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Research agenda…

goal

                methods 

To build robust and adaptable machine learning 
algorithms, and apply them responsibly

Study model failures

Socially beneficial learning objectives



Scope

Algorithmic fairness: 

technical approaches to mitigating 
algorithmic discrimination

Other approaches:

Investigative journalism, auditing

Policy making and advocacy

Community organizing

Not a problem to be “solved” by Comp. Sci. alone

Selbst, A.D., Boyd, D., Friedler, S.A., Venkatasubramanian, S., Vertesi, J., 2019. Fairness and Abstraction in Sociotechnical Systems
Abebe, R., Barocas, S., Kleinberg, J., Levy, K., Raghavan, M., Robinson, D.G., 2020. Roles for Computing in Social Change.
Gebru, T., Denton, E. 2021 NeurIPS Tutorial: Beyond Fairness in Machine Learning
Ndebele, L., 2022 Social media companies urged to block hate speech linked to Tigray conflict.
Mahoozi, S., 2022. Mahsa Amini death: facial recognition to hunt hijab rebels in Iran
Barocas, S., Biega, A.J., Fish, B., Niklas, J., Stark, L., 2020. When not to design, build, or deploy
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Why is algorithmic fairness challenging?

Subjective

Many formulations, which may not be compatible

Context-specific

 No one-size-fits-all solution

 Many components in ML pipeline

“Spurious” associations due to historical inequities

Limited data

Demographic information often unavailable 

Available data not representative

Available “targets” may not tell whole story
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Fair representation learning - intro
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Machine “learning” as fitting probability distributions

Probability distribution p(X) scores likelihood 
of X being observed at value x

p(X=x) is a number between 0 and 1

       sum of p(X=x) over all possible x is 1

Joint distribution p(X, Y) - likelihood of X=x 
and Y=y

Conditional distribution p(Y|X) - likelihood of 
Y=y given X=x [Melchers 1999]



Machine “learning” as fitting probability distributions

Supervised learning - think image recognition (CV)

● Conditional distribution fitting
● Use labeled dataset D={(xi, yi)}
● Train parameterized function fθ to fit p(Y|X)

○ fθ(X=x)[Y] ≈ p(Y=y|X=x)

Unsupervised learning - think language modeling (NLP)

● Marginal/unconditional distribution fitting
● Use unlabeled dataset D={xi}
● Train parameterized function fθ to fit p(X) or 

sample from p(X)
○ fθ(X=x) ≈ p(X=x)
○ or
○ X ~ fθ() with prob. p(X=x)

Source: https://nlml.github.io/in-raw-numpy/in-raw-numpy-t-sne/

Source: https://www.tensorflow.org/tutorials/text/text_generation



Fitting probability distributions as optimization

To fit a model to data, write a “loss function” 
in terms of the model parameters, then 
minimize it!

E.g. linear regression: we want P(y|x)

[Goodfellow, Bengio, Courville 2016]

Loss(w) = 

Minimizew Loss(w) 
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Fair Representation Learning
Task transfer - flexibility in the target label

...but no flexibility in the sensitive attribute...



Subgroup Fairness



Subgroup fair representation learning?

[Adapted from slide by Amirata Ghorbani]



Fairness Gerrymandering and 
Multicalibration/Multiaccuracy
A classifier that is fair w.r.t. groups A and B can 
be unfair to their intersection A U B

[Adapted from slide by Amirata Ghorbani]

Kearns et al, Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness, ICML 2018.
Hébert-Johnson, et al. Multicalibration: Calibration for the (computationally-identifiable) masses, ICML 2018.
Kim, Ghorbani, and Zou, Multiaccuracy: Black-Box Post-Processing for Fairness in Classification, AEIS 2019.

[Adapted from slide by Seth Neel]



Fairness Gerrymandering and 
Multicalibration/Multiaccuracy
A classifier that is fair w.r.t. groups A and B can 
be unfair to their intersection A U B

Possible approach: adaptively choose new 
groups as training progresses

a) Intersections of existing groups
e.g. A U C or B U C U D

b) Infer new (“computationally identifiable”) 
groups directly from data

…a lot like boosting!

[Adapted from slide by Seth Neel]

Kearns et al, Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness, ICML 2018.
Hébert-Johnson, et al. Multicalibration: Calibration for the (computationally-identifiable) masses, ICML 2018.
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Adversarially Reweighted Learning

Adversarial training can also be used to 
reweight training points

Implicitly this looks for worst-case subgroups

Lahoti, et al, Fairness without Demographics through Adversarially Reweighted Learning, NeurIPS 2020



Flexibly fair VAE

We want flexible fairness 

I.e. a single representation that adapts to 
many distinct downstream fair classification 
tasks

“Sensitive latents” absorb sensitive 
observations and are disentangled

At task time, noise/zero out desired 
dimensions of the representation

Creager, E.., et al. Flexibly Fair Representation Learning by Disentanglement. ICML 2019
Traüble, F., Creager, E.., et al. On disentangled representations learned from correlated data. ICML 2021



Disentangled representations

“Disentangled” - each dimension of the learned 
representation has corresponds to no more than 
one underlying Factor of Variation (FoV)

[Source: https://github.com/google-research/disentanglement_lib]
[Source: 
https://medium.com/@davidlmorton/learning-disentan
gled-representations-part-1-simple-dots-c5553ecc995
b]

Observed data Learned representation



Flexibly fair VAE - results

Creager, E.., et al. Flexibly Fair Representation Learning by Disentanglement. ICML 2019
Traüble, F., Creager, E.., et al. On disentangled representations learned from correlated data. ICML 2021

[Celeb-A dataset]



Dynamic Fairness



Short-term Decisions have Long-term Consequences

When ML is used for decision making, we 
have to model long-term effects

ML predictions influence the outside world!

What looks fair today could create future 
unfairness…

Lum, K., and William I. To predict and serve? Significance 13.5 (2016): 14-19.
Hashimoto, T., et al. Fairness without demographics in repeated loss minimization. ICML 2018.



The Dynamics of Fair Lending

Dynamics in individual credit scores
- X: represents credit score
- A: represents demographic group
- T: represents loan
- Y: represents potential repayment

Treat bank policy (loan predictor) as 
supervised problem

Evaluated one-step fairness of various 
constrained classifiers

Structural eqns:

 

Bank policy T = f_T(U_T, A, X)

Potential outcome Y = f_Y(U_Y, X, A)

Next-step score \tilde X = f_{\tilde X}(Y, T, X)

j-th Group avg score improvement \Delta_j

- Computed as avg(\tilde X - X) for group j

^ Per-group score change for 
various bank policies

Liu, L. T., et al. Delayed impact of fair machine learning, ICML 2018.
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Dynamic fairness: challenges and open questions

How to model the dynamics of social environments

How to balance short- and long-term fairness

Exploration vs exploitation problem: how to learn fair decision making without 
making too many (unfair) mistakes



Robust Fairness



What does it mean to be “robust”?

Robustness can have different meanings in different contexts

Recall learning theory: models have bounded error when data are i.i.d.

i.i.d. = independent and identically distributed

For “robust” performance, go beyond in-distribution generalization



Taxonomy of model failures

To understand “robustness”, contrast with 
brittleness of models in practice

Overfitting/underfitting (handled by 
standard learning theory)

Adversarial examples & security threats

Shortcut learning

Algorithmic discrimination…? 

Shah, H., Tamuly, K., Raghunathan, A., Jain, P., Netrapalli, P., 2020. The Pitfalls of Simplicity Bias in Neural Networks.
Sagawa, S., Raghunathan, A., Koh, P.W., Liang, P., 2020. An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., Wichmann, F.A., 2020. Shortcut Learning in Deep Neural Networks
D’Amour, A., Heller, K., et al., 2020. Underspecification Presents Challenges for Credibility in Modern Machine Learning.



Learning theory provides a “spec” for 
the model: in-distribution generalization

To learn a “robust” model, we need to 
define a new spec

Out-of-distribution (OOD) generalization

What family of distributions should my 
model handle?

Incorporating “robustness” into learning algorithms



Characterizing distribution shift

Covariate shift

Label noise

Concept shift

Subpopulation shift

Intervention (on causal graph)

Peters, J., Bühlmann, P., Meinshausen, N., 2015. Causal inference using invariant prediction: identification and confidence intervals.



Adversarial Robustness

Adversarial examples - small worst-case 
perturbations in feature space

Attacks - white box, black box, …

Adversarial training - train w/ adv. Examples

I.e. train under family of nearby distributions

Goodfellow, I.J., Shlens, J., Szegedy, C., 2015. Explaining and Harnessing Adversarial Examples.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A., 2019. Towards Deep Learning Models Resistant to Adversarial Attacks.



Adversarial examples can be used for model evasion

Other security concerns

Model inversion/data extraction

Data poisoning

Robustness w.r.t. a specific threat model

Adversaries “in the wild”

Fredrikson, M., Jha, S., Ristenpart, T., 2015. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures
Geiping, J., Fowl, L., Huang, W.R., Czaja, W., Taylor, G., Moeller, M., Goldstein, T., 2021. Witches’ Brew: Industrial Scale Data Poisoning via Gradient Matching.
Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, U., Oprea, A., Raffel, C., 2021. Extracting Training Data from 
Large Language Models.



Distributionally Robust Optimization

Minimize a worst-case loss over “nearby” distributions

How to optimize for Q when we have samples from P?

Importance weighting

Group DRO learns just a few importance weights 
shared by example belonging to the same group

Duchi, J., Glynn, P., Namkoong, H., 2018. Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach.
Oren, Y., Sagawa, S., Hashimoto, T.B., Liang, P., 2019. Distributionally Robust Language Modeling
Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P., 2020. Distributionally Robust Neural Networks for Group Shifts



Domain Generalization

Train on data that varies p(x,y|e) across 
“domains” (a.k.a “environments”) e

Learn “core” or “invariant” features

Requires known training set partitions, i.e. 
environment labels

Require OOD generalization to 
never-before-seen test environment

Typically assume P(Y|X) fixed…P(Y), P(X) may 
change

Train: cows on grass             Test: cows on beaches

Beery, Van Horn, and Perona, Recognition in terra incognita, ECCV 2018
Gulrajani and Lopez-Paz, In search of lost domain generalization, ICLR 2021
Robert Geirhos, et al., Shortcut Learning in Deep Neural Networks, Nature Machine Intelligence vol. 2, 2021



Practical Concerns

i.i.d assumption

(Xtrain, Ytrain) ~ P and (Xtest, Ytest) ~ P

justifies train/validation/test splits

By relaxing the i.i.d. assumption, we break 
model selection/hyperparameter tuning!

Under fair model selection criteria, ERM 
(standard training) is hard to beat

If OOD/target data available, adapting 
ERM features may suffice

Gulrajani, I., Lopez-Paz, D., 2020. In Search of Lost Domain Generalization.
Menon, A.K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S., 2021. Long-tail Learning via Logit Adjustment
Kirichenko, P., Izmailov, P., Wilson, A.G., 2022. Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations.



Fairness & Robustness: Learning Objectives

Under what settings are fair learning and robust 
learning equivalent?

What lessons can be exchanged between the 
research areas?

Methods

Data

Articulating assumptions + limitations 

Creager, E., Jacobsen, J.-H., Zemel, R., 2021. Environment Inference for Invariant Learning



Lessons from robustness to fairness

Formal framework for characterizing distribution shift and model failure

“My data is biased; let’s collect more”

                                ↓

“My model needs to handle covariate shift; assuming fixed P(Y|X), let’s 
improve coverage over P(X)”

Methods for improving OOD generalization



Algorithmic fairness as OOD generalization

Some unfairness comes from failure to generalize “out 
of distribution” (OOD)

Recall: subpopulation shift

Shankar, S., Halpern, Y., Breck, E., Atwood, J., Wilson, J., Sculley, D., 2017. No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets for the 
Developing World.



Algorithmic fairness as OOD generalization

Some unfairness comes from failure to generalize “out 
of distribution” (OOD)

Recall: subpopulation shift

Some “shifts” in data are extremely subtle

E.g. bias in coreference resolution

Shankar, S., Halpern, Y., Breck, E., Atwood, J., Wilson, J., Sculley, D., 2017. No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets for the 
Developing World.



Representation learning approaches

Neural net approaches to statistical fairness 
influenced by domain adaptation

E.g. adversarial training with auxiliary labels

“Fair” representations can transfer to new tasks

Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., 2015. Domain-Adversarial Neural Networks.
Edwards, H., Storkey, A., 2016. Censoring Representations with an Adversary.
Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R., 2017. The Variational Fair Autoencoder.
Madras, D., Creager, E., Pitassi, T., Zemel, R., 2018. Learning Adversarially Fair and Transferable Representations.



Limitations of Representation Learning

Just like standard ML, fair predictors 
can fail under distribution shift

Theory shows that even “transferable” 
representations can fail under dramatic 
distribution shifts

Wang, H. et al, How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts, TMLR 2023
Rezaei, A. et al, Robust Fairness under Covariate Shift, AAAI 2021
Lechner, T. et al Impossibility Results for Fair Representations



Fair representations can fail under 
distribution shifts

Fair learning + DRO helps

Mostly simulated studies

Noisy observations

Sensitive attributes

Targets (esp. in risk assessment)

Fair and robust learning

Lechner, T., Ben-David, S., Agarwal, S., Ananthakrishnan, N., 2021. Impossibility results for fair representations.
Rezaei, A., Liu, A., Memarrast, O., Ziebart, B., 2021. Robust Fairness under Covariate Shift.
Singh, H., Singh, R., Mhasawade, V., Chunara, R., 2021. Fairness Violations and Mitigation under Covariate Shift
Fogliato, R., Chouldechova, A., G’Sell, M., 2020. Fairness Evaluation in Presence of Biased Noisy Labels
Wang, S., Guo, W., Narasimhan, H., Cotter, A., Gupta, M., Jordan, M., 2020. Robust Optimization for Fairness with Noisy Protected Groups
Schrouff, J., Harris, N., Koyejo, O., Alabdulmohsin, I., Schnider, E., Opsahl-Ong, K., Brown, A., Roy, S., Mincu, D., Chen, C., Dieng, A., Liu, Y., Natarajan, V., Karthikesalingam, A., 
Heller, K., Chiappa, S., D’Amour, A., 2022 .Diagnosing failures of fairness transfer across distribution shift in real-world medical settings



Fairness/robustness: challenges and open questions

How to characterize and measure distribution shifts relevant to algorithmic 
discrimination?

Can we formulate causal models for data bias in practical settings?

How to ensure statistically fair models are robust to distribution shift?



What’s next?

Improving fairness and robustness of 
foundation models

Modern representation learning looks different…
> Train across web-scale data
> No labels
> Multiple data modalities (image, text, …)

…these foundation models are adapted for 
many tasks

Internal representations of these models contain 
problematic stereotypes

Bommasani, R., et al. On the Opportunities and Risks of Foundation Models. Technical Report 2022
Beer, S. What is Cybernetics?, Kybernetes 2002.
Bianchi et al, Easily accessible text-to-image generation amplifies demographic stereotypes at large scale. FAccT 2023.



Summary

My lab is focused on machine learning and its the societal implications

Within this research agenda, a key area is Algorithmic Fairness

- Fair Representation Learning
- Subgroup Fairness
- Dynamic Fairness
- Robust Fairness

creager@uwaterloo.ca
ecreager.github.io

mailto:creager@uwaterloo.ca
https://ecreager.github.io/

