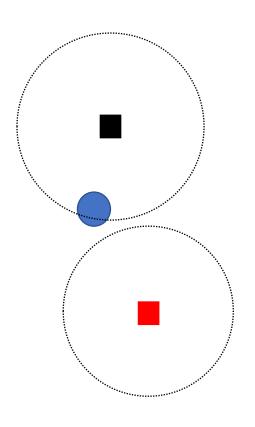
$$k = 3$$



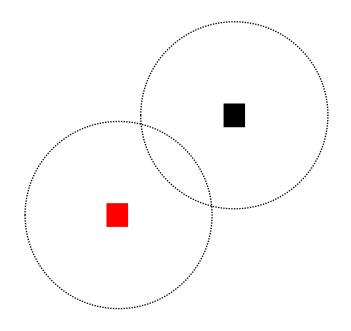


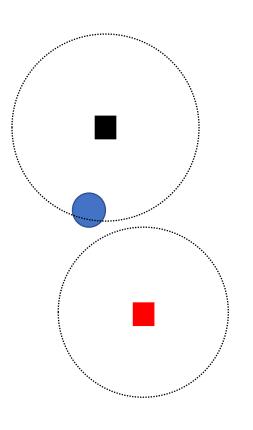
$$k = 3$$



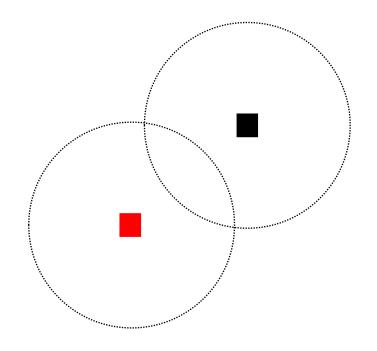


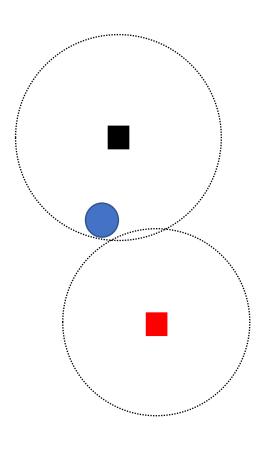
$$k = 3$$

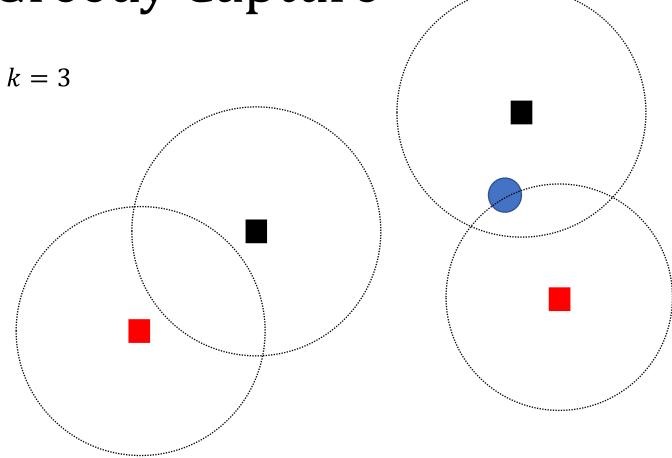


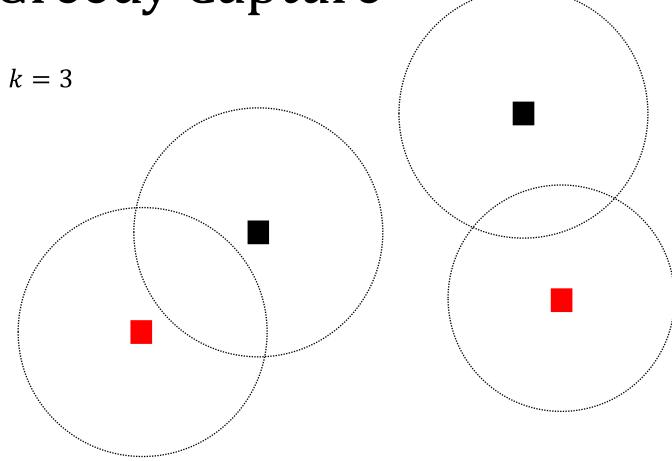


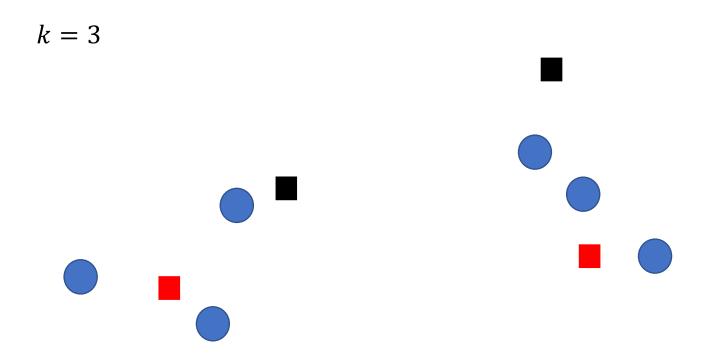
$$k = 3$$











```
1. \delta \leftarrow 0; C \leftarrow 0

2. While N \neq 0 do

3. Smoothly increase \delta

4. While \exists c \in C such that |B(c, \delta) \cap N| \geq 1 do

5. C: N \leftarrow N \setminus (B(c, \delta) \cap N)

6. While \exists c \in M \setminus C such that |B(c, \delta) \cap N| \geq n/k do

7. C \leftarrow C \cup c

8. N \leftarrow N \setminus (B(c, \delta) \cap N)

9. Return C
```

- Theorem [Chen et al. '19]: Greedy Capture returns a clustering solution in the $(1+\sqrt{2})$ -core.
- Proof:
- Let C be the solution that Greedy Capture returns
- Suppose for contradiction that there exists $S \subseteq N$, with $|S| \ge \frac{n}{k}$ and $c \in M \setminus C$, such that $\forall i \in S$, $(1 + \sqrt{2}) \cdot d(i, c) < d(i, C(i))$

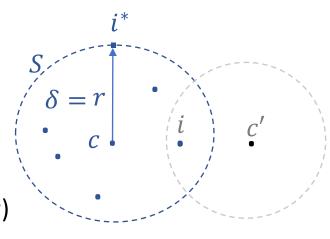
$$\min \left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c')}{d(i^*,c)}\right)$$

$$\leq \min \left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c)+d(c,c')}{d(i^*,c)}\right) \text{ (triangle inequality)}$$

$$\leq \min \left(\frac{d(i,c')}{d(i,c)}, \frac{d(i^*,c)+d(c,i)+d(i,c')}{d(i^*,c)}\right) \text{ (triangle inequality)}$$

$$\leq \min \left(\frac{d(i^*,c)}{d(i,c)}, 2 + \frac{d(i,c)}{d(i^*,c)}\right) (d(i,c') \leq d(i^*,c))$$

$$\leq \max_{z\geq 0} (\min(z,2+1/z)) \leq 1 + \sqrt{2}$$



Justified Representation

- Definition in Committee Selection: W satisfies JR if
 - \triangleright For all $S \subseteq N$
 - ightharpoonup If $|S| \ge n/k$ (large) and $|\cap_{i \in S} A_i| \ge 1$ (cohesive)
 - ightharpoonup Then, $|A_i \cap W| \ge 1$ for some $i \in S$
 - "If a group deserves one candidate and has a commonly approved candidate, then not every member should get 0 utility"
- Definition in Clustering: C satisfies JR if
 - \triangleright For all $S \subseteq N$
 - > If $|S| \ge n/k$ (large) and $|\cap_{i \in S} B(i,r) \cap M| \ge 1$ (cohesive)

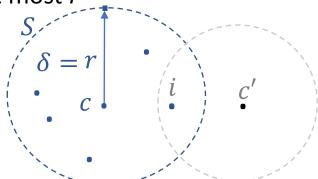
 i.e. $\forall i \in S, d(i,c) \le r$ for some $c \in M$
 - Then, $|B(i,r) \cap C| \ge 1$ for some $i \in S$ o i.e. $d(i,C(i)) \le r$ for some $i \in S$
 - "If a group deserves one cluster center and has a center that has distance at most r from each of them, then not every member should have distance larger than r from all the centers in the clustering "

Justified Representation

- Question: What is the relationship between JR and core in clustering?
 - 1. core \Rightarrow JR
 - 2. $JR \Rightarrow core$
 - 3. JR=core
 - 4. $JR \neq core$

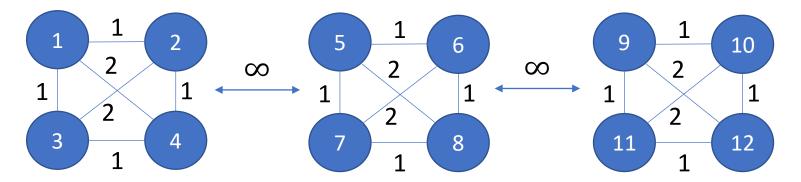
Justified Representation

- Theorem [Kellerhals and Peters '24]: Greedy Capture returns a clustering solution that is JR
- Proof:
- Let C be the solution that Greedy Capture returns
- Suppose for contradiction that there exists $S \subseteq N$, with $|S| \ge \frac{n}{k}$ and $c \in M \setminus C$, such that $\forall i \in S$, $d(i,c) \le r$ and d(i,C(i)) > r
- If none of $i \in S$ has been disregarded, then $|B(c, \delta)| \ge n/k$ and then c is included in the committee
- Otherwise, some of $i \in S$ has been disregarder when it captured from a ball centered at c with radius at most r



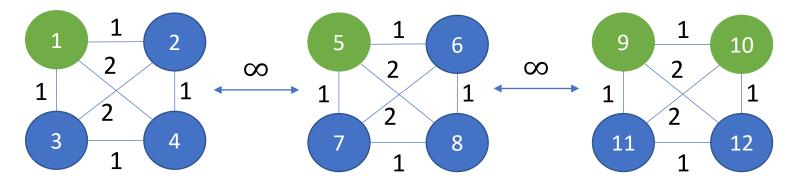
- Definition: C satisfies Individual Fairness (IF) if
 - \triangleright N=M

 - For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k=4



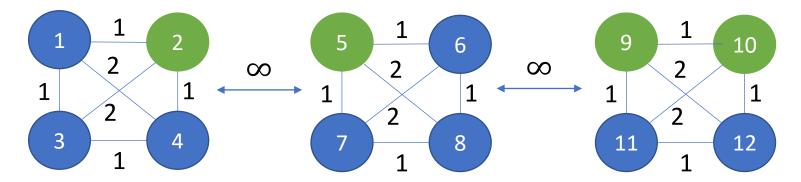
- Definition: C satisfies Individual Fairness (IF) if
 - \triangleright N=M

 - For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k=4



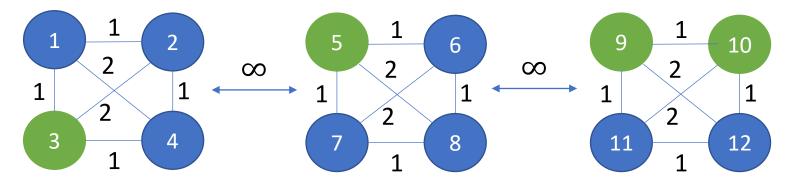
- Definition: C satisfies Individual Fairness (IF) if
 - \triangleright N=M

 - For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k=4



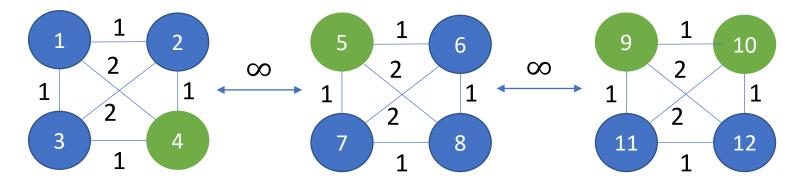
- Definition: C satisfies Individual Fairness (IF) if
 - \triangleright N=M

 - For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k=4

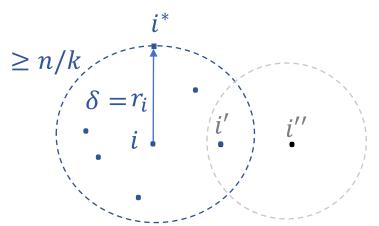


- Definition: C satisfies Individual Fairness (IF) if
 - \triangleright N=M

 - For all $i \in N$, $|B(i, r_i) \cap C| \ge 1$
 - "Each individual expects a center within their proportional neighborhood"
- Theorem [Jung et al. '19]: An individually fair clustering solution does not always exist
- Proof: k=4



- Theorem [Jung et al. '19]: Greedy Capture returns a clustering solution that is
 2-IF
- Proof:
- Let C be the solution that Greedy Capture returns
- Suppose for contradiction that some $i \in N$, $|B(i, r_i) \cap C| = 0$
- If $|B(i,r_i)| \ge n/k$, then i is included in the solution
- Otherwise, some of $i' \in B(i, r_i)$ has been disregarded when it captured from a ball centered at i'' with radius at most r_i
- From triangle inequality, $d(i,i'') \le d(i,i') + d(i',i'') \le 2 \cdot r_i$



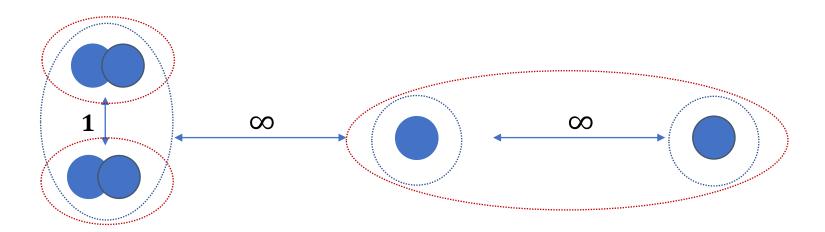
Core, JR and IF

• Theorem: Greedy Capture returns a clustering solution that is JR, 2-IF and in the $1+\sqrt{2}$ -core .

- Theorem [Kellerhals and Peters '24]: Any clustering solution that satisfies JR, it also satisfies 2-IF and is in the $1+\sqrt{2}$ -core .
- Theorem [Kellerhals and Peters '24]:
 - \square Any clustering solution that satisfies α -IF, it is also in the $2 \cdot \alpha$ -core
 - \square Any clustering solution that is in the α -core, it also satisfies $(1 + \alpha)$ -IF

Core, JR and IF vs k-means, k-median, k-center

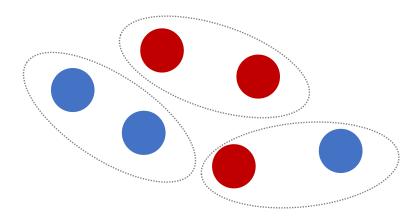
$$k = 3$$



Demographic Fairness

Demographic Groups:

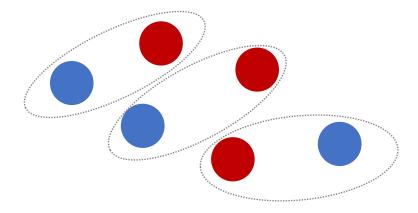
- > There is predefined set of protected groups (e.g. race or gender)
- Each individual/data point belongs to one group
- Disparate Impact in ML: The impact of a system across protected groups
- Disparate Impact in Clustering: The impact on a group is measured by how many individuals of that group are in each cluster



Demographic Fairness

• Demographic Groups:

- > There is predefined set of protected groups (e.g. race or gender)
- ➤ Each individual/data point belongs to one group
- Disparate Impact in ML: The impact of a system across protected groups
- Disparate Impact in Clustering: The impact on a group is measured by how many individuals of that group are in each cluster



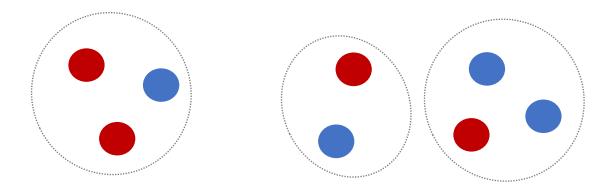
Balancedness

- Let G_1 , ..., G_t be the protected groups
- Let $C = \{C_1, ..., C_k\}$ be a clustering solution
- The balancedness in each cluster C_i is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

$$balance(C) = \min_{j \in [k]} balance(C_j)$$



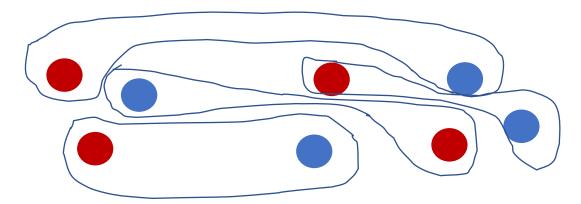
Balancedness

- Let G_1, \dots, G_t be the protected groups
- Let $C = \{C_1, ..., C_k\}$ be a clustering solution
- The balancedness in each cluster C_i is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

$$balance(C) = \min_{j \in [k]} balance(C_j)$$



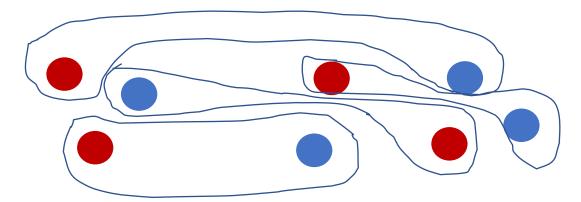
Balancedness

- Let G_1 , ..., G_t be the protected groups
- Let $C = \{C_1, ..., C_k\}$ be a clustering solution
- The balancedness in each cluster C_i is measured as:

$$balance(C_j) = \min_{i \neq i' \in [t]} \frac{|G_i \cap C_j|}{|G_{i'} \cap C_j|}$$

• The balancedness of a clustering solution $C = \{C_1, ..., C_t\}$ is measured as:

$$balance(C) = \min_{j \in [k]} balance(C_j)$$



Bounded Representation

- Let G_1, \ldots, G_t be the protected groups
- Let $C = \{C_1, ..., C_k\}$ be a clustering solution
- For (α, β) bounded representation we require that

$$\alpha \le |G_i \cap C_j| \le \beta$$
, $\forall i \in [t] \text{ and } \forall j \in [k]$

- Standard objectives such as k-center, k-median and k-means are maximized subject to (α, β) bounded representation constraints
- Open Question: Maximize the approximation to the core subject to (α, β) -bounded representation constraints