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Outline
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1. Definitions of fairness
Ø Statistical parity
Ø Predictive rate parity
Ø Equalized odds
    (with a guest appearance of calibration later in the lecture)

2. Impossibility results
Ø Not even any 2 of these 3 notions can be satisfied simultaneously, 

except in degenerate cases

3. Fairness-accuracy tradeoff

4. Using social choice to generalize ML fairness



Model
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• Running examples: Think of…
Ø A bank deciding which loan applications to approve
Ø A judge deciding which alleged offenders to grant bail

• Model:
Ø 𝑋 ∈ ℝ! = non-sensitive attributes (e.g., income, education, …)
Ø 𝐴 ∈ {0,1} = sensitive attribute (e.g., race or gender)
Ø 𝑌 ∈ {0,1} = target variable (e.g., would they truly repay the loan? 

would the alleged offender commit a crime before their trial?)
Ø 𝐶 ∈ {0,1} = binary classification



Model
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• Classifier: function 𝑓 which takes 𝑋 as input and returns 𝐶

• Goal: match 𝐶 = 𝑌 without discriminating based on 𝐴
Ø At deployment time, we do not know 𝑌. We are only given 𝑋.
Ø But in the training data, we may have (partial) access to 𝑌.

• Notation:
Ø Evaluate 𝑓 on a distribution over (𝑋, 𝑌)
Ø Pr 𝐶 = 𝑐	 𝐴 = 𝑎] = probability that a random individual with 

sensitive attribute value 𝑎 receives classification outcome 𝑐
Ø Pr 𝐶 = 𝑐	 𝑌 = 𝑦, 𝐴 = 𝑎], Pr 𝑌 = 𝑦	 𝐶 = 𝑐, 𝐴 = 𝑎] etc. defined 

similarly
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Predicted Value 𝑪
Positive Negative

Target
Value 𝒀

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

Confusion	Matrix

● False Positive Rate 𝐹𝑃𝑅 = "#
"#$%&

= Pr[𝐶 = 0|𝑌 = 0]

● True Positive Rate 𝑇𝑃𝑅 = %#
%#$"&

= Pr[𝐶 = 1|𝑌 = 1]

● Positive Predictive Value 𝑃𝑃𝑉 = %#
%#$"# = Pr[𝑌 = 1|𝐶 = 1]

● Intuitively, we want all three metrics to match across the two groups, 
but that is impossible!(except in special cases)

○ This isn’t the impossibility result we’ll see a proof of (but has a similar proof)

Chouldechova.
“Fair Prediction with Disparate Impact: 
A Study of Bias in Recidivism Prediction Instruments”

Kleinberg, Mullainathan, Raghavan.
“Inherent Trade-Offs in the 
Fair Determination of Risk Scores”

https://www.liebertpub.com/doi/full/10.1089/big.2016.0047
https://www.liebertpub.com/doi/full/10.1089/big.2016.0047
https://arxiv.org/abs/1609.05807
https://arxiv.org/abs/1609.05807


Recidivism
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• Northpointe designed COMPAS, a tool to 
assess recidivism risk

• Judges in New York, Wisconsin, California, 
and Florida started using it when making 
bail decisions

• ProPublica published an article showing 
that COMPAS had wildly different FPR and 
TPR across white and black populations

• Northpointe argued back, suggesting that 
COMPAS was fair because PPV was nearly 
equal in both populations

ProPublica.
“Machine Bias”

Northpointe.
“Response to ProPublica: Demonstrating 
accuracy equity and predictive parity”

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.equivant.com/response-to-propublica-demonstrating-accuracy-equity-and-predictive-parity/
https://www.equivant.com/response-to-propublica-demonstrating-accuracy-equity-and-predictive-parity/


Three	Fairness	Notions
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1. Statistical Parity
Ø Pr 𝐶 = 1	 A = 0] = Pr 𝐶 = 1	 𝐴 = 1  
o Shorthand: Pr 𝐶	 𝐴] = Pr[𝐶] or 𝐶 ⊥ 𝐴

Ø Equal rate of positive (or negative) prediction across the groups

2. Predictive Rate Parity
Ø Pr 𝑌 = 𝑦	 𝐶 = 𝑐, 𝐴 = 0] = Pr 𝑌 = 𝑦	 𝐶 = 𝑐, 𝐴 = 1], ∀𝑦, 𝑐 ∈ {0,1}
o Shorthand: Pr 𝑌	 𝐶, 𝐴] = Pr 𝑌	 𝐶] or 𝑌 ⊥ 𝐴	|	𝐶

Ø Among those predicted positively (or negatively), equal truly positive (or 
negative) across the groups

3. Equalized Odds
Ø Pr 𝐶 = 𝑐	 𝑌 = 𝑦, 𝐴 = 0] = Pr 𝐶 = 𝑐	 𝑌 = 𝑦, 𝐴 = 1], ∀𝑦, 𝑐 ∈ {0,1}
o Shorthand: Pr 𝐶	 𝑌, 𝐴] = Pr 𝐶	 𝑌] or 𝐶 ⊥ 𝐴	|	𝑌

Ø Among those truly positive (or negative), equal fractions predicted positively 
(or negatively) between the groups



Impossibility	Theorems
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• Theorem: Statistical parity + predictive rate parity are 
mutually incompatible unless 𝐴 ⊥ 𝑌

• Intuition: 𝐴 ⊥ 𝐶 and 𝐴 ⊥ 𝑌	|	𝐶 ⇒ 𝐴 ⊥ 𝑌

• Proof: 
Ø 𝐶 ⊥ 𝐴 :     Pr 𝐶	 𝐴 = Pr[𝐶]
Ø 𝑌 ⊥ 𝐴	|	𝐶 :     Pr 𝑌	 𝐴, 𝐶 = Pr 𝑌	 𝐶]
Ø Combining: 

Pr 𝑌 = 𝑦 𝐴 = 𝑎]
= Σ'∈ ),+ Pr 𝐶 = 𝑐	|	𝐴 = 𝑎 ⋅ Pr 𝑌 = 𝑦 𝐴 = 𝑎, 𝐶 = 𝑐]
= Σ'∈ ),+ Pr 𝐶 = 𝑐	 ⋅ Pr 𝑌 = 𝑦 	𝐶 = 𝑐
= Pr[𝑌 = 𝑦]



Impossibility	Theorems
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• Theorem: Statistical parity + equalized odds are mutually 
incompatible unless 𝐴 ⊥ 𝑌 or 𝐶 ⊥ 𝑌 (lol)

• Intuition: 𝐶 ⊥ 	𝐴 and 𝐶 ⊥ 𝐴	|	𝑌 ⇒ 𝐴 ⊥ 𝑌 or 𝐶 ⊥ 𝑌

• Proof: 
Pr 𝐶 = 𝑐 = Pr 𝐶 = 𝑐 𝐴 = 𝑎
= Σ,∈ ),+ Pr 𝑌 = 𝑦 𝐴 = 𝑎 ⋅ Pr 𝐶 = 𝑐 𝑌 = 𝑦, 𝐴 = 𝑎
= Σ,∈ ),+ Pr 𝑌 = 𝑦 𝐴 = 𝑎 ⋅ Pr 𝐶 = 𝑐 𝑌 = 𝑦
	
Pr 𝐶 = 𝑐 = Σ,∈ ),+ Pr 𝑌 = 𝑦 ⋅ Pr[𝐶 = 𝑐|𝑌 = 𝑦]

Ø Σ,∈ ),+ Pr 𝐶 = 𝑐 𝑌 = 𝑦 ⋅ Pr 𝑌 = 𝑦 𝐴 = 𝑎 − Pr 𝑌 = 𝑦 = 0
Ø Second terms for 𝑦 = 0 and 𝑦 = 1 are negatives of each other!



Impossibility	Theorems
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• Theorem: Statistical parity + equalized odds are mutually 
incompatible unless 𝐴 ⊥ 𝑌 or 𝐶 ⊥ 𝑌 (lol)

• Intuition: 𝐶 ⊥ 	𝐴 and 𝐶 ⊥ 𝐴	|	𝑌 ⇒ 𝐴 ⊥ 𝑌 or 𝐶 ⊥ 𝑌

• Proof:  
Ø Σ,∈ ),+ Pr 𝐶 = 𝑐 𝑌 = 𝑦 ⋅ Pr 𝑌 = 𝑦 𝐴 = 𝑎 − Pr 𝑌 = 𝑦 = 0
Ø Second terms for 𝑦 = 0 and 𝑦 = 1 are negatives of each other!

Ø Pr 𝐶 = 𝑐 𝑌 = 0 − Pr 𝐶 = 𝑐 𝑌 = 1 ⋅ (
)

Pr 𝑌 = 0 𝐴 = 𝑎 −
Pr 𝑌 = 0 = 0

Ø Pr 𝐶 = 𝑐 𝑌 = 0 = Pr 𝐶 = 𝑐 𝑌 = 1  (𝐶 ⊥ 𝑌)
or Pr 𝑌 = 0 𝐴 = 𝑎 = Pr 𝑌 = 0  (𝑌 ⊥ 𝐴)



Impossibility	Theorems
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• Theorem: Predictive rate parity + equalized odds are 
mutually incompatible unless 𝐴 ⊥ 𝑌

• Intuition: 𝐴 ⊥ 𝐶	|	𝑌 and 𝐴 ⊥ 𝑌	|	𝐶 ⇒ 𝐴 ⊥ (𝑌, 𝐶) ⇒ 𝐴 ⊥ 𝑌

• Similar proof as before



Calibration
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• Ideal: 𝑋 → 𝐶 ∈ {0,1}
• In practice: 𝑋 → 𝑅 ∈ 0,1 → 𝐶 ∈ {0,1}

• Calibration:
Ø Pr 𝑌 = 1	 𝑅 = 𝑟] = 𝑟, ∀𝑟 ∈ [0,1]

• Calibration by group:
Ø Pr 𝑌 = 1	 𝑅 = 𝑟, 𝐴 = 𝑎] = 𝑟, ∀𝑟 ∈ 0,1 , 𝑎 ∈ {0,1}
Ø Then, Pr 𝑌 = 1	 𝑅 = 𝑟, 𝐴 = 𝑎] = Pr 𝑌 = 1	 𝑅 = 𝑟]
o 𝑌 ⊥ 𝐴	|	𝑅, which is predictive rate parity for score functions



Fairness-Accuracy	Tradeoff(?)
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• Example: Suppose 𝑌 = 1 ⇔ 𝐴 = 1
Ø Two groups are highly “unequal”
Ø Statistical parity would require a classifier to deliberately return 

incorrect classifications

• Easy lower bound
Ø 𝑒𝑟𝑟𝑜𝑟 ≥ 𝑑%- 𝐷) 𝑌 , 𝐷+ 𝑌 , where 𝐷. 𝑌  is the distribution of 𝑌 

conditioned on 𝐴 = 𝑎

• The same does not hold for equalized odds
Ø “The perfectly accurate classifier is fair”



Issues	with	such	notions
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1. Entitlement: What if the groups of interest are not equally entitled?
Ø Equalized odds, can work with differing base rates, but what if the 

differences in entitlements go beyond just the difference in base rates?
Ø E.g., what if you want to be “fair” to job applicants with different commuting 

distances?

2. Non-binary outcomes: What if the outcomes are not binary?
Ø E.g., “no bail”, $500 bail”, “$1000 bail”, “$1500 bail”, …
Ø Converting to binary might allow a classifier to “gerrymander” fairness by 

being fair in binary decisions while discriminating in the bail amount*

3. Preferences: Who are we being fair to? What do they want?
Ø What if the end users (stakeholders) have heterogeneous preferences over 

non-binary outcomes?
*Arnold.
“Racial Bias in 
Bail Decisions”

https://scholar.harvard.edu/files/cyang/files/ady_racialbias.pdf
https://scholar.harvard.edu/files/cyang/files/ady_racialbias.pdf


Mitigating	the	issues
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• (Individual) Metric Fairness
Ø Take as input a distance metric 𝑑 over individuals
Ø Classifier 𝑓 maps an individual to a multi-dimensional vector (non-binary soft 

classification)
Ø Example: (probabilistically) assigning students to job interviews

• “Treat equals equally”
Ø Classification outcomes shouldn’t differ much for individuals close to each other
Ø 𝑓 𝑥 − 𝑓 𝑦 !" ≤ 𝐿 ⋅ 𝑑 𝑥, 𝑦 , ∀𝑥, 𝑦

• Attempts solving two of the three problems
Ø Different entitlements and non-binary outcomes
Ø But this still ignores end user preferences!

o Why must we assign two students with similar profiles the same job interviews if 
they prefer different jobs? 

Ø This is easy to address*, but still a less popular approach due to the difficulty of 
obtaining a reasonable metric in many practical applications

Dwork, Hardt, Pitassi, Reingold, Zemel.
“Fairness Through Awareness”

*Kim, Korolova, Rothblum, Yonal.
“Preference-Informed Fairness”

https://dl.acm.org/doi/abs/10.1145/2090236.2090255
https://arxiv.org/abs/1904.01793


How	do	we	take	stakeholder	
preferences	into	account?
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Envy-Freeness
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• Envy-free classification
Ø 𝑢! 𝑓 𝑥! ≥ 𝑢! 𝑓 𝑥" − 𝜖, ∀𝑖, 𝑘
Ø “My value for my classification should be (almost) at least my value for your 

classification outcome”

• *Example application: Advertisement
Ø It may not be unfair to show different ads to Bob than to Alice if each of 

them genuinely prefer seeing the ads they’re shown to the ads the other 
person is shown.

Ø Assumes equal entitlements 

*Balcan, Dick, Noothigattu, Procaccia.
“Envy-free Classification”

https://scholar.harvard.edu/files/cyang/files/ady_racialbias.pdf
https://proceedings.neurips.cc/paper/2019/file/e94550c93cd70fe748e6982b3439ad3b-Paper.pdf
https://scholar.harvard.edu/files/cyang/files/ady_racialbias.pdf


Envy-Freeness
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• Envy-free classification
Ø 𝑢! 𝑓 𝑥! ≥ 𝑢! 𝑓 𝑥" − 𝜖, ∀𝑖, 𝑘
Ø “My value for my classification should be (almost) at least my value for your 

classification outcome”

• +Example application: Assigning students to job interviews
Ø It may not be unfair to assign two students with similar profiles to different 

job interviews if they prefer the interviews that they’re assigned to those 
that the other person is assigned

Ø 𝑢! 𝑓 𝑥! ≥ 𝑢! 𝑓 𝑥" − 𝐿 ⋅ 𝑑 𝑥! , 𝑥"
Ø Extends envy-free classification to incorporate differing entitlements

+Kim, Korolova, Rothblum, Yona.
“Preference-Informed Fairness”

https://arxiv.org/abs/1904.01793


Average	Group	Envy-Freeness
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• “On average, individuals from one group shouldn’t envy individuals 
from another group.”
Ø Weaker, not stronger, than individual envy-freeness

• 𝔼/∈0#,1∈0$ 𝑢/ 𝑓 𝑥/ − 𝑢/ 𝑓 𝑥1 ≥ −𝜖

• Can be imposed over exponentially many given pairs of groups with 
only polynomial training sample complexity

• Example application: loan & bail decisions, where envy is unavoidable 
at the individual level

Hossain, Mladenovic, Shah.
“Designing Fairly Fair Classifiers Via
Economic Fairness Notions”

https://www.cs.toronto.edu/~nisarg/papers/envy_equity.pdf
https://www.cs.toronto.edu/~nisarg/papers/envy_equity.pdf

