Fair Allocation 2: Indivisible Resources

- Goods which cannot be shared among players
 E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!

Model

- Set of n agents $N = \{1, \dots, n\}$
- Set of *m* indivisible goods *M*
- Valuation function of agent *i* is $V_i: 2^M \to \mathbb{R}_{\geq 0}$ > Additive: $V_i(S) = \sum_{g \in S} V_i(\{g\})$
 - > We write $v_{i,g}$ to denote $V_i(\{g\})$ for simplicity
- Allocation $A = (A_1, ..., A_m)$ is a partition of M> $\cup_i A_i = M$ and $A_i \cap A_i = \emptyset, \forall i, j$
 - > For *partial* allocations, we drop the $\cup_i A_i = M$ requirement

			V
8	7	20	5
9	11	12	8
9	10	18	3

			V
8	7	20	5
9	11	12	8
9	10	18	3

			V
8	7	20	5
9	11	12	8
9	10	18	3

8	7	20	5
9	11	12	8
9	10	18	3

EF1

• Envy-freeness up to one good (EF1):

$$\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$$

- > Technically, we need either this or $A_j = \emptyset$.
- In words...
 - "If i envies j, there must be some good in j's bundle such that removing it would make i envy-free of j."
- Question: Does there always exist an EF1 allocation?

EF1

- Yes, a simple round-robin procedure guarantees EF1
 - > Order the agents arbitrarily (say 1, 2, ..., n)
 - In a cyclic fashion, agents arrive one-by-one and pick the item they like the most among the ones left

EF1 + PO

- Pareto optimality (PO)
 - > An allocation A is Pareto optimal if there is no other allocation B such that $V_i(B_i) \ge V_i(A_i)$ for all i and the inequality is strict for at least one i
- Sadly, round-robin does not always return a PO allocation
 - There exist instances in which, by reallocating items at the end, we can make all agents strictly happier
- Question: Does there always exist an allocation that is both EF1 and PO simultaneously?

EF1+PO?

- Maximum Nash Welfare (MNW) to the rescue!
 - > Essentially, maximize the Nash welfare across all integral allocations

- Theorem [Caragiannis et al. '16]
 - > (Almost true) Any allocation in $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$ is EF1 + PO.
 - [Conitzer et al. '19] Actually, it satisfies "group fairness up to one", which is stronger than EF1.

EF1+PO?

- Proof that A maximizing $\prod_i v_i(A_i)$ is EF1 + PO
 - > PO is obvious
 - Suppose for contradiction that there is an allocation *B* such that $V_i(B_i) \ge V_i(A_i)$ for each *i* and $V_i(B_i) > V_i(A_i)$ for at least one *i*
 - Then, $\prod_i V_i(B_i) \ge \prod_i V_i(A_i)$, which is a contradiction

> EF1 requires a bit more work

- Fix any agents *i*, *j* and consider moving good $g ∈ A_i$ to A_i
- $\circ A \text{ is MNW} \Rightarrow V_i(A_i \cup \{g\}) \cdot V_j(A_j \setminus \{g\}) \leq V_i(A_i) \cdot V_j(A_j)$ $\stackrel{v_{j,g}}{\longrightarrow} \stackrel{v_{j,g}}{\longrightarrow} \stackrel{v_{i,g}}{\longrightarrow} \stackrel{v_{i,g}}{$

$$0 \ 1 - \frac{V_{i,g}}{V_{j}(A_{j})} \le 1 - \frac{V_{i,g}}{V_{i}(A_{i} \cup \{g\})} \le 1 - \frac{V_{i,g}}{V_{i}(A_{i} \cup \{g^{*}\})} \Rightarrow \frac{V_{j,g}}{V_{j}(A_{j})} \ge \frac{V_{i}(g)}{V_{i}(A_{i} \cup \{g^{*}\})}$$

- Here, $g^* \in A_j$ is the good liked the most by i
- Summing over all $g \in A_j$, we get $v_i(A_i \cup \{g^*\}) \ge v_i(A_j)$, which means *i* doesn't envy *j* up to good g^*

EF1+PO?

- Edge case: all allocations have zero Nash welfare
 - > E.g., allocate two goods between three agents
 - > Allocating both goods to a single agent can violate EF1
 - Requires a slight modification of the rule in this edge case
 - Step 1: Choose a subset of agents S ⊆ N with largest |S| such that it is possible to give a positive utility to each agent in S simultaneously
 Step 2: Choose argmax_A ∏_{i∈S} V_i(A_i)
 - > Quick questions:
 - How does this fix the example above?
 - $\,\circ\,$ Why did we not need this subtlety for cake-cutting?
 - $\,\circ\,$ Does this theorem generalize the one for cake-cutting?

Computation

- For indivisible goods, finding an MNW allocation is strongly NP-hard (NP-hard even if all values are bounded)
- Open Question:
 - > Can we compute *some* EF1+PO allocation in polynomial time?
 - > [Barman et al., '17]:
 - There exists a pseudo-polynomial time algorithm for finding an EF1+PO allocation
 - Time is polynomial in n, m, and $\max_{i,g} v_{i,g}$
 - Already better than the time complexity of computing an MNW allocation

EFX

- Envy-freeness up to any good (EFX)
 - $\succ \forall i, j \in N, \forall g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - > In words, *i* shouldn't envy *j* if she removes *any* good from *j*'s bundle
 - $\succ \mathsf{EFX} \Rightarrow \mathsf{EF1}\left(\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})\right)$
- EF1 vs EFX example:
 - \succ {A \rightarrow P1; B,C \rightarrow P2} is EF1 but not EFX, whereas .
 - > {A,B → P1; C → P2} is EFX.

Open question: Does there always exist EFX allocation?

EFX

- (Easy to prove) EFX allocation always exists when...
 - > Agents have identical valuations (i.e. $V_i = V_j$ for all i, j)
 - > Agents have binary valuations (i.e. $v_{i,g} \in \{0,1\}$ for all i, g)
 - > There are n = 2 agents with general additive valuations
- But answering this question in general (or even in some other special cases) has proved to be surprisingly difficult!

EFX: Recent Progress

- Partial allocations
 - [Caragiannis et al., '19]: There exists a partial EFX allocation A that has at least half of the optimal Nash welfare
 - ▶ [Ray Chaudhury et al., '19]: There exists a partial EFX allocation A such that for the set of unallocated goods U, $|U| \le n 1$ and $V_i(A_i) \ge V_i(U)$ for all i
- Restricted number of agents
 - > [Ray Chaudhury et al., '20]: There exists a complete EFX allocation with n = 3 agents
- Restricted valuations
 - > [Amanatidis et al., '20]: Maximizing Nash welfare achieves EFX when there exist a, b such that $v_{i,g} \in \{a, b\}$ for all i, g

MMS

- Maximin Share Guarantee (MMS):
 - Generalization of "cut and choose" for n players
 - > MMS value of agent i =
 - \circ The highest value that agent *i* can get...
 - \circ If *she* divides the goods into *n* bundles...
 - \circ But receives the worst bundle according to her valuation
 - > Let $\mathcal{P}_n(M)$ = family of partitions of M into n bundles

$$MMS_i = \max_{(B_1,\dots,B_n)\in\mathcal{P}_n(M)} \min_{k\in\{1,\dots,n\}} V_i(B_k).$$

> Allocation A is α -MMS if $V_i(A_i) \ge \alpha \cdot MMS_i$ for all i

MMS

- [Procaccia & Wang, '14]: MMS impossible, $^{2}/_{3}$ MMS exists
- [Amanatidis et al., '17]: $(^{2}/_{3} \epsilon)$ MMS in polynomial time
- [Ghodsi et al. '17]: $^{3}/_{4}$ MMS exists, $(^{3}/_{4} \epsilon)$ MMS in polynomial time
- [Garg & Taki, '20]: $3/_4$ MMS in polynomial time, $(3/_4 + 1/_{12n})$ MMS exists
- [Feige et al. '21]: $({}^{39}\!/_{40} + \epsilon)$ MMS impossible
- [Akrami et al. '23]: $({}^{3}/_{4} + \min({}^{1}/_{36}, {}^{3}/_{16n-4}))$ MMS exists
- [Hosseini et al. '22]: 1-out-of- $\frac{3n}{2}$ MMS exists, computable in polynomial time
 - > Agent hypothetically partitions goods into 3n/2 (instead of n) bundles and gets the worst of them
- Open questions:
 - > What is the best α -MMS approximation possible? Does 1-out-of-(n + 1) MMS always exist?

Allocating Bads

- Costs instead of utilities
 - > $c_{i,b} = \text{cost of player } i \text{ for bad } b$

 $\circ C_i(S) = \sum_{b \in S} c_{i,b}$

- $\succ \mathsf{EF}: \forall i, j \ C_i(A_i) \le C_i(A_j)$
- ▶ PO: There is no allocation B such that $C_i(B_i) \le C_i(A_i)$ for all i and at least one inequality is strict

• Divisible bads

- > An EF + PO allocation always exists
- > However, we can no longer just maximize the product (of what?)
- Open question: Can we compute an EF+PO allocation of divisible bads in polynomial time?

Allocating Bads

- Indivisible bads
 - $\succ \text{ EF1: } \forall i, j \exists b \in A_i \ C_i(A_i \setminus \{b\}) \leq C_i(A_j)$
 - $\succ \mathsf{EFX:} \forall i, j \ \forall b \in A_i \ C_i(A_i \setminus \{b\}) \leq C_i(A_j)$
 - > Open Question 1:

o Does there always exist an EF1 + PO allocation?

> Open Question 2:

o Does there always exist an EFX allocation?

> Many more open problems for allocating bads

Randomization

- Can we randomize over (ex-post) fair allocations to achieve exact fairness ex-ante (in expectation)?
 - > Ex-ante $EF:\mathbb{E}[V_i(A_i)] \ge \mathbb{E}[V_i(A_j)], \forall i, j$
 - ▷ Ex-ante Prop: $\mathbb{E}[V_i(A_i)] \ge 1/n$, $\forall i$
 - Ex-post means the property must be satisfied by every deterministic allocation in the support
- Known results
 - [Freeman et al. '20]: Ex-ante EF + ex-post EF1
 - [Freeman et al. '20]: Ex-ante EF + Ex-ante PO + ex-post Prop1
 - > [Babaioff et al. '22]: Ex-ante Prop + Ex-post (Prop1 + $1/_2$ -MMS)
- Open question: Ex-ante EF + Ex-post (EF1+PO)?