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NOTE: This talk will be a high-level overview of many research topics
Please interrupt me if you get lost or have questions
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Distribution Distribution Distribution
(See Shankar et al., 2017) (Illustrative) (Illustrative)

Shankar, S., et al. No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets for the Developing World. Neurips Workshops 2017
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Research agenda...

goal To build robust and adaptable machine learning
algorithms, and apply them responsibly

methods Study model failures

Socially beneficial learning objectives



Scope

Algorithmic fairness:

technical approaches to mitigating
algorithmic discrimination

Other approaches:
Investigative journalism, auditing
Policy making and advocacy

Community organizing

Selbst, A.D., Boyd, D., Friedler, S.A., Venkatasubramanian, S., Vertesi, J., 2019. Fairness and Abstraction in Sociotechnical Systems
Abebe, R., Barocas, S., Kleinberg, J., Levy, K., Raghavan, M., Robinson, D.G., 2020. Roles for Computing in Social Change.
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Social media companies urged to block hate
speech linked to Tigray conflict

NEWS 24 Lenin Ndebele ® @ @

Scope 0 e

Algorithmic fairness:

technical approaches to mitigating
algorithmic discrimination

Mahsa Amini death: facial recognition to hunt
hijab rebels in Iran

Other approaches:

Investigative journalism, auditing
Policy making and advocacy
Community organizing

Not a problem to be “solved” by Comp. Sci. alone

Selbst, A.D., Boyd, D., Friedler, S.A., Venkatasubramanian, S., Vertesi, J., 2019. Fairness and Abstraction in Sociotechnical Systems
Abebe, R., Barocas, S., Kleinberg, J., Levy, K., Raghavan, M., Robinson, D.G., 2020. Roles for Computing in Social Change.

Gebru, T., Denton, E. 2021 NeurlPS Tutorial: Beyond Fairness in Machine Learning

Ndebele, L., 2022 Social media companies urged to block hate speech linked to Tigray confiict.

Mahoozi, S., 2022. Mahsa Amini death: facial recognition to hunt hijab rebels in Iran

Barocas, S., Biega, A.J., Fish, B., Niklas, J., Stark, L., 2020. When not to design, build, or deploy



Why is algorithmic fairness challenging?

Subjective

Many formulations, which may not be compatible



Why is algorithmic fairness challenging?

Subjective

Many formulations, which may not be compatible
Context-specific

No one-size-fits-all solution

Many components in ML pipeline

“Spurious” associations due to historical inequities

model AGGREGATION
BIAS

definition model

output

i
DEPLOYMENT BIAS

T test
) dat

— (,,,f EVALUATION
D J —

benchmarks

(b) Model Building and Implementation

Suresh, H., Guttag, J.V., 2021. A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle
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(b) Model Building and Implementation

Suresh, H., Guttag, J.V., 2021. A Framework for Understanding Sources of Harm throughout the Machine Learning Life Cycle
Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S., 2019. Dissecting racial bias in an algorithm used to manage the health of populations.
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Fair representation learning - intro

Learning Adversarially Fair and Transferable Representations

° Classiﬁcation a ta'e Of tWO parties David Madras ' > Elliot Creager '> Toniann Pitassi'> Richard Zemel ' 2

@ Example: targeted advertising: owner — vendor — prediction

Data owner Prediction vendor

Madras, D., Creager, E..,Pitassi, T., and Zemel, R. Learning Adversarially Fair and Transferable Representations. ICML 2018




Why fairness?

e Want to minimize unfair targeting of disadvantaged groups by
vendors

e e.g. showing ads for worse lines of credit, lower paying jobs

e We want fair predictions

. Exon . 2

Data owner Prediction vendor

Madras, D., Creager, E..,Pitassi, T., and Zemel, R. Learning Adversarially Fair and Transferable Representations. ICML 2018



Why fair representations?

@ Previous work emphasized the role of the vendor

@ Can we trust the vendor?

@ How can the owner ensure fairness?

Data owner

> o ‘ exonN [N
g@-, NNASNA
@@a@ b

Prediction vendor

Madras, D., Creager, E..,Pitassi, T., and Zemel, R. Learning Adversarially Fair and Transferable Representations. ICML 2018



Why fair representations?

@ How should the data be represented?
o Feature selection? Measurement?

@ How can we choose a data representation that ensures fair
classifications downstream?

@ Let's learn a fair representation!

Data owner— Representation learner

Madras, D., Creager, E..,Pitassi, T., and Zemel, R. Learning Adversarially Fair and Transferable Representations. ICML 2018



Machine “learning” as fitting probability distributions

Probability distribution p(X) scores likelihood A
of X being observed at value x

'll{l

(masginal) - fA)

(marginal)

p(X=x) is a number between 0 and 1

sum of p(X=x) over all possible x is 1

Joint distribution p(X, Y) - likelihood of X=x P

and Y=y . .
fr";lx...'b} .__--—
Conditional distribution p(Y|X) - likelihood of (conditional)

Y=y d iven X=x [Melchers 1999]



Machine “learning” as fitting probability dlstrlbutlons

Supervised learning - think image recognition (CV)

e Conditional distribution fitting

e Use labeled dataset D={(x, y.)}

e Train parameterized function f; to fit p(Y|X)
o f(X=x)[Y] = p(Y=y|X=x)

Unsupervised learning - think language modeling (NLP)

e Marginal/unconditional distribution fitting
e Use unlabeled dataset D={x}
e Train parameterized function f; to fit p(X) or
sample from p(X)
o fy(X=x) = p(X=x)
o or
o X~ f() with prob. p(X=x)

Source: https://niml.github.io/in-raw-numpy/in-raw-numpy-t-sne/

TETT

S

Source: https /Iwww. tensorflow.org/tutoriaIs/text/text_generation



Fitting probability distributions as optimization

To fit a model to data, write a “loss function”
in terms of the model parameters, then
minimize it!

E.g. linear regression: we want P(y|x)
= w'z + b,

1 rain rain
Loss(w) = WHX“ Jaw — o202

Minimize Loss(w)
w

Linear regression example

-1.0 -0.5 0.0 05 1.0

Optimization of w
o 0.55 P

1 T

0.50
0.45
0.40
0.35
0.30

MSE((train)

0.25

0.20 L 1 L
0.5 1.0 1.5

w
[Goodfellow, Bengio, Courville 2016]



Fair Representation Learning

Society Vendor

Assume: data X € RY, label Y € 0,1, sensitive attribute A € 0,1

—_—>
Goal: predict Yy fairly with respect to A %mkH
e

@ Demographic parity

P(Y=1A=0)=P(Y=1A=1)

@ Equalized odds

. . . e £ A
P(Y#Y[A=0,Y=y)=P(Y#YIA=1Y =y)Vy €{0,1} o Fair classification: learn X > Z & Y

e Equal opportunity: equalized odds with only Y =1 e encoder f, classifier 24

. . : : f ~
P(Y#YIA=0,Y=1)=P(Y#YA=1Y =1) @ Fair representation: learn X — Z LN

e Z = f(X) should:

e Maintain useful information in X
e Yield fair downstream classification for vendors g

Madras, D., Creager, E..,Pitassi, T., and Zemel, R. Learning Adversarially Fair and Transferable Representations. ICML 2018



Fair Representation Learning

Adversary
h(Z)

@(_ Classifier
g(2)

Encoder Decoder
fF(X) k(Z,A)

/

@ Consider two types of unfair vendors
e The indifferent vendor: doesn't care about fairness, only maximizes
utility
e The malicious vendor: doesn't care about utility, discriminates

maximally @ The classifier is the indifferent vendor, forcing the encoder to make

@ This suggests an adversarial learning scheme the representations useful

@ The adversary is the malicious vendor, forcing the encoder to hide the

@ Our game: encoder-decoder-classifier vs. adversary
@ Goal: learn a fair encoder

minimize maximize Ex y 4 [L(f, g, h, k)].
f.g.k h '

E(f, g, h7 k) = aﬁC/ass + /BEDec - 'VE'Adv

Madras, D., Creager, E..,Pitassi, T., and Zemel, R. Learning Adversarially Fair and Transferable Representations. ICML 2018



Fair Representation

0.850

0.848

0.846

0.844

Accuracy

0.842

0.840

0.838

0.836

@ Downstream vendors will have unknown prediction tasks

Learning

+ LAFTR-DP
LAFTR-EO

s | AFTR-EOpp
W MLP-Unfair

0.01 0.02 0.03 0.04 0.05 0.06 0.07
AF()“”

Does fairness transfer?
We test this as follows:

© Train encoder f on data X, with label Y
@ Freeze encoder f

© On new data X', train classifier on top of f(X’), with new task label Y’
@ Observe fairness and accuracy of this new classifier on new task Y’

@ We use Heritage Health dataset
e Y is Charlson comorbidity index > 0

o Y’ is whether or not a certain type of insurance claim was made

o Check for fairness w.r.t. age

0.08

Compare LAFTR encoder f to other encoders

Classifier
g(2)

Adversary
h(Z)

Encoder
f(X)

Decoder
k(Z,A)

0.1

0.0 l l

—0.1

—0.2

—0.3

W Ercor
0.4 Apo

Relative Difference to baseline (Target-Unfair)

Transfer-Unf  Transfer-Fair  Transfer-Y-Adv LAFTR

Figure 2: Fair transfer learning on Health dataset. Down is better in both metrics.

Madras, D., Creager, E..,Pitassi, T., and Zemel, R. Learning Adversarially Fair and Transferable Representations. ICML 2018



Fair Representation Learning

Task transfer - flexibility in the target label

T
(.848 | wem LAFTR-EOpp U ( )
B MLP-Unfair ’ g Z

0.846

Adversary
h(Z)

g“_w Table 1. Results from Figure 3 broken out by task. Ago for each
3 - of the 10 tr.a.nsfer tasks is shown, Whlch.entalls 1de.nt1fymg a pri- boder Decoder
< mary condition code that refers to a particular medical condition. f
0.840 Most fair on each task is bolded. All model names are abbreviated \X ) k (Z ) A)
0.838 from Figure 3; “TarUnf” is a baseline, unfair predictor learned
0.836 directly from the target data without a fairness objective.

0.01 0.02 0.03 0.04 0
AF(J

@ Downstream vendors will have unk

TRA. TASK TARUNF TRAUNF TRAFAIR TRAY-AF LAFTR
Does fairness transfer?
We test this as follows: MSC2A3 0.362  0.370 0.381 0.378 0.281 .

_ _ METAB3 0.510 0.579 0.436 0.478 0439
© Train encoder f on data X, witt  ARTHSPIN 0.280 0.323  0.373  0.337  0.188
© Freeze encoder f N NEUMENT 0.419 0.419 0332  0.450  0.199
© Onnew data X', train classifier | RESPR4  0.181 0.160  0.223  0.091  0.051
@ Observe fairness and accuracy o MISCHRT  0.217 0213 0.171  0.206  0.095

Compare LAFTR encoder f to otk SKNAUT 0.324  0.125 0.205 0.315 0.155

o We use Heritage Health dataset GIBLEED 0.189 0.176 0.141 0.187 0.110

o Y is Charlson comorbidity index TIIIQ\I:IEE/I‘Z 8(1)3(6) 88‘2% gg%g gg;g 88‘1‘3

o Y’ is whether or not a certain t Transfer-Fair  Transfer-Y-Adv  LAFTR
o Check for fairness w.r.t. age

Cimuna Do Balvteancforlasuninmon Health dataset. Down is better in both metrics.

...but no flexibility in the sensitive attribute...



Subgroup Fairness



Subgroup fair representation learning?

Subgroup discrimination

e We would like to handle the case where a € {0, 1} is a vector of sensitive
attributes

e ML systems can discriminate against subgroups defined via conjunctions of 99% 60.2% 100% 94.8%

sensitive attributes (Buolamwini & Gebru, 2018)
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[Adapted from slide by Amirata Ghorbani]

Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification®

Joy Buolamwini JOYAB@MIT.EDU
MIT Media Lab 75 Amherst St. Cambridge, MA 02139

Timnit Gebru TIMNIT.GEBRU@MICROSOFT.COM
Microsoft Research 641 Avenue of the Americas, New York, NY 10011




[Adapted from slide by Seth Neel]
O : accepted individuals

Fairness Gerrymandering and P RO oy
Multicalibration/Multiaccuracy oA PR
. @@@ j '@g
A classifier that is fair w.r.t. groups A and B can e
be unfair to their intersection A U B Male Fermale

99%

60.2%

100%

94.8%
[Adapted from slide by Amirata Ghorbani]

Kearns et al, Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness, ICML 2018.
Hébert-Johnson, et al. Multicalibration: Calibration for the (computationally-identifiable) masses, ICML 2018.
Kim, Ghorbani, and Zou, Multiaccuracy: Black-Box Post-Processing for Fairness in Classification, AEIS 2019.



Fairness Gerrymandering and
Multicalibration/Multiaccuracy

A classifier that is fair w.r.t. groups A and B can
be unfair to their intersection A U B

Possible approach: adaptively choose new
groups as training progresses

Intersections of existing groups

eg AUCorBUCUD

Infer new (“computationally identifiable”)
groups directly from data

a)

b)

...a lot like boosting!

[Adapted from slide by Seth Neel]

Algorithm 1: MULTIACCURACY BOOST
Given:

e initial hypothesis fo : X — [0,1]
o auditing algorithm A : (X x [-1,1))™ — [-1,1]*
e accuracy parameter a > 0
o validation data D = D, ..., Dy ~ D™
Let:
« G (ze X folz) <1/2)
o Xy {zeX: fy(z)>1/2}
o S {X, X, X}
Repeat: fromt=0,1,..., T

e For SeS:
he,s  A(Dy; (fe — y)s)

o §* « argmaxges Bop, [hu,s(2) - (fi(z) — y(@))]

o if Boup, [l (2) - (fol2) —y(2))] <
return f;

o firr(@) oceMes @ - fy(a) Vre st

// audit ft on X,X0,X1 with fresh data

O : accepted individuals

Blue

Green

// partition X acc

ording to fO

// take largest residual

// terminate when at most alpha

// multiplicative weights update

Kearns et al, Preventing Fairness Gerrymandering: Auditing and Learning for Subgroup Fairness, ICML 2018.
Hébert-dJohnson, et al. Multicalibration: Calibration for the (computationally-identifiable) masses, ICML 2018.
Kim, Ghorbani, and Zou, Multiaccuracy: Black-Box Post-Processing for Fairness in Classification, AEIS 2019.



Adversarially Reweighted Learning

outliers ® .

|+ positive class ® negative classl

Learner Adversary
7 X P i X Y % ® ; i
: + [ : +0e e © R the +
1 1 N\, ,
: . * e by
: i e *
'
1 Gradient ° [ - s
' fi : 4.9 b computationall
: 0 ¢ w.r.t ¢ Non-Pr(Ogected PrO(ts)cted P \dentifiable
a c

= itn Jo(xi,y)

! Figure 1: Computational-identifiability example
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\

Table 1: Main results: ARL vs DRO

\ /N ’

U e S dataset  method AUC AUC AUC AUC label = 0 | prediction = 0 label = 0 | prediction = 1
Figure 2: ARL Computational Grap avg macro-avg min minority

[ White Female
1 White Male 1.0

Adult Baseline 0.898 0.891 0.867 0.875 210 =3 Black Female z
Adult  DRO 0.874 0.882 0.843 0.891 LI 50
i iNni Adult  DRO 0899 0.908 0.869 0.933
Adversarial training can also be used to ot Dy tom s sa . )

0o 1 2 3 4 5 01 2 3 4 5

H . 1 example weights (1) xample weights (A)
reweight training points ot

label = 1 | prediction = 0 55 label = 1] prediction =1
[ [ " 3 2.0
Implicitly this looks for worst-case subgroups
§ § 1.0
! 0.5
Lahoti, et al, Fairness without Demographics through Adversarially Reweighted Learning, NeurlPS 2020 e(x:)n;f,lz::f‘:im (;”jfilfofi?:: r)

Figure 5: Example weights learnt by ARL.



Flexibly fair VAE

We want flexible fairness

l.e. a single representation that adapts to
many distinct downstream fair classification
tasks

“Sensitive latents” absorb sensitive
observations and are disentangled

At task time, noise/zero out desired
dimensions of the representation

Creager, E.., et al. Flexibly Fair Representation Learning by Disentanglement. ICML 2019

. = = ,
non-sensitive latents sensitive latents
r HE e a —
non-sensitive observations sensitive observations

y N
target label
/ yH W
. fEEE ET . modified sens. latents
, T

Data flow at train time (left) and test time (right) for FFVAE

(e)a=RVP

(a=RAB (h)a=RAP

Trauble, F., Creager, E.., et al. On disentangled representations learned from correlated data. ICML 2021

< )l o 2 ow
L e
o) e

@ a=BAP



Disentangled representations

Normal Operation

Latent

Representation

input output

“Disentangled” - each dimension of the learned H — .
—> | Encoder Decoder [—>
representation has corresponds to no more than
one underlying Factor of Variation (FoV) Latent Traversal
S e~ h R R BRI
Observed data Learned representation 2 iem i)
‘
Decoder —»..'..
. . .
EEEEL = '
“ “ —» Decoder »'}-l'.
Au' ," _..\flg Av‘:'} [Source:
[Source: https://github.com/google-research/disentanglement_lib] https://medium.com/@davidimorton/learning-disentan

gled-representations-part-1-simple-dots-c5553ecc995
b]




Eyeglasses

Flexibly fair VAE

Bangs

[Celeb-A dataset]

non-sensitive latents

sensitive latents

(

non-sensitive observations

« NN

sensitive observations

Wearing
Hat

target label

o™

y N

modified sens. latents

t
;W

L. ]

Data flow at train time (left) and test time (right) for FFVAE

Creager, E.., et al. Flexibly Fair Representation Learning by Disentanglement. ICML 2019
Trauble, F., Creager, E.., et al. On disentangled representations learned from correlated data. ICML 2021
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Dynamic Fairness



““““““

When ML is used for decision making, we %
have to model long-term effects
ML predictions influence the outside world! |
What looks fair today could create future “ X
unfairness... NG
Lum, K., and William I. To predict and serve? Significance 13.5 (2016): 14-19. if"cfg"iﬁ:mm"i s

Hashimoto, T., et al. Fairness without demographics in repeated loss minimization. ICML 2018.
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Structural egns: 0 l TR R

Dynamics in individual credit scores
- X:represents credit score
- A:represents demographic group
- T: represents loan
- Y:represents potential repayment

Treat bank policy (loan predictor) as
supervised problem

Evaluated one-step fairness of various
constrained classifiers

A Per-group score change for

Bank policy T=f T(U_T, A, X) various bank pol

Potential outcome Y=F Y(U_ Y, X, A)
Next-step score \tilde X = f_{\tilde X}(Y, T, X)
J-th Group avg score improvement \Delta_j

- Computed as avg(\tilde X - X) for group j

icies

Liu, L. T., et al. Delayed impact of fair machine learning, ICML 2018.



The Dynamics of Fair Lending

| A

«

Structural eqgns:

Bank policy T=f T(U_T, A, X)

Meaning

Number of individuals

Number of demographic groups

Sensitive attribute for individual i

Exogenous noise on sensitive attribute for individual i
Score for individual i

Exogenous noise on score for individual i

Potential outcome (loan repayment/default) for individual i
Exogenous noise on potential outcome for individual i
Treatment (institution gives/withholds loan) for individual i
Exogenous noise on treatment for individual i

Utility of individual i (from the institution’s perspective)
Expected improvement of score for individual i

Score for individual i after one time step

Global utility (from institution’s perspective)

Expected change in score for group j

Potential outcome Y=F Y(U_ Y, X, A)

Next-step score \tilde X = f_{\tilde X}(Y, T, X)

J-th Group avg score improvement \Delta_j

- Computed as avg(\tilde X - X) for group j

Liu, L. T., et al. Delayed impact of fair machine learning, ICML 2018.
Creager, E. et al Causal modeling for fairness in dynamical systems, ICML 2020.



The Dynamics of Fair Lending

«

Y

Y

Structural eqgns:

Symbol

Al

Meaning

Number of individuals

Number of demographic groups

Sensitive attribute for individual i

Exogenous noise on sensitive attribute for individual i
Score for individual i

Exogenous noise on score for individual i

Potential outcome (loan repayment/default) for individual i
Exogenous noise on potential outcome for individual i
Treatment (institution gives/withholds loan) for individual i
Exogenous noise on treatment for individual i

Utility of individual i (from the institution’s perspective)
Expected improvement of score for individual i

Score for individual i after one time step

Global utility (from institution’s perspective)

Expected change in score for group j

Banl
Pote
Next

jth @

0.425
0.400
0375

=£0.350
0.325
0.300
0.275
0.250

—— Regression

——— Doubly Robust ‘

0.0 0.2 0.4 0.6
A

0.8

Figure 7: Test set value of a fairness-utility objective using the
two off-policy estimators. Hyperparameter A governs the tradeoff.
Higher values of the objective V. are better.

~compurea as avgunae X - X ror groupJ

Liu, L. T., et al. Delayed impact of fair machine learning, ICML 2018.
Creager, E. et al Causal modeling for fairness in dynamical systems, ICML 2020.



Dynamic fairness: challenges and open questions

How to model the dynamics of social environments
How to balance short- and long-term fairness

Exploration vs exploitation problem: how to learn fair decision making without
making too many (unfair) mistakes



Robust Fairness



What does it mean to be “robust™?

Robustness can have different meanings in different contexts

Recall learning theory: models have bounded error when data are i.i.d.

I.i.d. = independent and identically distributed

For “robust” performance, go beyond in-distribution generalization

P(X) PY|X

E‘/

P(X,Y)

i




Train
m— Test

Model Size

Worst-Group Error

Taxonomy of model failures

To understand “robustness”, contrast with
brittleness of models in practice

Overhittingfonderfittng (handled by

spurious
spurious

sta n d a rd I e a rn i n g th eO ry) Underpac;ﬁeterized Overpacr(::leterized
Adversarial examples & security threats
same c%teg(ory for human)s sarfne cate(gory for DNNs )
but not for DNNs (intended generalisation but not for humans (unintended generalisation

Shortcut learning

Algorithmic discrimination...? ’ iﬁ m E *%’ ﬁ

=

~

ol

« EI

domain adversarial excessive fooling natural texturised
shift examples  distortions pose texture  background invariance images  adversarials  images
eg Wang'18 Szegedy'13 eg. Dodge'19  Alcorn'19 Geirhos 19 Beery '18 Jacobsen'19  Nguyen'15  Hendrycks'19  Brendel ‘19

. —aw e [ N = . F -4 ! J
HEMES= Ee
o.0d.

Shah, H., Tamuly, K., Raghunathan, A., Jain, P., Netrapalli, P., 2020. The Pitfalls of Simplicity Bias in Neural Networks.

Sagawa, S., Raghunathan, A., Koh, P.W.,, Liang, P., 2020. An Investigation of Why Overparameterization Exacerbates Spurious Correlations
Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., Wichmann, F.A., 2020. Shortcut Learning in Deep Neural Networks
D’Amour, A., Heller, K., et al., 2020. Underspecification Presents Challenges for Credibility in Modern Machine Learning.



Incorporating “robustness” into learning algorithms

P(X)
Learning theory provides a “spec” for @ =
the model: in-distribution generalization

To learn a “robust” model, we need to

define a new spec
Out-of-distribution (OOD) generalization

What family of distributions should my
model handle?

P(X)P(Y|X)

©
©




Characterizing distribution shift

P(X) P(YX P(X)P(Y\X) P(Y|X) Q(X)P(Y\X)
] f
Covariate shift
o o @
P(X) P(Y|X P(X)P(Y|X) P(X)Q(Y|X)
0 0
Label noise —_—
o o
P(X) PY1X) P(X)P(Y]X) QYY) PX)Q(Y]|X)
Concept shift b f f
o ® @
P(X) PY|X P(X)P(Y|X) QX)P(Y|X)
Subpopulation shift i i
o o
Intervention (on causal graph) e ‘ — “
® ® ) ®  ® i "
o |y : 1~
® ®N ® g

Peters, J., Bihlmann, P., Meinshausen, N., 2015. Causal inference using invariant prediction: identification and confidence intervals.




Adversarial Robustness

Adversarial examples - small worst-case

+.007 x =
perturbations in feature space
_ i : ‘ | T+
Aftacks - white box, black box, ... 2 sign(VJ (8, ,)) sign(VT (0, 2,3))
“panda” “nematode” “gibbon”
Adversarial traininq - train w/ adv. Examp|es 57.7% confidence 8.2% confidence 99.3 % confidence
l.e. train under family of nearby distributions q .
B ®
° I/ ° o °A e
inp(), wh 0) = E L(6,x + 9, o /o] ® A
minp(6), where p(6) = E(y).p maxL(d,x+,y) e = -
® . ® o ¢ [ ]
/

Goodfellow, I.J., Shlens, J., Szegedy, C., 2015. Explaining and Harnessing Adversarial Examples.
Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A., 2019. Towards Deep Learning Models Resistant to Adversarial Attacks.



Prefix
East Stroudsburg Stroudsburg... ]

GPT-2

Adversaries “in the wild”

Adversarial examples can be used for model evasion

Memorized text
Corporation Seabank Centre
Marine Parade Southport

.com

Other security concerns

Model inversion/data extraction

Figure 1: An image recovered using a new model in-
version attack (left) and a training set image of the

H . victim (right). The attacker is given only the per-
Data po I SO n I n g son’s name and access to a facial recognition system

that returns a class confidence score.

RO b ustn ess W. r‘t a Specrﬁ C threat model Step 1: Poison Dataset ﬁteetevg;k‘l'fr:)irr:]\g(étri::(:h Step 3: Victim is Fooled!
0.1% Clean Target Image

= 1

IM .-GE :> Deep Net

J E Prediction:

Labrador Retriever X

Bad D‘ogsr

Fredrikson, M., Jha, S., Ristenpart, T., 2015. Model Inversion Attacks that Exploit Confidence Information and Basic Countermeasures

Geiping, J., Fowl, L., Huang, W.R., Czaja, W., Taylor, G., Moeller, M., Goldstein, T., 2021. Witches’ Brew: Industrial Scale Data Poisoning via Gradient Matching.

Carlini, N., Tramer, F., Wallace, E., Jagielski, M., Herbert-Voss, A., Lee, K., Roberts, A., Brown, T., Song, D., Erlingsson, U., Oprea, A., Raffel, C., 2021. Extracting Training Data from
Large Language Models.



Distributionally Robust Optimization

Minimize a worst-case loss over “nearby” distributions

m@in max Eq[L(X,Y;0)] such that @ close to P

How to optimize for Q when we have samples from P?

Importance weighting

EolL(X.¥:0)] = En( ST L(x, Y:0)

P(X,
N
~ o3 SRl X, Y
N2 Px,yy ‘Yo
=1 ,

A; “imp. weight”

Group DRO learns just a few importance weights
shared by example belonging to the same group

ffalﬂ(x)

X

p

= reviews
* news
— training

ps(x)

Duchi, J., Glynn, P., Namkoong, H., 2018. Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach.

Oren, Y., Sagawa, S., Hashimoto, T.B., Liang, P., 2019. Distributionally Robust Language Modeling

Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P., 2020. Distributionally Robust Neural Networks for Group Shifts

s MLE
s FODUSE




Domain Generalization

Tra|n on data that VarieS p(X,yl e) across Train: cows on grass Test: cows on beaches
“‘domains” (a.k.a “environments”) e Dataset Domains
Learn “core” or “invariant” features Colored MNIST .
Requires known training set partitions, i.e. Rotated MNIST . .
environment labels T Voo

- HEER

Require OOD generalization to

never-before-seen test environment PAGS > B8
Typically assume P(Y|X) fixed...P(Y), P(X) may Office-Home M B
change o 7

g Terra Incognita H a ! .

E’
\E
=
é‘
{ @

Beery, Van Horn, and Perona, Recognition in terra incognita, ECCV 2018

DomainNet * g{ 3
Gulrajani and Lopez-Paz, In search of lost domain generalization, ICLR 2021
Robert Geirhos, et al., Shortcut Learning in Deep Neural Networks, Nature Machine Intelligence vol. 2, 2021



Practical Concerns

Dataset / algorithm Out-of-distribution accuracy (by domain)
Rotated MNIST 0° 15° 30° 45° 60° T75° Average
.. . Tise et al. [2019] 935 993 99.1 992 993 930 972
I.i.d assumption Our ERM 956 99.0 989 99.1 99.0 96.7 980
PACS A C P S Average
train trainy test testy Asadi et al. [2019] 830 794 96.8 78.6 84.5
(X Y ) P and (X Y ) P OuiElclM 88.1 780 97.8 79.1 85.7
. . . . . . VLCS C L S v Average
justifies train/validation/test splits Albuguerque etal. [2019] 95.5 67.6 694 711 75.9
Our ERM 976 633 722 764 774
: H : Office-Home A C P R Average
By relaxing the i.i.d. assumption, we break e <oz = Te toon ey
model selection/hyperparameter tuning! S ERM el B4 Jdod I §ls
Under fair model selection criteria, ERM Training Data | TeinERM Bgased  Reweighting  FG-ased
eature Extractor rediction ata rediction

(standard training) is hard to beat

If OOD/target data available, adapting

Spurious: BG DFR >
. Core: FG Retrain linear layer
ERM features may suffice ,
(O BG Features O FG Features —— Large weights  seseees Small weights |

Gulrajani, I., Lopez-Paz, D., 2020. In Search of Lost Domain Generalization.
Menon, A K., Jayasumana, S., Rawat, A.S., Jain, H., Veit, A., Kumar, S., 2021. Long-tail Learning via Logit Adjustment
Kirichenko, P., Izmailov, P., Wilson, A.G., 2022. Last Layer Re-Training is Sufficient for Robustness to Spurious Correlations.



Fairness & Robustness: Learning Objectives

Under what settings are fair learning and robust
learning equivalent?

What lessons can be exchanged between the

researc h areas ’? Statistic to match/optimize e known? DG method Fairness method
match E[£|e| Ve yes REx (Krueger et al., 2021), CVaR Fairness (Williamson & Menon, 2019)
M eth Od S min max. E[fe] yes Group DRO (Sagawa et al., 2020)
min max, E, [£] no DRO (Duchi et al., 2021) Fairness without Demographics
D t (Hashimoto et al., 2018; Lahoti et al., 2020)
ata match E[y|®(z).e| Ve yes IRM (Arjovsky et al., 2019) Group Sufficiency
(Chouldechova, 2017; Liu et al., 2019)
Articulating assumptions + limitations _machElyi®().|ve i SRl o) KA fart)
match E[j|®(z).e.y = y'| Ve yes C-DANN (Liet al,, 2018) Equalized Odds (Hardt et al., 2016)
PGI (Ahmed et al., 2021)
match IlE[y|S(:r). ¢| - Ef(z)|S(z). ej;| Ve no Multicalibration (Hébert-Johnson et al., 2018)
match [lE[y|c] — Elj(z)le ]| Ve no Multiaccuracy (Kim et al., 2019)
match I[E[y £ulz)ly = 1r-| Ve no Faimess Gerrymandering (Kearns et al., 2018)

Table 1. Domain Generalization (DG) and Fairness methods can be understood as matching or optimizing some statistic across conditioning
variable ¢, representing “environment” or “domains” in DG and “sensitive” group membership in the Faimess. ® and S are learned vector
and scalar functions of the inputs, respectively.

Creager, E., Jacobsen, J.-H., Zemel, R., 2021. Environment Inference for Invariant Learning



Lessons from robustness to fairness

Formal framework for characterizing distribution shift and model failure
“My data is biased; let’s collect more”

!

“My model needs to handle covariate shift; assuming fixed P(Y|X), let’s
improve coverage over P(X)”

Methods for improving OOD generalization



Algorithmic fairness as OOD generalization

Some unfairness comes from failure to generalize “out
of distribution” (OOD)

ceremony, bride, ceremony,

wedding, bride, ceremony, bride, wedding, person, people
. 1 1 , g dding, dress, 4 2
Recall: subpopulation shift e e L

Openlmages Challenge Stage 1 Challenge Stage 2
Distribution Distribution Distribution

(See Shankar et al., 2017) (Iilustrative) (Illustrative)

Shankar, S., Halpern, Y., Breck, E., Atwood, J., Wilson, J., Sculley, D., 2017. No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets for the
Developing World.



Algorithmic fairness as OOD generalization

Some unfairness comes from failure to generalize “out "k
of distribution” (OOD)

i |
ceremony, bride, ceremony,

wedding, bride, ceremony, bride, wedding, person, people

Recall: subpopulation shift Rl e

Openlmages Challenge Stage 1 Challenge Stage 2
Distribution Distribution Distribution

(See Shankar et al., 2017) (Iilustrative) (Illustrative)

Some “shifts” in data are extremely subtle

i . . 7,-- -------- coref---------- Meitiun '—_CD'Ef_--IMef!tiOn '_corEf_.]MerEion
E g . bIaS n Corefe rence reSO|ut|On The surgeon could n't operate on  his patient: it was his son!
B "T """" corefERRRtRaRRY Menﬁnr‘"mre‘r"' Mention -~ Coref- - Mention
The surgeon could n't operate on their patient: it was their son!
------------------ coref--===-mmmmmmmnnnnn
7 e .:‘: oref-==r==== ~
B " Mention)’ (Mention) Mention
The surgeon could n't operate on her patient: it was her son!

Shankar, S., Halpern, Y., Breck, E., Atwood, J., Wilson, J., Sculley, D., 2017. No Classification without Representation: Assessing Geodiversity Issues in Open Data Sets for the
Developing World.



Representation learning approaches
Neural net approaches to statistical fairness
influenced by domain adaptation

E.g. adversarial training with auxiliary labels

“Fair’ representations can transfer to new tasks

TRA. TASK TARUNF TRAUNF TRAFAIR TRAY-AF LAFTR

MSC2a3 0362 0.370 0.381 0.378 0.281
METAB3 0510 0.579 0.436 0.478 0.439
ARTHSPIN 0.280  0.323 0.373 0.337 0.188
NEUMENT 0419 0.419 0.332 0.450 0.199
RESPR4 0.181 0.160 0.223 0.091 0.051
MISCHRT 0.217  0.213 0.171 0.206 0.095
SKNAUT  0.324  0.125 0.205 0.315 0.155
GIBLEED 0.189  0.176 0.141 0.187 0.110
INFEC4 0.106  0.042 0.026 0.012 0.044
TRAUMA  0.020  0.028 0.032 0.032 0.019

Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., 2015. Domain-Adversarial Neural Networks.
Edwards, H., Storkey, A., 2016. Censoring Representations with an Adversary.

Louizos, C., Swersky, K., Li, Y., Welling, M., Zemel, R., 2017. The Variational Fair Autoencoder.

Madras, D., Creager, E., Pitassi, T., Zemel, R., 2018. Learning Adversarially Fair and Transferable Representations.

classification output domain regressor

Classifier Adversary
9(Z) h(Z)

input

Encoder
J(X)

Decoder
k(Z, A)




Limitations of Representation Learning

L(x)
Just like standard ML, fair predictors

can fail under distribution shift

Xa

(a) Normal learning

Theory shows that even “transferable”

(Unfair)
representations can fail under dramatic e 52026 5=0.8) b k=010, =11
distribution shifts ol =

Xq Xq

(b) Traditional fairness learning
(In-distribution fairness)

src (x=0.53, s=0.80), trg (x=-0.71, s=0.85)

0.5

src
trg

0.0

src

A
=2: =1 0 1 2 3

(x=0.97, s=0.90), trg (x=-0.84, s=0

48)

0.5

src

Wang, H. et al, How Robust is Your Fairness? Evaluating and Sustaining Fairness under Unseen Distribution Shifts, TMLR 2023

Rezaei, A. et al, Robust Fairness under Covariate Shift, AAAI 2021 0.0

N

Lechner, T. et al Impossibility Results for Fair Representations

-2 0 2

W fairLR
Bl postproc

0.00 0.02 0.04 0.06 0.08
Target DEO



Fair and robust learning e ©%
Source Target °

X,Y,A|S=0 X,Y,A|S=1 ©)

Fair representations can fail under o ®
distribution shifts e

X
Fair learning + DRO helps il Fai? 22828

(V) LAY, S=0 %g zg

Mostly simulated studies

Noisy observations g o g 010 —~ DRO
“:’ 005]  ___ agmmmm é 0.051 — Allneg.
Sensitive attributes s " Sl G
570057 —-=="Naive §-0051 T m
] ) 3_3’70'107 —— Allneg. 570.10_
Targets (eSp. N ”Sk assessment) ) 0.1 02 03 04 05 ) 01 02 03 1014l 05
Group noise level Group noise leve

Lechner, T., Ben-David, S., Agarwal, S., Ananthakrishnan, N., 2021. Impossibility results for fair represernauons.

Rezaei, A, Liu, A., Memarrast, O., Ziebart, B., 2021. Robust Fairness under Covariate Shift.

Singh, H., Singh, R., Mhasawade, V., Chunara, R., 2021. Fairness Violations and Mitigation under Covariate Shift

Fogliato, R., Chouldechova, A., G’'Sell, M., 2020. Fairness Evaluation in Presence of Biased Noisy Labels

Wang, S., Guo, W., Narasimhan, H., Cotter, A., Gupta, M., Jordan, M., 2020. Robust Optimization for Fairness with Noisy Protected Groups

Schrouff, J., Harris, N., Koyejo, O., Alabdulmohsin, I., Schnider, E., Opsahl-Ong, K., Brown, A., Roy, S., Mincu, D., Chen, C., Dieng, A., Liu, Y., Natarajan, V., Karthikesalingam, A.,
Heller, K., Chiappa, S., D’Amour, A., 2022 .Diagnosing failures of fairness transfer across distribution shift in real-world medical settings



Fairness/robustness: challenges and open questions

How to characterize and measure distribution shifts relevant to algorithmic
discrimination?

Can we formulate causal models for data bias in practical settings?

How to ensure statistically fair models are robust to distribution shift?



What’s next?

Improving fairness and robustness of
foundation models

Tasks

Question 9

Answering ;,'

€

Data

Sentiment
% ’ Analysis
" y 9)
Text L‘J
i r
|/ D /
M [ > % Information
® J/Images « | " Extraction N
" 5 ) Adaptation
Speech “’W} gisihing Foundation . =2
Model & Captioning g

Structured
Data
Object

.
. = Do, Recognition
3D Signals =D y

Bommasani, R., et al. On the Opportunities and Risks of Foundation Models. Technical Report 2022

Beer, S. What is Cybernetics?, Kybernetes 2002.

Bianchi et al, Easily accessible text-to-image generation amplifies demographic stereotypes at large scale. FAccT 2023.

Modern representation learning looks different...
> Train across web-scale data
> No labels
> Multiple data modalities (image, text, ...)

...these foundation models are adapted for
many tasks

Internal representations of these models contain
problematic stereotypes AT

“an attractive person”




Summary

My lab is focused on machine learning and its the societal implications

Within this research agenda, a key area is Algorithmic Fairness

- Fair Representation Learning
- Subgroup Fairness

- Dynamic Fairness

- Robust Fairness

Creaqer@uwaterlo_o.ca
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VECTOR W UNIVERSITY OF SCHWARTZ REISMAN INSTITUTE
-\ INSTITUTE WATERLOO FOR TECHNOLOGY AND SOCIETY



mailto:creager@uwaterloo.ca
https://ecreager.github.io/

