Fair Allocation 1: Divisible Resources

Credit for some of the illustrations: Ariel D. Procaccia

Cake-Cutting

- A heterogeneous divisible good
 - Heterogeneous = same part may be valued differently by different agents
 - Divisible = can be divided between agents
- Cake *C* = [0,1]

> Almost without loss of generality

• Agents $N = \{1, \dots, n\}$

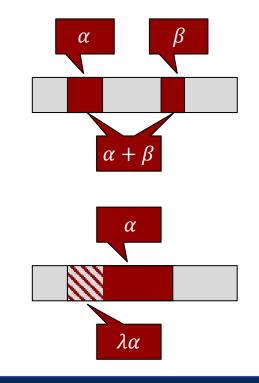
- Piece of cake $X \subseteq [0,1]$ = finite union of disjoint intervals
- Allocation $A = (A_1, \dots, A_n)$
 - > Partition of the cake where each A_i is a piece of the cake

Agent Valuations

• Valuation of agent *i* is given by an integrable value density function $f_i: [0,1] \to \mathbb{R}_+$

> Her value for a piece of cake X is $V_i(X) = \int_{x \in X} f_i(x) dx$

- Two key properties
 - > Additive: For $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
 - Divisible: $\forall \lambda \in [0,1]$ and X, ∃Y ⊆ X s.t. $V_i(Y) = \lambda V_i(X)$
- WLOG
 - > Normalized: $V_i([0,1]) = 1$



Fairness Goals

- What kind of fairness might we want from an allocation A?
- Proportionality (Prop):

$$\forall i \in N \colon V_i(A_i) \ge \frac{1}{n}$$

• Envy-Freeness (EF):

 $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$

• Equitability (EQ):

 $\forall i, j \in N: V_i(A_i) = V_j(A_j) -$

Only makes sense with normalization

Fairness Goals

- Prop: $\forall i \in N$: $V_i(A_i) \ge 1/n$
- EF: $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$
- Question:

What is the relation between proportionality and EF?

- 1. **Prop** \Rightarrow EF
- 2. $EF \Rightarrow Prop$
- 3. Equivalent
- 4. Incomparable

CUT-AND-CHOOSE

- Algorithm for n = 2 agents
- Agent 1 divides the cake into two pieces X, Y s.t. $V_1(X) = V_1(Y) = 1/2$
- Agent 2 chooses the piece she prefers.
- This is EF and therefore proportional.
 > Why?

Measuring Complexity

• Running time does not make sense

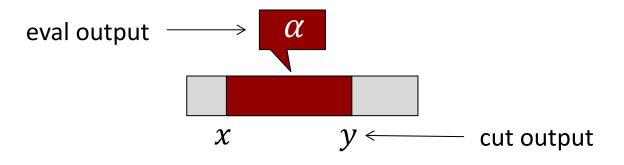
- > Typically, we measure the running time as a function of the length of input encoded in binary
- > Our input consists of functions V_i , which requires infinitely many bits to encode
- > We want running time just as a function of n.

Query models make sense

- > Allow specific types of queries to agents' valuation functions
- Measure the number of queries that need to be made in order to find an allocation satisfying the given properties

Robertson-Webb Model

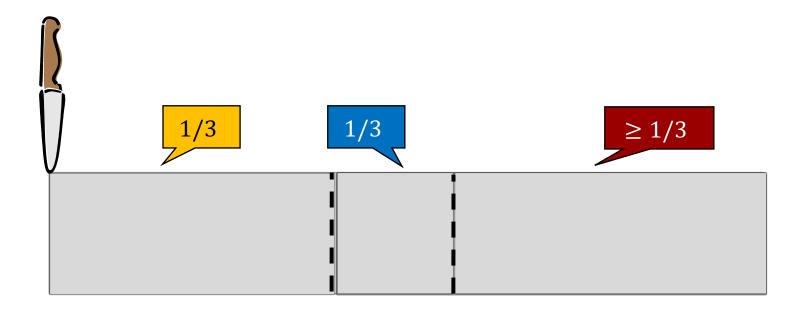
- Two types of queries to an agent's valuation function V_i
 - > $\text{Eval}_i(x, y)$ returns $V_i([x, y])$
 - Cut_i(x, α) returns the smallest y such that V_i([x, y]) = α
 If no such y exists, then it returns 1



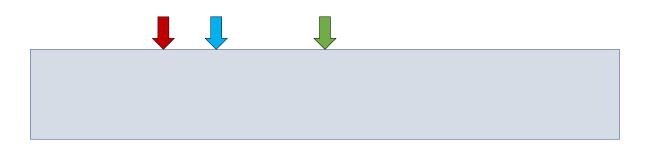
• Question:

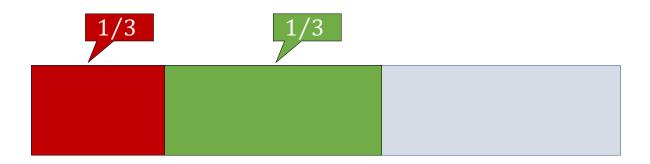
> How many queries are needed to find an EF allocation when n = 2?

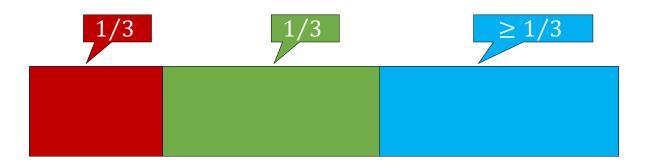
- Protocol for finding a proportional allocation for *n* agents
- Referee starts with a knife at 0
- Referee continuously moves the knife to the right
- Repeat n 1 times: Whenever the piece to the left of knife is worth 1/n to a agent, the agent shouts "stop", gets the piece, and exits.
- The last agent gets the remaining piece.



- Moving a knife continuously is not really needed.
- At each stage, we can ask each remaining agent a cut query to mark his 1/n point in the remaining cake.
- Move the knife to the leftmost mark.



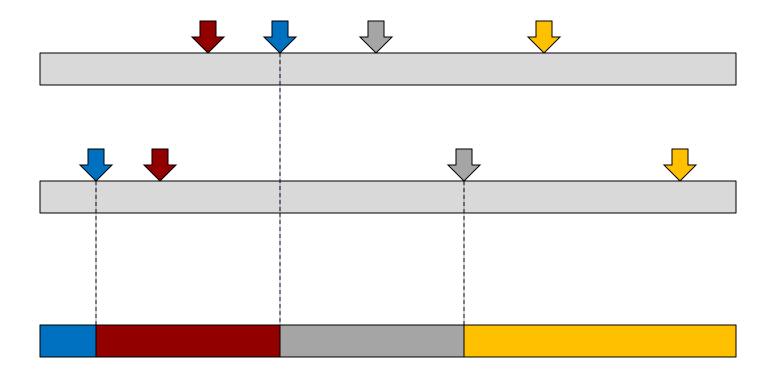




- Question: What is the complexity of the Dubins-Spanier protocol in the Robertson-Webb model?
 - 1. $\Theta(n)$
 - 2. $\Theta(n \log n)$
 - 3. $\Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

Even-Paz

- Input: Interval [x, y], number of agents n
 - > Assume $n = 2^k$ for some k
- If n = 1, give [x, y] to the single agent.
- Otherwise, let each agent *i* mark z_i s.t. $V_i([x, z_i]) = \frac{1}{2} V_i([x, y])$
- Let z^* be the n/2-th mark from the left.
- Recurse on [x, z*] with the left n/2 agents and on [z*, y] with the right n/2 agents.



Even-Paz

- Theorem: EVEN-PAZ returns a Prop allocation.
- Proof:
 - > Inductive proof. We want to prove that if agent *i* is allocated piece A_i when [x, y] is divided between *n* agents, $V_i(A_i) \ge (1/n)V_i([x, y])$ \circ Then Prop follows because initially $V_i([x, y]) = V_i([0,1]) = 1$
 - > Base case: n = 1 is trivial.
 - > Suppose it holds for $n = 2^{k-1}$. We prove for $n = 2^k$.
 - > Take the 2^{k-1} left agents.
 - Every left agent *i* has $V_i([x, z^*]) \ge (1/2) V_i([x, y])$

○ If it gets A_i , by induction, $V_i(A_i) \ge \frac{1}{2^{k-1}} V_i([x, z^*]) \ge \frac{1}{2^k} V_i([x, y])$

Even-Paz

- Question: What is the complexity of the Even-Paz protocol in the Robertson-Webb model?
 - 1. $\Theta(n)$
 - 2. $\Theta(n \log n)$
 - 3. $\Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

Complexity of Proportionality

- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs Ω(n log n) operations in the Robertson-Webb model.
- Thus, the EVEN-PAZ protocol is (asymptotically) provably optimal!

Envy-Freeness?

- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For *n*-agent EF cake-cutting:
 - > [Brams and Taylor, 1995] gave an unbounded EF protocol.
 - > [Procaccia 2009] proved $\Omega(n^2)$ lower bound for EF.
 - In 2016, the long-standing major open question of "bounded EF protocol" was resolved!
 - [Aziz and Mackenzie, 2016]: O(n<sup>n^{n^{nⁿn}}) protocol!
 Not a typo!
 </sup>

Perfect Partition

- Definition:
 - ≻ $(B_1, ..., B_n)$ is a perfect partition if $V_i(B_j) = 1/n$ for all $i, j \in [n]$
 - > Implies envy-freeness (and thus proportionality) and equitability
- Theorem [Lyapunov '40]:

> There always exists a "perfect partition" of the cake.

- Theorem [Alon '87]:
 - > There exists a perfect partition with at most n(n-1) cuts
- Unfortunately, computing a perfect partition needs an unbounded number of RW queries

Pareto Optimality (PO)

Definition

- > Allocation $A = (A_1, ..., A_n)$ is Pareto optimal (PO) if there is no alternative allocation $B = (B_1, ..., B_n)$ such that
- 1. Every agent is at least as happy: $V_i(B_i) \ge V_i(A_i), \forall i \in N$
- 2. Some agent is strictly happier: $V_i(B_i) > V_i(A_i)$, $\exists i \in N$
- Q: Is it PO to give the entire cake to agent 1?
 - A: Not necessarily. But yes, if agent 1 values every part of the cake positively.
 - > But a "sequential dictatorship" is always Pareto optimal
 - \circ Let agent 1 take whatever she values positively
 - From the rest, let agent 2 take whatever she values positively
 - \circ And so on...

PO + EF

- Theorem [Weller '85]:
 - There always exists an allocation of the cake that is both envy-free and Pareto optimal.
 - > Nonconstructive proof via Kakutani's fixed point theorem
- A constructive proof due to [Ebadian, Freeman, Shah, '24]
- Maximum Nash welfare (MNW) allocation
 - > A is an MNW allocation if it maximizes the Nash welfare $\prod_{i \in N} V_i(A_i)$ (named after John Nash) across all allocations

MNW Allocation

• Example:

- > Green agent has value 1 distributed over [0, 2/3]
- > Blue agent has value 1 distributed over [0,1]
- > Without loss of generality (why?) suppose:
 - Green agent gets x fraction of [0, 2/3]
 - Blue agent gets the remaining 1 x fraction of [0, 2/3] AND all of [2/3, 1].
- > Green's utility = x, blue's utility = $(1 x) \cdot \frac{2}{3} + \frac{1}{3} = \frac{3-2x}{3}$
- > Maximize: $x \cdot \frac{3-2x}{3} \Rightarrow x = 3/4$ (3/4 fraction of 2/3 is 1/2).

Allocation 0
$$1/2$$
 Green has utility $\frac{3}{4}$
Blue has utility $\frac{1}{2}$

Maximum Nash Welfare

- Lemma [Segal-Halevi & Sziklai, '19]: An MNW allocation of the cake exists.
- Proof:
 - > Let $U = \{(v_1(A_1), ..., v_n(A_n)): A \text{ is an allocation of the cake}\}$ be the set of feasible utility vectors
 - > Dubins and Spanier (1961): *U* is compact and convex
 - Weierstrass' Extreme Value Theorem: Any continuous function attains a maximum over a compact space.
 - ▶ Hence, there exists $u^* \in U$ that is in $\operatorname{argmax}_{u \in U} \prod_i u_i$
 - > Any allocation A^* that induced u^* is an MNW allocation

Maximum Nash Welfare

- Theorem [Segal-Halevi & Sziklai, '19; Ebadian, Freeman, Shah, '24]: Any MNW allocation of the cake is EF+PO.
- Proof:
 - > Let *A* be an MNW allocation
 - ▶ Note that $\prod_i v_i(A_i) > 0$ (because even a proportional allocation achieves a positive Nash welfare), so $v_i(A_i) > 0$, $\forall i$
 - > PO follows from the fact that any Pareto improvement would have a strictly higher Nash welfare
 - > Suppose for contradiction that A is not EF and $v_i(A_j) > v_i(A_i)$

Maximum Nash Welfare

- Proof (continued):
 - > Consider the allocation A' obtained by reallocating A_i to agent i

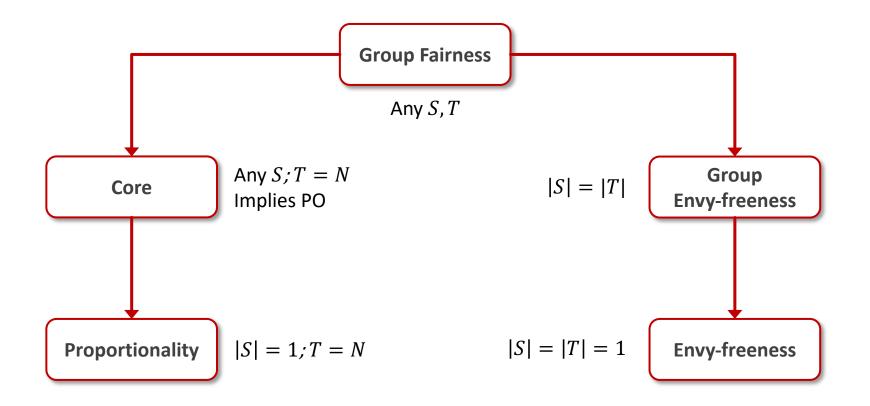
$$○ A'_i = A_i \cup A_j, A'_j = \emptyset, A'_k = A_k \forall k \neq i, j ○ v_i(A'_i) > 2 \cdot v_i(A_i), v_k(A'_k) = v_k(A_k) \forall k \neq i, j ○ Let u and u' be the utility vectors induced by A and A'$$

- ▶ For $\lambda \in [0,1]$, let $u^{\lambda} = \lambda \cdot u + (1 \lambda) \cdot u'$ and $f(\lambda) = \sum_{i} \log u_i^{\lambda}$
- > Due to convexity of $U, u^{\lambda} \in U \ \forall \lambda \in [0,1]$
- ≻ For the contradiction, suffices to prove that $\exists \lambda \in [0,1]$: $f(\lambda) > f(1)$
- Since f(λ) is differentiable in λ, enough to prove that f'(1) < 0 (proof on board). ■

Group Fairness

- An allocation A is called group fair (GF) if...
 - > there are no subsets of agents S, T ⊆ N and reallocation U_{i∈T} A_i ⇒ (B_i: i ∈ S) of the collective allocation of T to agents in S such that
 > $\frac{|S|}{|T|} \cdot V_i(B_i) \ge V_i(A_i)$ for all i ∈ S and at least one inequality is strict
- Theorem [Conitzer et al. '19; Freeman et al. '20]
 - > For cake-cutting, any MNW allocation satisfies group fairness.
 - Among allocation rules satisfying a mild additional axiom, it is the only rule that does so.

Group Fairness



Problem with Nash Solution

- Computing any Pareto optimal allocation already requires an unbounded number of queries
- Theorem [Aziz & Ye '14]:
 - For *piecewise constant* valuations, the Nash-optimal solution can be computed in polynomial time.

Homogeneous Divisible Goods

- Suppose there are m homogeneous divisible goods
 - > Each good can be divided fractionally between the agents
- Let x_{i,g} = fraction of good g that agent i gets
 Homogeneous = agent doesn't care which "part"
- Special case of cake-cutting
 - > Line up the goods on [0,1]

Homogeneous Divisible Goods

- MNW solution:
 - Maximize $\sum_i \log U_i$
 - $U_i = \Sigma_g x_{i,g} * v_{i,g} \quad \forall i$
 - $\Sigma_i x_{i,g} = 1 \qquad \forall g$
 - $x_{i,g} \in [0,1] \qquad \forall i,g$
- This is known as the Gale-Eisenberg convex program
 - Can be solved *exactly* in strongly polynomial time [Orlin '10]