Fair Allocation 2: Indivisible Resources

Indivisible Goods

- Goods which cannot be shared among players
> E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!

Model

- Set of n agents $N=\{1, \ldots, n\}$
- Set of m indivisible goods M
- Valuation function of agent i is $V_{i}: 2^{M} \rightarrow \mathbb{R}_{\geq 0}$
> Additive: $V_{i}(S)=\sum_{g \in S} V_{i}(\{g\})$
> We write $v_{i, g}$ to denote $V_{i}(\{g\})$ for simplicity
- Allocation $A=\left(A_{1}, \ldots, A_{m}\right)$ is a partition of M
$>\cup_{i} A_{i}=M$ and $A_{i} \cap A_{j}=\emptyset, \forall i, j$
> For partial allocations, we drop the $U_{i} A_{i}=M$ requirement

Indivisible Goods

	1	0	N]	Y
2	8	7	20	5
Q	9	11	12	8
20	9	10	18	3

Indivisible Goods

	1	0	部	Y
褃	8	7	20	5
R	9	11	12	8
2.	9	10	18	3

Indivisible Goods

	1	0		Y
2	8	7	20	5
R	9	11	12	8
2-	9	10	18	3

Indivisible Goods

	1	-0	成	Y
率	8	7	20	5
R	9	11	12	8
2	9	10	18	3

EF1

- Envy-freeness up to one good (EF1):

$$
\forall i, j \in N, \exists g \in A_{j}: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j} \backslash\{g\}\right)
$$

> Technically, we need either this or $A_{j}=\emptyset$.

- In words...
> "If i envies j, there must be some good in j 's bundle such that removing it would make i envy-free of j."
- Question: Does there always exist an EF1 allocation?

EF1

- Yes, a simple round-robin procedure guarantees EF1
> Order the agents arbitrarily (say $1,2, \ldots, n$)
> In a cyclic fashion, agents arrive one-by-one and pick the item they like the most among the ones left

$\mathrm{EF} 1+\mathrm{PO}$

- Pareto optimality (PO)
> An allocation A is Pareto optimal if there is no other allocation B such that $V_{i}\left(B_{i}\right) \geq V_{i}\left(A_{i}\right)$ for all i and the inequality is strict for at least one i
- Sadly, round-robin does not always return a PO allocation
> There exist instances in which, by reallocating items at the end, we can make all agents strictly happier
- Question: Does there always exist an allocation that is both EF1 and PO simultaneously?

$\mathrm{EF} 1+\mathrm{PO}$?

- Maximum Nash Welfare (MNW) to the rescue!
> Essentially, maximize the Nash welfare across all integral allocations
- Theorem [Caragiannis et al. '16]
$>$ (Almost true) Any allocation in $\operatorname{argmax}_{A} \prod_{i \in N} V_{i}\left(A_{i}\right)$ is EF1 + PO.
> [Conitzer et al. '19] Actually, it satisfies "group fairness up to one", which is stronger than EF1.

$\mathrm{EF} 1+\mathrm{PO}$?

- Proof that A maximizing $\prod_{i} v_{i}\left(A_{i}\right)$ is EF1 +PO
> PO is obvious
- Suppose for contradiction that there is an allocation B such that $V_{i}\left(B_{i}\right) \geq$ $V_{i}\left(A_{i}\right)$ for each i and $V_{i}\left(B_{i}\right)>V_{i}\left(A_{i}\right)$ for at least one i
- Then, $\prod_{i} V_{i}\left(B_{i}\right) \geq \prod_{i} V_{i}\left(A_{i}\right)$, which is a contradiction
> EF1 requires a bit more work
- Fix any agents i, j and consider moving good $g \in A_{j}$ to A_{i}
$\circ A$ is MNW $\Rightarrow V_{i}\left(A_{i} \cup\{g\}\right) \cdot V_{j}\left(A_{j} \backslash\{g\}\right) \leq V_{i}\left(A_{i}\right) \cdot V_{j}\left(A_{j}\right)$
○ $1-\frac{v_{j, g}}{V_{j}\left(A_{j}\right)} \leq 1-\frac{v_{i, g}}{V_{i}\left(A_{i} \cup\{g\}\right)} \leq 1-\frac{v_{i, g}}{V_{i}\left(A_{i} \cup\left\{g^{*}\right\}\right)} \Rightarrow \frac{v_{j, g}}{V_{j}\left(A_{j}\right)} \geq \frac{v_{i}(g)}{V_{i}\left(A_{i} \cup\left\{g^{*}\right\}\right)}$
- Here, $g^{*} \in A_{j}$ is the good liked the most by i
- Summing over all $g \in A_{j}$, we get $v_{i}\left(A_{i} \cup\left\{g^{*}\right\}\right) \geq v_{i}\left(A_{j}\right)$, which means i doesn't envy j up to good g^{*}

$\mathrm{EF} 1+\mathrm{PO}$?

- Edge case: all allocations have zero Nash welfare
> E.g., allocate two goods between three agents
> Allocating both goods to a single agent can violate EF1
> Requires a slight modification of the rule in this edge case
- Step 1: Choose a subset of agents $S \subseteq N$ with largest $|S|$ such that it is possible to give a positive utility to each agent in S simultaneously
- Step 2: Choose $\operatorname{argmax}_{A} \prod_{i \in S} V_{i}\left(A_{i}\right)$
> Quick questions:
- How does this fix the example above?
- Why did we not need this subtlety for cake-cutting?
- Does this theorem generalize the one for cake-cutting?

Computation

- For indivisible goods, finding an MNW allocation is strongly NP-hard (NP-hard even if all values are bounded)
- Open Question:
> Can we compute some EF1+PO allocation in polynomial time?
> [Barman et al., '17]:
- There exists a pseudo-polynomial time algorithm for finding an EF1+PO allocation
- Time is polynomial in n, m, and $\max _{i, g} v_{i, g}$
- Already better than the time complexity of computing an MNW allocation

EFX

- Envy-freeness up to any good (EFX)
$\Rightarrow \forall i, j \in N, \forall g \in A_{j}: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j} \backslash\{g\}\right)$
> In words, i shouldn't envy j if she removes any good from j 's bundle
$>\mathrm{EFX} \Rightarrow \mathrm{EF} 1\left(\forall i, j \in N, \exists g \in A_{j}: V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j} \backslash\{g\}\right)\right)$
- EF1 vs EFX example:
> $\{A \rightarrow P 1 ; B, C \rightarrow P 2\}$ is EF1 but not EFX, whereas .
> $\{A, B \rightarrow P 1 ; C \rightarrow P 2\}$ is $E F X$.

- Open question: Does there always exist EFX allocation?

EFX

- (Easy to prove) EFX allocation always exists when...
> Agents have identical valuations (i.e. $V_{i}=V_{j}$ for all i, j)
> Agents have binary valuations (i.e. $v_{i, g} \in\{0,1\}$ for all i, g)
> There are $n=2$ agents with general additive valuations
- But answering this question in general (or even in some other special cases) has proved to be surprisingly difficult!

EFX: Recent Progress

- Partial allocations
> [Caragiannis et al., '19]: There exists a partial EFX allocation A that has at least half of the optimal Nash welfare
> [Ray Chaudhury et al., '19]: There exists a partial EFX allocation A such that for the set of unallocated goods $U,|U| \leq n-1$ and $V_{i}\left(A_{i}\right) \geq V_{i}(U)$ for all i
- Restricted number of agents
> [Ray Chaudhury et al., '20]: There exists a complete EFX allocation with $n=3$ agents
- Restricted valuations
> [Amanatidis et al., '20]: Maximizing Nash welfare achieves EFX when there exist a, b such that $v_{i, g} \in\{a, b\}$ for all i, g

MMS

- Maximin Share Guarantee (MMS):
> Generalization of "cut and choose" for n players
> MMS value of agent $i=$
- The highest value that agent i can get...
- If she divides the goods into n bundles...
- But receives the worst bundle according to her valuation

Let $\mathcal{P}_{n}(M)=$ family of partitions of M into n bundles

$$
M M S_{i}=\max _{\left(B_{1}, \ldots, B_{n}\right) \in \mathcal{P}_{n}(M)} \min _{k \in\{1, \ldots, n\}} V_{i}\left(B_{k}\right) .
$$

> Allocation A is $\alpha-\mathrm{MMS}$ if $V_{i}\left(A_{i}\right) \geq \alpha \cdot M M S_{i}$ for all i

MMS

- [Procaccia \& Wang, '14]: MMS impossible, ${ }^{2} / 3$ - MMS exists
- [Amanatidis et al., '17]: $(2 / 3-\epsilon)-\mathrm{MMS}$ in polynomial time
- [Ghodsi et al. '17]: $3 / 4$ - MMS exists, $(3 / 4-\epsilon)$ - MMS in polynomial time
- [Garg \& Taki, '20]: ${ }^{3} / 4$ - MMS in polynomial time, $(3 / 4+1 / 12 n)$ - MMS exists
- [Feige et al. '21]: $(39 / 40+\epsilon)-$ MMS impossible
- [Akrami et al. '23]: $\left(3 / 4+\min \left(1 / 36,{ }^{3} / 16 n-4\right)\right)$ - MMS exists
- [Hosseini et al. '22]: 1-out-of- $3 n / 2$ MMS exists, computable in polynomial time > Agent hypothetically partitions goods into $3 n / 2$ (instead of n) bundles and gets the worst of them
- Open questions:
> What is the best α-MMS approximation possible? Does 1-out-of- $(n+1) \mathrm{MMS}$ always exist?

Allocating Bads

- Costs instead of utilities
$>c_{i, b}=$ cost of player i for bad b
- $C_{i}(S)=\sum_{b \in S} c_{i, b}$
> EF: $\forall i, j C_{i}\left(A_{i}\right) \leq C_{i}\left(A_{j}\right)$
> PO: There is no allocation B such that $C_{i}\left(B_{i}\right) \leq C_{i}\left(A_{i}\right)$ for all i and at least one inequality is strict
- Divisible bads
> An EF + PO allocation always exists
> However, we can no longer just maximize the product (of what?)
> Open question: Can we compute an EF+PO allocation of divisible bads in polynomial time?

Allocating Bads

- Indivisible bads
>EF1: $\forall i, j \exists b \in A_{i} C_{i}\left(A_{i} \backslash\{b\}\right) \leq C_{i}\left(A_{j}\right)$
> EFX: $\forall i, j \forall b \in A_{i} C_{i}\left(A_{i} \backslash\{b\}\right) \leq C_{i}\left(A_{j}\right)$
> Open Question 1:
- Does there always exist an EF1 + PO allocation?
> Open Question 2:
- Does there always exist an EFX allocation?
> Many more open problems for allocating bads

Randomization

- Can we randomize over (ex-post) fair allocations to achieve exact fairness ex-ante (in expectation)?
> Ex-ante $\mathbb{E F}: \mathbb{E}\left[V_{i}\left(A_{i}\right)\right] \geq \mathbb{E}\left[V_{i}\left(A_{j}\right)\right], \forall i, j$
> Ex-ante Prop: $\mathbb{E}\left[V_{i}\left(A_{i}\right)\right] \geq 1 / n, \forall i$
> Ex-post means the property must be satisfied by every deterministic allocation in the support
- Known results
> [Freeman et al. '20]: Ex-ante EF + ex-post EF1
> [Freeman et al. '20]: Ex-ante EF + Ex-ante PO + ex-post Prop1
$>$ [Babaioff et al. '22]: Ex-ante Prop + Ex-post (Prop1 $+1 / 2$-MMS)
- Open question: Ex-ante EF + Ex-post (EF1+PO)?

