
CSC2421 Spring’24
Assignment 1 Solutions

Q1 [25 Points] Is Fairness Restrictive?

Consider the cake cutting problem in which n agents have valuation functions V1, . . . , Vn satisfy-
ing the standard additivity, normalization, and divisibility assumptions we stated in class. Denote
the social welfare of an allocation A by sw(A) =

∑n
i=1 Vi(Ai).

In the questions below, we are interested in measuring how restrictive the notion of proportion-
ality is. Specifically, we would like to measure the worst-case multiplicative loss in social welfare
that one must incur when imposing proportionality. To do so, we compare the maximum social
welfare we can achieve without requiring proportionality to the maximum social welfare we can
achieve subject to proportionality.

(a) [15 Points] Show that for all possible valuations V1, . . . , Vn,

max{sw(A) : A is an allocation of the cake}
max{sw(A) : A is a proportional allocation of the cake}

= O(
√
n).

[Hint: Consider an allocation A∗ that maximizes social welfare. Let L be the set of agents who
have value at least 1/

√
n for their piece of the cake under A∗. Consider two cases: |L| <

√
n and

|L| ≥
√
n. The former case is easy. In the latter case, shuffle the allocations of the agents in A∗ to

generate a proportional allocation A that does not lose too much welfare compared to A∗.]

(b) [10 Points] Give a family of examples of V1, . . . , Vn (one example for each value of n) such that

max{sw(A) : A is an allocation of the cake}
max{sw(A) : A is a proportional allocation of the cake}

= Ω(
√
n).

Solution to Q1

This is an adaptation of the proof of Caragiannis et al. [1] due to Procaccia [2].

(a) Let V1, . . . , Vn denote the valuations of the players, and let A∗ ∈ arg maxA sw(A) be an optimal
allocation. Let L = {i ∈ N : Vi(A

∗
i ) ≥ 1/

√
n} be the set of “large” players, and S = N \ L be the

set of “small” players. Consider two cases.

Case 1: |L| <
√
n. This is the easy case. Note that sw(A∗) ≤ |L| · 1 + |S| · 1/

√
n < 2/

√
n. In contrast,

any proportional allocation A satisfies sw(A) ≥ n · 1/n = 1, yielding an approximation of O(
√
n).

Case 2: |L| ≥
√
n. This is the more difficult case. We will construct a specific proportional allocation

A such that sw(A) ≥ sw(A∗)/
√
n. Note that |L| ≥

√
n implies |S| ≤ n−

√
n. Define an allocation

A by reallocating pieces in A∗ to the players as follows.
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For each i ∈ S, allocate A∗i among players in S in a proportional manner, so that for each j ∈ S,
we have Vj(Aj ∩A∗i ) ≥ Vj(A∗i )/|S|.

For each i ∈ L, allocate A∗i among players in {i} ∪ S so that

Vi(Ai ∩A∗i ) ≥
√
n · Vi(A

∗
i )√

n+ |S|
,

and for every j ∈ S,

Vj(Aj ∩A∗i ) ≥
Vj(A

∗
i )√

n+ |S|
.

One way to achieve this is to create
√
n copies of player i with identical preferences, and dividing

A∗i proportionally among the
√
n copies as well as players in S (i.e., among a total of

√
n + |S|

players), and giving player i the union of what the copies receive.

We now show that A is proportional, and sw(A) ≥ sw(A∗)/
√
n. For i ∈ L, we have

Vi(Ai) ≥
√
n · Vi(A

∗
i )√

n+ |S|
≥ 1√

n+ |S|
≥ 1

n
,

and for i ∈ S, we have

Vi(Ai) ≥
∑
j∈L

Vi(A
∗
j )√

n+ |S|
+
∑
j∈S

Vi(A
∗
j )

|S|
≥

∑
j∈N Vi(A

∗
j )

n
=

1

n
.

Hence, A is a proportional allocation. We next show that Vi(Ai) ≥ Vi(A
∗
i )/
√
n, which would

yield the desired approximation ratio of
√
n. For i ∈ S, this holds because Vi(A∗i ) ≤ 1/

√
n and

Vi(Ai) ≥ 1/n. For i ∈ L, it follows because

Vi(Ai) ≥
√
n · Vi(A

∗
i )√

n+ |S|
≥
√
n · Vi(A

∗
i )

n
=
Vi(A

∗
i )√
n

.

(b) For the lower bound, consider the following valuations for any given n.

The set L ⊆ N contains exactly
√
n players. Each player i ∈ L uniformly desires a single interval

of length 1/
√
n, and the desired intervals of any two players i, j ∈ L are disjoint. The set of players

S = N \ L contains n−
√
n players who desire the entire cake uniformly.

The optimal allocation A∗ gives the players in L their desired intervals, achieving sw(A∗) =
√
n.

In contrast, any proportional allocation A must give each player in S an interval of length at least
1/n, leaving only 1/

√
n length of the cake for players in L. Because players in L have value density

at most
√
n at any point, it must hold that

∑
i∈L Vi(Ai) ≤

√
n · 1/

√
n = 1, while

∑
i∈S Vi(Ai) ≤ 1.

Hence, sw(A) ≤ 2, yielding an approximation ratio of Ω(
√
n).

2



Q2 [25 Points] Maximin Share

Consider the setting of allocating indivisible goods, where a set of goods M is to be allocated to a
set of n agents N with additive valuations V1, . . . , Vn. Recall the definition of maximin share from
class. For a subset of goods S, let Tk(S) be the set of all partitions of S into k bundles, and

MMSi(k, S) = max
T∈Tk(S)

min
Tj∈T

vi(Tj)

be the maximum value placed by agent i on the worst bundle across all such partitions. We say
that an allocationA is α-MMS if Vi(Ai) ≥ α ·MMSi(n,M) for all i. In this question, you will derive
a simple 1/2-MMS approximation.

Define PROPi(k, S) = 1
k

∑
g∈S Vi({g}). Consider the following algorithm.

Algorithm 1: 1/2-MMS

1 while ∃i, g : Vi({g}) ≥ 1
2 · PROPi(|N |,M) do // If i values g a lot

2 Ai ← {g}; // Allocate g to i
3 N ← N \ {i},M ←M \ {g}; // Remove g, i forever

4 Run round robin to allocate the remaining goods in M to the remaining agents in N , and
store the results in A;

5 return A;

(a) [10 Points] Prove that MMSi(n − 1,M \ {g}) ≥ MMSi(n,M). That is, the MMS value of an
agent can only go up if one other agent and one good are removed from consideration.

(b) [5 Points] Argue that MMSi(k, S) ≤ PROPi(k, S). Use that to deduce that the 1/2-MMS guar-
antee is satisfied for every agent allocated to (and removed) by the while loop of the algorithm.

(c) [10 Points] Assume that the round robin procedure, when used to find an allocation A of a set
of goods M to a set of agents N , satisfies the following property (it is implied by EF1): Vi(Ai) ≥
PROPi(|N |,M)−maxg∈M Vi({g}). Use it to prove that the 1/2-MMS guarantee is also satisfied for
all the agents allocated to by Step 4 of the algorithm. (Hint: Use the fact that each such agent must
not value every remaining good too highly.)

Solution to Q2

(a) Consider a partition T of M into n bundles such that MMSi(n,M) = minTj∈T vi(Tj) (this is
a partition that maximizes the value of the minimum bundle, thus achieving the MMS value of
the agent). We derive a partition T ′ of M \ {g} into n − 1 bundles such that MMSi(n,M) ≤
minT ′

j∈T ′ vi(T
′
j) ≤ MMSi(n − 1,M \ {g}), where the last inequality is due to the definition of

MMSi(n− 1,M \ {g}). This would prove the required relation.

Note that good g must be part of some bundle Tk ∈ T . Create T ′ by starting with the n−1 bundles
of T other than Tk, and distributing the goods in Tk \ {g} among these n − 1 bundles arbitrarily.
Note that minT ′

j∈T ′ vi(T
′
j) ≥ minTj∈T\{Tk} vi(Tj) ≥ minTj∈T vi(Tj), where the first inequality holds
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because each bundle in T ′ is a superset of the corresponding bundle from T \{Tk}. This completes
the proof.

(b) Consider any partition T ∈ Tk(S). Note that

min
Tj∈T

vi(Tj) ≤
1

k

∑
Tj∈T

vi(Tj) =
1

k

∑
g∈S

vi({g}) = PROPi(k, S),

where the second transition is due to additivity of valuations. Since this holds for all T ∈ Tk(S),
we have that MMSi(k, S) = maxT∈Tk(S) minTj∈T vi(Tj) ≤ PROPi(k, S).

Consider any agent i who is allocated a good g at some point by the while loop. Let N ′ be the
set of agents remaining and M ′ be the set of goods remaining right before agent i was allocated
good g. Then, by the condition of the while loop, we must’ve had vi({g}) ≥ 1

2 ·PROPi(|N ′|,M ′) ≥
1
2 ·MMSi(|N ′|,M ′), where the last inequality is due to what we just proved. Further, since every
iteration of the while loop removes one agent and one good from the system, due to part (a) the
MMS value of every remaining agent for the remaining set of goods (weakly) goes up. Hence,
MMSi(|N ′|,M ′) ≥ MMSi(n,M). Together, we have that vi(Ai) = vi({g}) ≥ 1

2 ·MMSi(n,M), as
needed.

(c) Let N ′ and M ′ be the sets of agents and goods remaining when the round robin procedure is
called. Consider any agent i ∈ N ′. Because this agent was not considered by the while loop, it
must be the case that vi({g}) < 1

2 · PROPi(|N ′|,M ′) for all g ∈ M ′. Hence, maxg∈M ′ vi({g}) <
1
2 · PROPi(|N ′|,M ′). Using the property of round robin given to us, we have that

vi(Ai) ≥ PROPi(|N ′|,M ′)−max
g∈M ′

vi({g}) >
1

2
·PROPi(|N ′|,M ′) ≥

1

2
·MMSi(|N ′|,M ′) ≥

1

2
·MMSi(n,M),

where the penultimate inequality is due to part (b), and the last inequality is due to the same
reasoning as provided in part (b) (MMS values go up for all remaining agents due to the while
loop removing one agent and one good at a time). This completes the proof.
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Q3 [25 Points] Stronger Justified Representation

Recall the EJR guarantee for approval-based committee selection from class. A committee W of
size k satisfies EJR if

• for all ` ∈ {1, . . . , k} and groups of voters S ⊆ N that are...

• |S| ≥ ` · n/k (large) and | ∩i∈S Ai| ≥ ` (cohesive)...

• ui(W ) = |Ai ∩W | ≥ ` for at least one i ∈ S.

One of the students asked why we should only demand at least one member to have utility at
least ` and not for each member to have utility at least `, which would be a stronger guarantee. In
this question, you will show that this stronger guarantee cannot always be provided.

Consider an election with four candidates {a, b, c, d} and 12 voters with approval sets ({a, b}, {b}, {b},
{b, c}, {c}, {c}, {c, d}, {d}, {d}, {d, a}, {a}, {a}). Notice the cyclic nature of this list. Argue that no
committee of size k = 3 will satisfy the strong notion suggested above. (Hint: For each candidate,
find a group of voters which would require that candidate to be part of the committee.)

Solution to Q3

Any committee of size k = 3 would leave one candidate unselected. Consider any arbitrary com-
mittee. Due to the symmetry of the profile, assume, without loss of generality, that the candidate
not selected is d. Then, consider the group of voters S whose votes are {c, d}, {d}, {d}, {d, a}.

Note that the group satisfies the stronger JR requirement for ` = 1 because |S| = 4 = 1·12/3 (large)
and ∩i∈SAi = {d} (cohesive). Hence, stronger JR would require that |Ai ∩W | ≥ 1 for all i ∈ S.
However, this is not the case for the two voters whose votes are {d}. Hence, the arbitrarily selected
committee does not satisfy stronger JR, i.e., no committee satisfies stronger JR on this profile.
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Q4 [25 Points] Fun with Deferred Acceptance

Consider the Deferred Acceptance algorithm to find a stable matching between n men and n
women where each participant has a strict ranking over participants of the opposite gender.

(a) [15 Points] Consider the following preferences for 4 men (M1 through M4) and 4 women (W1
through W4). Each row gives the preference of one individual, and the preference decreases from
left (most preferred) to right (least preferred).

Men’s Preferences

M1 W2 W4 W1 W3
M2 W3 W1 W4 W2
M3 W2 W3 W1 W4
M4 W4 W1 W3 W2

Women’s Preferences

W1 M2 M1 M4 M3
W2 M4 M3 M1 M2
W3 M1 M4 M3 M2
W4 M2 M1 M4 M3

Run men-proposing deferred acceptance (MPDA) and women-proposing deferred acceptance
(WPDA) on this instance. For each algorithm, describe each iteration: who proposes to whom
in that iteration, and who is engaged to whom at the end of the iteration.

(b) [10 Points] Suppose there are k “good” men and k “good” women such that in the preference
ranking of each woman (resp. man), the top k men (resp. women) are precisely the k good men
(resp. women) in some order. That is, every participant prefers the k good participants of the
opposite gender to the other participants of the opposite gender. Show that in any stable matching,
the k good men must be matched to the k good women.

Solution to Q4

(a) MPDA:

Iteration Proposal Engagements
1 M1 to W2 M1W2
2 M2 to W3 M1W2, M2W3
3 M3 to W2 M2W3, M3W2
4 M4 to W4 M2W3, M3W2, M4W4
5 M1 to W4 M2W3, M3W2, M1W4
6 M4 to W1 M2W3, M3W2, M1W4, M4W1

WPDA:

Iteration Proposal Engagements
1 W1 to M2 W1M2
2 W2 to M4 W1M2, W2M4
3 W3 to M1 W1M2, W2M4, W3M1
4 W4 to M2 W1M2, W2M4, W3M1
5 W4 to M1 W1M2, W2M4, W4M1
6 W3 to M4 W1M2, W4M1, W3M4
7 W2 to M3 W1M2, W4M1, W3M4, W2M3
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(b) For contradiction, suppose w.l.o.g. that there is a “good” man M matched to a “not-good”
woman W. Then, there are at most k − 1 good man - good woman matches. Hence, there is at
least one good woman W’ matched to a not-good man M’. This matching is unstable because W’
prefers M to M’ and M also prefers W’ to W. Thus, in any stable matching, all k good men must be
matched to the k good women.

(c) Recall that MPDA returns the stable matching where all men are matched to their best valid
partners and all women to their worst valid partners, while WPDA returns the stable matching
where all men are matched to their worst valid partners and all women to their best valid partners.

If these are the same stable matching, then for every man and woman, their best valid partner is
the same as their worst valid partner, implying that they have a unique valid partner. This in turn
implies that there is a unique stable matching in that problem.
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