
CSC2421 Spring’24
Assignment 1

Due Date: Mar 10, 2024

Notes

1. Citation policy:

• It is certainly preferable for you to solve the questions without consulting a peer, an AI,
or an online source. However, if you do consult and obtain useful insights, you must
cite the name of the peer/AI or the link of the source you referred.

• Further, you should write the solution in your own words. The best way to do so is to
not take any notes during discussions, spend at least a few hours playing a video game
or reading a novel, and then construct the solution on your own.

2. No garbage policy: Leaving an answer blank will get you 20% of the points (this also applies
to a subproblem). This does not apply to any bonus questions.

3. Typed assignments are highly preferred (LaTeX or Word), especially if your handwriting is
possibly illegible or if you do not have access to a good quality scanner. Please submit a
single PDF on MarkUs.

Total Marks: 100 across 4 questions.

Q1 [25 Points] Is Fairness Restrictive?

Consider the cake cutting problem in which n agents have valuation functions V1, . . . , Vn satisfy-
ing the standard additivity, normalization, and divisibility assumptions we stated in class. Denote
the social welfare of an allocation A by sw(A) =

∑n
i=1 Vi(Ai).

In the questions below, we are interested in measuring how restrictive the notion of proportion-
ality is. Specifically, we would like to measure the worst-case multiplicative loss in social welfare
that one must incur when imposing proportionality. To do so, we compare the maximum social
welfare we can achieve without requiring proportionality to the maximum social welfare we can
achieve subject to proportionality.

(a) [15 Points] Show that for all possible valuations V1, . . . , Vn,

max{sw(A) : A is an allocation of the cake}
max{sw(A) : A is a proportional allocation of the cake}

= O(
√
n).

[Hint: Consider an allocation A∗ that maximizes social welfare. Let L be the set of agents who
have value at least 1/

√
n for their piece of the cake under A∗. Consider two cases: |L| <

√
n and

|L| ≥
√
n. The former case is easy. In the latter case, shuffle the allocations of the agents in A∗ to

generate a proportional allocation A that does not lose too much welfare compared to A∗.]

(b) [10 Points] Give a family of examples of V1, . . . , Vn (one example for each value of n) such that

max{sw(A) : A is an allocation of the cake}
max{sw(A) : A is a proportional allocation of the cake}

= Ω(
√
n).
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Q2 [25 Points] Maximin Share

Consider the setting of allocating indivisible goods, where a set of goods M is to be allocated to a
set of n agents N with additive valuations V1, . . . , Vn. Recall the definition of maximin share from
class. For a subset of goods S, let Tk(S) be the set of all partitions of S into k bundles, and

MMSi(k, S) = max
T∈Tk(S)

min
Tj∈T

vi(Tj)

be the maximum value placed by agent i on the worst bundle across all such partitions. We say
that an allocationA is α-MMS if Vi(Ai) ≥ α ·MMSi(n,M) for all i. In this question, you will derive
a simple 1/2-MMS approximation.

Define PROPi(k, S) = 1
k

∑
g∈S Vi({g}). Consider the following algorithm.

Algorithm 1: 1/2-MMS

1 while ∃i, g : Vi({g}) ≥ 1
2 · PROPi(|N |,M) do // If i values g a lot

2 Ai ← {g}; // Allocate g to i
3 N ← N \ {i},M ←M \ {g}; // Remove g, i forever

4 Run round robin to allocate the remaining goods in M to the remaining agents in N , and
store the results in A;

5 return A;

(a) [10 Points] Prove that MMSi(n − 1,M \ {g}) ≥ MMSi(n,M). That is, the MMS value of an
agent can only go up if one other agent and one good are removed from consideration.

(b) [5 Points] Argue that MMSi(k, S) ≤ PROPi(k, S). Use that to deduce that the 1/2-MMS guar-
antee is satisfied for every agent allocated to (and removed) by the while loop of the algorithm.

(c) [10 Points] Assume that the round robin procedure, when used to find an allocation A of a set
of goods M to a set of agents N , satisfies the following property (it is implied by EF1): Vi(Ai) ≥
PROPi(|N |,M)−maxg∈M Vi({g}). Use it to prove that the 1/2-MMS guarantee is also satisfied for
all the agents allocated to by Step 4 of the algorithm. (Hint: Use the fact that each such agent must
not value every remaining good too highly.)

Q3 [25 Points] Stronger Justified Representation Recall the EJR guarantee for approval-based

committee selection from class. A committee W of size k satisfies EJR if

• for all ` ∈ {1, . . . , k} and groups of voters S ⊆ N that are...

• |S| ≥ ` · n/k (large) and | ∩i∈S Ai| ≥ ` (cohesive)...

• ui(W ) = |Ai ∩W | ≥ ` for at least one i ∈ S.

One of the students asked why we should only demand at least one member to have utility at
least ` and not for each member to have utility at least `, which would be a stronger guarantee. In
this question, you will show that this stronger guarantee cannot always be provided.

2



Consider an election with four candidates {a, b, c, d} and 12 voters with approval sets ({a, b}, {b}, {b},
{b, c}, {c}, {c}, {c, d}, {d}, {d}, {d, a}, {a}, {a}). Notice the cyclic nature of this list. Argue that no
committee of size k = 3 will satisfy the strong notion suggested above. (Hint: For each candidate,
find a group of voters which would require that candidate to be part of the committee.)

Q4 [25 Points] Fun with Deferred Acceptance

Consider the Deferred Acceptance algorithm to find a stable matching between n men and n
women where each participant has a strict ranking over participants of the opposite gender.

(a) [15 Points] Consider the following preferences for 4 men (M1 through M4) and 4 women (W1
through W4). Each row gives the preference of one individual, and the preference decreases from
left (most preferred) to right (least preferred).

Men’s Preferences

M1 W2 W4 W1 W3
M2 W3 W1 W4 W2
M3 W2 W3 W1 W4
M4 W4 W1 W3 W2

Women’s Preferences

W1 M2 M1 M4 M3
W2 M4 M3 M1 M2
W3 M1 M4 M3 M2
W4 M2 M1 M4 M3

Run men-proposing deferred acceptance (MPDA) and women-proposing deferred acceptance
(WPDA) on this instance. For each algorithm, describe each iteration: who proposes to whom
in that iteration, and who is engaged to whom at the end of the iteration.

(b) [10 Points] Suppose there are k “good” men and k “good” women such that in the preference
ranking of each woman (resp. man), the top k men (resp. women) are precisely the k good men
(resp. women) in some order. That is, every participant prefers the k good participants of the
opposite gender to the other participants of the opposite gender. Show that in any stable matching,
the k good men must be matched to the k good women.
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