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Abstract

A paradigmatic problem in social choice theory deals with the
aggregation of subjective preferences of individuals — repre-
sented as rankings of alternatives — into a social ranking.
We are interested in settings where individuals are uncertain
about their own preferences, and represent their uncertainty
as distributions over rankings. Under the classic objective of
minimizing the (expected) sum of Kendall tau distances be-
tween the input rankings and the output ranking, we establish
that preference elicitation is surprisingly straightforward and
near-optimal solutions can be obtained in polynomial time.
We show, both in theory and using real data, that ignoring
uncertainty altogether can lead to suboptimal outcomes.

1 Introduction

Recent years have seen a growing interest in the problem
of predicting the objective quality of alternatives based on
noisy votes over them (Conitzer and Sandholm 2005; Lu and
Boutilier 2011; Conitzer, Rognlie, and Xia 2009; Elkind,
Faliszewski, and Slinko 2010; Azari Soufiani, Parkes, and
Xia 2012; Azari Soufiani et al. 2013; Azari Soufiani, Parkes,
and Xia 2014; Procaccia, Reddi, and Shah 2012; Jiang et al.
2014). Research on this problem is partly driven by appli-
cations to crowdsourcing (Procaccia, Reddi, and Shah 2012;
Caragiannis, Procaccia, and Shah 2013) and multiagent sys-
tems (Jiang et al. 2014) — domains where uncertainty stems
from the limited ability of voters to identify an objective
ground truth. In contrast, we study situations where voters
are uncertain about their own subjective preferences.
Taking a step back, we note that the rigorous study of so-
cial choice dates back to the late 18th Century, but, more
than two centuries later, its most prominent application —
political elections — is just as relevant. In an election, vot-
ers express their subjective preferences over the candidates,
and the goal is to reach social consensus among these pos-
sibly conflicting preferences. However, it is often difficult
for voters to accurately determine their preferences due to
missing information. This issue is exacerbated as candidates
often try to hide their position on the sensitive issues that
voters care about. To illustrate this point, (Shepsle 1972)
gives the fascinating — albeit disturbing — example of the
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campaign strategy devised by Nicholas Biddle, the manager
of William Henry Harrison’s campaign for president of the
United States: “Let him say not one single word about his
principles, or his creed — let him say nothing — promise
nothing. Let no Committee, no convention — no town meet-
ing ever extract from him a single word, about what he thinks
now, or what he will do hereafter. Let the use of pen and ink
be wholly forbidden as if he were a mad poet in Bedlam.”

Nevertheless, when voters actually vote in an election,
they are required to distill a deterministic vote. Aggregating
such votes ignores the underlying uncertainty. Sadly, even if
one had a way of taking uncertainty into account, political
election procedures are notoriously hard to change.

In contrast, the Internet has given rise to flexible vot-
ing platforms that draw on academic research; examples
include All Our Ideas (www.allourideas.org) —
which has already collected more than seven million votes,
Pnyx (pnyx.dss.in.tum.de), and Whale (http:
//whale3.noiraudes.net/whale3/index.do).
Much like political elections, these platforms currently
ignore voters’ uncertainty regarding their own subjective
preference. But uncertainty does exist. Even in small-scale
settings such as a group of friends choosing a restaurant
or a movie, uncertainty stems from lack of information,
knowledge, or deliberation time. This is also true in large-
scale settings. For example, All Our Ideas hosted a popular
survey conducted by the New York City Mayor’s office
to choose from various ideas to make NYC “greener and
greater”. But it is hard to accurately compare such ideas due
to their unpredictable overall impact on the city.

Motivated by the foregoing observations, the goal of this
paper is to study social consensus in the presence of voters’
uncertainty about their own subjective preferences, design
effective rules for eliciting and aggregating uncertain votes,
and quantify the benefit of doing so.

Our approach. We use an expressive model of uncertainty:
We represent an uncertain vote as a distribution over rank-
ings. On one end of the spectrum, a supremely confident
voter will report a distribution with singleton support. On the
other end of the spectrum, a clueless voter will report a uni-
form distribution. While in general this type of information
seems difficult to elicit, we will show that, for our purposes,
it is sufficient to ask queries of the form “how likely is it
that you prefer x to y?”” Importantly, this is close in spirit to



pairwise comparison queries of the form “do you prefer = to
y?”, which platforms such as All Our Ideas already use.

It remains to define a good output ranking with respect to
uncertain input votes. To this end, let us define the Kendall
tau (KT) distance between two rankings as the number of
pairs of alternatives on which the two rankings disagree; it
is equal to the number of swaps bubble sort would require
to convert one ranking into the other. Our goal is to find a
ranking that minimizes the expected sum of KT distances to
the voters’ actual rankings, where the expectation is taken
over the voters’ uncertainty about their own preferences.

Being able to quantify the quality of an output ranking
is important because we would like to measure the loss in
quality when uncertainty is not taken into account. But why
this specific measure — the sum of KT distances? It is an
extremely well studied measure in the classical setting (with
no uncertainty); its minimizer — the Kemeny rule — has
many virtues. It is characterized by a number of desirable
axiomatic properties (Young and Levenglick 1978), and also
has alternative justifications in the distance rationalizability
framework (Meskanen and Nurmi 2008) and in the maxi-
mum likelihood estimation framework (Young 1988).

Our Results. Our first result (Theorem 1) shows that to
compute the optimal ranking, from the elicitation viewpoint
we only need to ask voters to report their likelihood of pre-
ferring one alternative to another, and from the computa-
tional viewpoint the problem can be formulated as the popu-
lar N"P-hard problem of finding the minimum feedback arc
set of a tournament (FAST). Our next result (Theorem 2)
offers two methods to reduce the computation and elicita-
tion burden — at the cost of only computing an approximate
solution with high confidence — and provides a tradeoff be-
tween the two measures: one method draws on the existing
polynomial-time approximation scheme for FAST (Kenyon-
Mathieu and Schudy 2007), and the other leverages a novel
result (Lemma 1) about feedbacks of approximate tourna-
ments, which may be of independent interest. We also in-
vestigate the structure of the optimal rule in a special case,
and show that it can be highly counterintuitive (Theorem 3).

Finally, we show (Theorem 4) that ignoring uncertainty
altogether — as is done today — can lead to moderately or
severely suboptimal outcomes in the worst case, depending
on the way the objective function is defined. Our experimen-
tal results in Section 5 indicate that this is true even with
preferences from real-world datasets.

Additional related work. Perhaps the most closely related
work to ours is that of Enelow and Hinich (1981), who pro-
pose ways of estimating the level of uncertainty in subjective
preferences in political elections from survey data. However,
they do not address aggregation, which is the focus of our
work. Our proposal of asking voters the likelihood of prefer-
ring one alternative to another is reminiscent of similar pro-
posals (Burden 1997; Alvarez and Franklin 1994), but our
work is driven by optimal aggregation. Ok et al. (2012) de-
couple two sources of uncertainty in subjective preferences:
indecisiveness in beliefs versus tastes. We emphasize that
the uncertainty studied in this work is different from many
other forms of uncertainty studied in social choice (Nurmi
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Uncertainty in rank aggregation has recently been ex-
plored in machine learning (Niu et al. 2013; Soliman and
Ilyas 2009). In a closely related paper, Niu et al. (2013) pro-
pose aggregating web page rankings into a single ranking by
first artificially converting the deterministic inputs into dis-
tributions, and then aggregating these distributions. In con-
trast, in our setting the distributions are inputs from the vot-
ers themselves. Further, unlike us, Niu et al. (2013) do not
focus on the elicitation or computational aspects. A sepa-
rate line of work in crowdsourcing deals with estimating the
quality of workers, and using it as an indicator of their accu-
racy while aggregating their opinions to pinpoint an objec-
tive ground truth (Welinder et al. 2010; Dekel and Shamir
2009). In contrast, in our work there is no objective ground
truth, and the uncertainty of the voters is part of the input.

2 Model

Let [k] £ {1,...,k}. Let A denote a set of m alterna-
tives, and L(A) be the set of rankings of the alternatives.
Foro € L(A), a >, b denotes that alternative a is preferred
to alternative b in 0. Let the set of votersbe N = {1, ... ,n}.

In the classical setting, each voter ¢ € [n| submits a vote
o; € L(A), which is a ranking representing the voter’s sub-
jective preferences over the alternatives. A collection of sub-
mitted votes is called a (preference) profile, and is typically
denoted by 7. A voting rule (technically, a social welfare
Sunction) f : L(A)™ — L(A) is a function that aggregates
the input rankings into a social ranking. A well-known vot-
ing rule is the Kemeny rule, which finds the social ranking
(called the Kemeny ranking, and denoted oggy) that mini-
mizes the sum of Kendall tau (KT) distances from the input
rankings. The Kendall tau distance, denoted d 7, counts the
number of pairs of alternatives on which two rankings dis-
agree. Hence, oxem = arg min, ¢ o4y Y-y dxr (0, 03).

Let us describe an alternative way of thinking about the
Kemeny rule. A weighted tournament (hereinafter, simply a
tournament) is a complete directed graph with two weighted
edges between each pair of vertices (one in each direction).
Minimum feedback arc set for tournaments (FAST) is the
problem of finding a ranking of the vertices (hereinafter,
the minimum feedback ranking, or the optimal ranking) that
minimizes the sum of weights of edges that disagree with the
ranking (i.e., that go from a lower-ranked vertex to a higher-
ranked vertex). Given a profile 7, its weighted pairwise ma-
Jjority tournament is the tournament whose vertices are the
alternatives, and the weight of the edge from alternative a
to alternative b, denoted wgy, is the number of voters who
prefer a to b. It is easy to check that the minimum feedback
ranking of this tournament is the Kemeny ranking of 7.

In this paper, we consider voters who are uncertain about
their own subjective preferences. The uncertain preferences
of voter ¢ are a distribution over rankings D; from which the
voter’s actual preferences o; are drawn. Let A(L(A)) de-
note the set of distributions over rankings of alternatives in
A. In our setting, a voting rule f : A(L(A))" — L(A) ag-
gregates the uncertain votes of the voters into a social rank-
ing. Extending the reasoning behind the Kemeny rule, let the



objective function h(c) = E,.p, vien] >re1 dxr(0,0;)
be the expected sum of Kendall tau distances from the un-
certain input votes, and let the optimal ranking oopr =
argmin, ¢ 04y h(o) be its minimizer.

3 Computation and Elicitation

To naively compute the optimal ranking, one would need to
elicit the complete distribution D; from each voter 7, com-
pute the objective function value (the expected sum of KT
distances from the input distributions) for every possible
ranking, and then select the ranking with the smallest objec-
tive function value. However, this is nastily expensive: it re-
quires 2(m!) communication and £((m!)?) computations!
Fortunately, both requirements can be reduced significantly.

Theorem 1. Given the voters’ uncertain subjective prefer-
ences as distributions over rankings, the social ranking that
minimizes the expected sum of Kendall tau distances from
the voters’ preferences is the minimum feedback ranking of
the tournament over the alternatives where the weight of the
edge from alternative a to alternative b is the sum of proba-
bilities of the voters preferring a to b.

Proof. First, using linearity of expectation and the definition
of the KT distance, we get
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where I is the indicator function, and the final transition
follows from linearity of expectation and by interchanging
summations. In the final expression, E,..p,[I[b >, a]] =
Prp,[b > a] is the probability that voter ¢ prefers b to a. Note
that h(c) is simply the feedback of o for the required tour-
nament, and oopr = argmin,c,(4) (o) is the minimum
feedback ranking. l

Due to Theorem 1, the communication requirement for
computing oopr can be substantially reduced to eliciting
only O(n - m?) pairwise comparison probabilities from the
voters, and the computational requirement can be substan-
tially reduced to O((n + m!) - m?) (computing the required
tournament and finding its minimum feedback ranking).
However, the running time is still exponential in the num-
ber of alternatives m, which is unavoidable because FAST
is N"P-hard (Bartholdi, Tovey, and Trick 1989).

3.1 Computationally Efficient Approximations

Interestingly, there is a polynomial-time approximation
scheme (PTAS) for FAST (Kenyon-Mathieu and Schudy
2007), which means that for any constant ¢ > 0, one can
find a ranking whose feedback is at most (1 + €) times the
minimum feedback, in time that is polynomial in m. This
is serendipitous, as the minimum feedback in general (non-
tournament) graphs is hard to approximate to a factor of
1.361 (Kenyon-Mathieu and Schudy 2007).

For a constant € > 0, the PTAS, when applied to the tour-
nament from Theorem 1, returns a ranking o with k() <
(14 €) - h(oopr) in time that is polynomial in m (and ex-
ponential in 1/¢). Interestingly, the PTAS only requires the
edge weights up to an additive accuracy of ne/m?2.! We
leverage this flexibility to further reduce the burden of elic-
itation. Using Hoeffding’s inequality, one can easily show
that eliciting each pairwise comparison probability from
only O(m*log(m/§)/€?) voters is sufficient to estimate the
edge weights such that with probability at least 1 — §, every
estimate has an additive error of at most ne/m?. Crucially,
the number of voters required to compare a given pair of
alternatives is independent of the total number of voters n.

While the PTAS helps achieve polynomial running time,
in practice intractability is often not a serious concern in the
first place due to a growing array of fast, exact algorithms
developed for FAST (Conitzer, Davenport, and Kalagnanam
2006; Betzler et al. 2009). We show that with an exact solver
for FAST, we can further reduce the elicitation burden.

Lemma 1. Let 0 < e < 1/3. If there exists a constant
c > 0 such that the edge weights of a tournament satisfy
Wah + Wpa > ¢ for all pairs of vertices (a,b), then the min-
imum feedback of the tournament in which the weights are
approximated up to an additive accuracy of c - € provides
a (1 + 12¢)-multiplicative approximation for the minimum
feedback in the original tournament.

Before we dive into the proof, let us compare Lemma 1
to the PTAS. While Lemma 1 allows more error in the
weights (by a factor of m?), it requires an exact solution
to the tournament with approximate weights (thus keeping
the problem computationally intractable). In contrast, the
PTAS only approximately solves the tournament with ap-
proximate weights (thus allowing polynomial running time).
Because minimum feedback arc set is an important opti-
mization problem with numerous applications, we believe
that Lemma 1 may be of independent interest.

Proof of Lemma 1. Let V denote the set of vertices of the
tournament. Let w,;, and wg; denote the true and the approx-
imate weights, respectively, on the edge from a to b. Let F'(-)

and ﬁ() denote the feedbacks in the tournaments with the
true and the approximate weights, respectively. Finally, let o
and & denote the minimizers of F(-) and F(-), respectively.
Then, we wish to prove that given |wap — Wap| < ¢ - € for all
distinct a,b € V, we have F(d) < (1 + 12¢) - F (o).

Let M be the set of pairs of vertices on which o and &

agree, and let N be the set of remaining pairs of vertices.
For a ranking 7, let Fi;(7) and Fy(7) (resp., Fas(7) and

Fi (7)) denote the parts of its feedback F'(7) (resp., F (7))
over the pairs of alternatives in M and NV, respectively. Then

FM(O')ZFM(ZT\), A]y[(O’)Z ]\,1(/0'\
0< F(5) — F(o) = Fx () — Fx(0)
0< F(o) — F(3) = Fx(o) — Fx(3)

't is obvious that the PTAS can only access polynomially many
bits, but this result is much more flexible.



Because each approximate edge weight has an additive
error of at most ¢ - €, we have |Fiy(7) — Fy(7)| < |[N|-c-¢€
for all rankings 7. We now obtain an upper bound on F'(7).
F(3) = Fu (@) + Fn (@) < Fu(3) + (Fw(
< Far(0) + Fn(o) +|N|-c-e
< Fyu(o)+ Fn(o)+2-|N|-c-¢

=F(o)+2-|N|-c-e (1)

o)+ |N|-c-€)

To convert the additive bound into a multiplicative bound,
we analyze the sum of the two quantities.

Z Wab + Wha > |N‘
(a,b)eN

F(5)+F(0) 2 Fy(6)+ Fy(o

where the second transition holds because ¢ and & rank the
pair (a,b) € N differently, and the final transition follows
from the assumption wgp + wp, > c. Substituting this upper
bound on | V|- ¢ into the right hand side of Equation (1), and
simplifying, we get that

14 2¢
1—2¢

In the last inequality, (1+2¢)/(1—2¢) = 1+4e/(1—2¢) <
1+ 12¢ holds because e < 1/3. W

F(@) < F(o)-

< (1+12)F(0).

Due to Lemma 1, a (1 + ¢)-approximation to the optimal
ranking only requires edge weights up to an additive accu-
racy of ©(n - €). Combining with Hoeffding’s inequality, a
(1 + €)-approximate solution can be computed with proba-
bility at least 1 — § by asking only O(log(m/J)/€?) voters
to compare each pair of alternatives, thus improving the pre-
vious bound by a significant factor of m?.

To conclude, the PTAS and our novel approach for han-
dling additive error bounds (Lemma 1) provide approximate
solutions to our problem by offering different tradeoffs be-
tween the computational and communication requirements.

Theorem 2. It is possible to compute a ranking that pro-
vides a (1 + €)-approximation to the optimal ranking with
probability at least 1 — § in two ways:

1. Asking O(m*log(m/d)/€*) random voters for each pair-
wise comparison, and running a PTAS for FAST on the
tournament with estimated weights, which guarantees
polynomial running time.

2. Asking O(log(m/d)/€?) random voters for each pairwise
comparison, and running an exact solver for FAST on the
tournament with estimated weights (assuming € < 1/3),
which does not guarantee polynomial running time.

3.2 Special Case: The Mallows Model

The characterization of the optimal ranking in Theorem 1 is
concise, but does not provide any deep intuition behind how
a single voter’s level of uncertainty affects the outcome. In
this section we examine a setting where a voter’s uncertain
preferences can be represented by a single ranking together
with a single real-valued confidence parameter.

In more detail, we represent a voter’s uncertain prefer-
ences using the popular Mallows model (1957), which is

parametrized by a central ranking o* € L(A), and a noise
parameter ¢ € [0, 1]. Given these parameters, the probabil-
ity of drawing a ranking o is Pr[o|o*, ] = @dKT(”V"*)/ZZl,
where Z7' is a normalization constant that can be shown to
be independent of the central ranking o*. The noise param-
eter ¢ — which can be thought of as the level of uncertainty
— can be varied smoothly from ¢ = 0, which represents
perfect confidence, to ¢ = 1, which represents the uniform
distribution (which has the greatest amount of uncertainty).
The Mallows model has been used extensively in social
choice and machine learning applications (see, e.g., Lebanon
and Lafferty 2002; Procaccia, Reddi, and Shah 2012; Lu and
Boutilier 2011). We remark that under the Mallows model
pairwise comparison probabilities required to compute the
edge weights in Theorem 1 have a closed form that can be
evaluated easily (Mao et al. 2014).

To distill the essence of the optimal solution under the
Mallows model, let us simplify the problem by focusing on
the case where all voters have identical noise parameter .
Intuitively, the optimal ranking should coincide with the Ke-
meny ranking of the profile consisting of the central rankings
of the Mallows models representing the uncertain votes. In-
deed, as ¢ — 0, this is obvious because the uncertain votes
converge to point distributions around the central rankings.
Hence, optimizing the sum of expected KT distances from
these votes converges to optimizing the sum of KT distances
from their central rankings. However, we show that this intu-
ition breaks down when we consider the case of high uncer-
tainty (¢ — 1). The case of ¢ — 1 is especially important
because, in a sense, it maximizes the effect of uncertainty
on the optimization objective, and, indeed, this case has also
received special attention in the past (Procaccia, Reddi, and
Shah 2012).

Theorem 3. When the uncertain preferences of the voters
are represented using the Mallows model with central rank-
ings {0} }ic[n) and a common noise parameter @, then:

1. There exists p* < 1 such that for all ¢ > ©*, the optimal
ranking minimizes the objective

ZQ rank(a, o) z”:

acA i=1

+ > Zﬂ[b o al,

a,bEA:a>,b i=1

— rank(a, o))

where rank(a, o) denotes the rank of alternative a in o,
and 1 is the indicator function.

2. There exist values for {0} };c[n] and @ for which the opti-
mal ranking does not minimize the Kemeny objective (the
sum of distances from the central rankings).

Proof. Let p = 1 — €. Thus, as ¢ — 1, we have ¢ — 0.
Let o} denote the central ranking of the Mallows model for
voter ¢ € [n]. Let us analyze our objective function for a



ranking o in this case.

> Eo,np.drr(0,0:)

i=1
i=1 g,€L(A)

x Z Z dKT(O', Ui) . (deT(Ui,a;‘)
i=1 o;€L(A)

=2 2 drr(no) (L erdgr(onol), @)
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where the last transition holds because 1 — € - k is the first
order approximation of ¥ = (1 — ¢)¥ when ¢ — 0. It
is thus clear that when ¢ — 0, the optimal ranking must
minimize the final expression in Equation (2) (although, not
every ranking minimizing the expression is optimal). Next,
notice that in Equation (2), the sum 3 » 1) dxr (0, 03) is
constant for every ¢ € [n] because the Kendall tau distance
is neutral. Hence, minimizing the expression in Equation (2)
amounts to maximizing the following objective function.

Z Z dKT(('I7 0'7;) . dKT(O'iaO';',k)

i=1 o, €L(A)

= Z ZdKT(a, 7) - dgr(7,07)

TEL(A) i=1

= Z dKT(O',T)~dKT(T,7T), (3)

TEL(A)
where 7 is the preference profile consisting of the central
rankings {07 }icpn), and dgp(m,7) = Y1 dgr(T,07).
Let nyp denote the number of rankings in 7 in which a is

preferred to b. Then, we expand the objective function in
Equation (3) using the definition of the Kendall tau distance.

Z dKT(O', T) . dKT(T7 7T)

TEL(A)

= > | D Ib=rdal| x

TEL(A) | a,bEA:
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a,beA: TeL(A): c,dEA

a>sb b>ra
Observe that the summation over 7 contains all m!/2 rank-
ings under which b is preferred to a. Also, note that in Equa-
tion (4), in the innermost summation over ¢,d € A, each

pair of alternatives is taken only once (i.e., the order of ¢ and
d does not matter). Let us focus on this summation. Define
5¢(q) = D_ e 4 Nar- There are three cases:

l. ¢ = a and d = b: In this case, I[b >, a] = 1 due to
the restriction on 7 in its summation. Hence, the overall
contribution of this case to the sum is m!/2 - ny.

2.c=aandd € A\ {a,b}: In this case, only one-thirds
of the rankings which satisfy b > a also satisfy a > d.
Hence, we get m!/2 - (2/3 - ngq + 1/3 - ngq). Summing
overalld € A\ {a,b} and observing that n,q +ng, = n,
we get that (up to an additive constant) the contribution of
this case to the sumis m!/2-1/3 - (sc(a) — nap).

3. c=bandd € A\ {a,b}: This is similar to the previous
case, but only one-thirds of the rankings which satisfy b >~
a also satisfy d >~ b. Hence, we get m!/2 - (1/3 - npq +
2/3 - ngp). Thus, summing over all d € A\ {a, b}, we get
that (up to an additive constant) the contribution of this
case to the sum is —m!/2 - 1/3 - (sc(b) — npq)-

4. ¢,d ¢ {a,b}. In this case, b > a and ¢ > d are indepen-
dent events. Hence, exactly half of the m!/2 rankings that
satisfy b > a also satisfy ¢ > d, and the rest half satisfy
d > c. Combining with the fact that n.qy + ng4. = n, rthe
overall contribution of this case to the sum is a constant.

Since additive constants can be ignored in maximizing the
objective function, the objective function reduces to

m/! m! 1
Do 5 et g (se(@) — )
a,bEA:a>,b

m! 1
~3 3" (sc(b) — npa)
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a,beA:a>,b
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3
=3 m-(m—1)-n— Z2-rank(a,0)-sc(a)
acA

- Z Nba,
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where the second transition uses the fact that ng,, = n —npq,
and the last transition follows by observing that sc(a) ap-
pears with a positive sign for each of m — rank(a, o) alter-
natives that it defeats in o, and with a negative sign for each
of rank(a, o) — 1 alternatives that defeat it. Finally, we can
again ignore the additive constant in maximization. Now, we
can show that maximizing this objective function is equiva-
lent to minimizing the objective function h'(o) given in the



theorem statement by observing that

Z Nt = Z Zﬂ[ah,; t]

sc(a) =
teA\{a} teA\{a} i=1
= Z Z lla =ox t] = Zm — rank(a, o),
i=1 teA\{a} i=1
and
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As noted before, we have used first-order approximation
in (1 —€)* ~ 1 — € - k. Hence, every optimal ranking min-
imizes the objective function A’(-), but not every minimizer
of h/(-) is an optimal ranking. Since h’(-) is a linear com-
bination of the Borda and the Kemeny objectives, we can
conclude that when the intersection of the set of Borda rank-
ings and the set of Kemeny rankings is non-empty, the set of
optimal ranking must be a subset of this intersection.

However, we give an example profile for which this in-
tersection is empty, and none of the optimal rankings in our
case is a Kemeny ranking. Consider the profile with 5 votes
where 3 of the votesare 0 =1 > 2 =3 =4 = ... = m,
and the remaining 2 votes are 0’ =3 > 1> 2 >4 > ... >
m. In this case, the unique Kemeny ranking is o, whereas
it can be checked that the unique ranking minimizing the
objective function h'(-) is ¢’ (which is the unique Borda
ranking in this case). Hence, from our previous analysis it
follows that for ¢ sufficiently close to 1, ¢’ should be the
unique optimal ranking. ll

Curiously, in the objective function in part 1 of Theo-
rem 3, Y . (m —rank(a,o})) is known as the Borda score
of alternative a in profile {0} };c},). Hence, the rearrange-
ment inequality implies that the ranking returned by the pop-
ular voting rule (in the classic sense) known as Borda count
on the profile {07 };¢[,], in which the alternatives are ranked
in a non-increasing order of their Borda scores, minimizes
the first term of the objective function. Next, the second
term is the Kemeny objective (i.e., the sum of Kendall tau
distances) of the profile {0 };c[n], Which is minimized by
the Kemeny ranking of the profile. Thus, optimizing the ex-
pected Kemeny objective on the profile consisting of uncer-
tain votes reduces to optimizing a linear combination of the
Borda and the Kemeny objectives on the profile consisting of
the (deterministic) central rankings of these uncertain votes.

4 Ignoring Uncertainty

While voters are typically uncertain about their subjective
preferences, and despite the fact that such uncertainty can
be taken into account with minimal additional effort (The-
orems 1 and 2), the fact remains that uncertainty is ignored
in almost all real-world voting scenarios today. This raises
a natural question: How much do we lose by not taking un-
certainty into account? Our analysis in this section answers
this question. In fact, our analysis applies to the objective
of minimizing the sum of expected distances from uncertain

votes, where the distance is measured using any metric over
the space of rankings (and not just the Kendall tau distance
that we used hereinbefore).

Let d be a distance metric over the space rank-
ings. Given uncertain votes {D;}ic[n), let h(o) =
> 1 Eyp,d(o,0;) be the objective function to be min-
imized, and let the optimal ranking oopr be its minimizer.
To measure the loss due to ignoring uncertainty, we need
to know how the voters would vote if they were asked to
report a single ranking (in the classic voting setting) when
their subjective preferences are uncertain. There are many
promising approaches (e.g., the voter may report the ranking
with the highest probability); it is hard to make an objective
choice. Hence, we take a more structured approach. Follow-
ing Caragiannis, Procaccia, and Shah (2013), we say that
a distribution over rankings is d-monotonic around a cen-
tral ranking o* if d(o,0*) < d(o’, 0*) implies Pr[o|oc*] >
Pr[o’|0*].> We assume that the uncertain vote D; of voter
i is a d-monotonic distribution around a central ranking o
When required to submit a single ranking, the voter simply
reports ;.

For a voting rule f in the classical setting, we
are interested in the worst-case (over the uncertain
votes {D;}icr,) multiplicative approximation ratio
h(f({o] }iem)))/M(oopr). Before turning to our main
result of this section, we need one more definition: a
distance metric over rankings is called neutral if relabeling
alternatives in two rankings in the same fashion does not
alter the distance between them. That is, the distance metric
is invariant to the labels of the alternatives. Neutrality is
an extremely mild assumption satisfied by all reasonable
distance metrics (including the KT distance).

Theorem 4. When the voters’ uncertain votes are d-
monotonic distributions for a neutral metric d:

1. Minimizing the sum of distances from the central rank-
ings of the uncertain votes provides a 3-approximation to
minimizing the sum of expected distances from the actual
preferences.

2. In the worst case, the approximation ratio can be
at least 1 + diam(d)/avg(d), where diam(d) =
max, . er(a)d(o,0’) is the diameter, and avg(d) =
Y orec(a) dlo,0’)/ml (which is independent of o for a
neutral d) is the average distance. In particular, for the
Kendall tau distance the factor of 3 is tight.

Proof. First, it is easy to verify that the central rank-
ing o7 of the distribution D; minimizes the ex-
pected distance (measured by d) from D;, ie. of =
arg min, ¢ p(4) Eq;~p,d(0, 0;). This follows from the rear-
rangement inequality and the definition of d-monotonicity.

Let oxpm = argmingepa) >, d(o,07) denote the

Kemeny ranking of the profile of central rankings {0 };e[n]-

2Qur definition is more general. For instance, it includes uni-
form and point distributions while the definition of Caragiannis,
Procaccia, and Shah (2013) excludes them as it requires Pr[o|o*]
to be monotonically increasing in d(o, ™).



Let oopr = argmin ¢, 4) h(o) denote the optimal rank-
ing, where h(c) = Y1 | E,,~p,d(c,0;). We are interested
in h(O’KEM)/h(UopT). Define K = Z?:l d(UKEM; 0‘:‘) and
X =" E,.~p;d(ci,of). Then, we have

h(okem) < Z]EaiNDi [d(okem, 07) + d(0;,0:)] = K + X,

i=1

h(oorr) 2 > Egimp;d(o],0:) = X,
i=1
where the first equation follows due to the triangle in-
equality, and the second equation holds because o} =
argmin, ¢ o4y Lo,~p,d(0;,0). If K < X, we already have
h(UKEM)/h(UOPT) < (K + X)/X < 23 Suppose K > X.
Then, by the triangle inequality, we have

h(oopr) > > Eo,~p,ld(oorr,07) — d(o],0:)] > K — X,
i=1
where the last inequality follows from the definitions of K
and oggm. Hence, h(oopr) > max(X, K — X). Substituting
this, we get that the approximation ratio is at most
K+ X K
max(X, K — X) — max(X, K — X)

min( X u)+2§3,

+1

K-X X
where the final step holds because either a number or its
inverse must be at most 1.3

For the lower bound of part 2, let us construct a specific
instance. Consider the two rankings o and ¢’ that are at the
greatest distance under d, i.e., d(o,0’) = diam(d). Sup-
pose that the uncertain votes of n/2 voters coincide with
a point distribution concentrated at ranking o. Suppose the
uncertain votes of the remaining n/2 voters coincide with
the uniform distribution. Without loss of generality, let the
central ranking for the uniform distribution be ¢’ such that
d(o,0") = diam(d). This assumption is without loss of gen-
erality because the effect can be achieved by considering d-
monotonic distributions with central ranking ¢’ that are arbi-
trarily close to the uniform distribution. Next, note that there
are several minimizers of the sum of distances from the cen-
tral rankings, including o and o’ themselves. Without loss of
generality, assume that the minimizer returned by the voting
rule is o’. Again, this assumption is without loss of general-
ity because one can consider profiles where the fractions of
voters with central rankings o and o’ are 1/2—e and 1/2+ e,
respectively, for an arbitrarily small € > 0.

It is now easy to check that the objective function value
achieved by ¢’ is n/2 - diam(d) + n/2 - avg(d), whereas the
minimum objective function value achieved by ogpr = o is
n/2 -0+ n/2 - avg(d). Hence, the approximation ratio is
1+ diam(d)/avg(d), as required.

For the Kendall tau distance, diam(dxr) = (73),

whereas avg(dxr) = (')/2 because any given rank-
ing disagrees with a ranking chosen uniformly at random

3Let 0/0 = 1, because if h(O'KEM) = h(O'opT) = 0, then okem
is optimal, i.e., a 1-approximation of oopr.

on half of the pairs of alternatives, in expectation. Hence,
1 + diam(dgr)/avg(dgr) = 3, meaning that the upper
bound is tight. B

While a factor of 3 is not terribly high from a theoretical-
computer-science viewpoint, it can be significant in practical
applications. Further, even in settings where this is accept-
able, the result should be taken with a grain of salt. The feed-
back of a tournament is at least Z(mb)eA min(wgp, Wpq)-
Hence, the tournament in Theorem 1 (whose feedback is the
objective function in Theorem 4) intrinsically has high feed-
back, leading to the relatively low approximation ratio.

Alternatively, we can define the objective function

ﬁ(o) = h(0) = 2 (4,p)ea MiN(Wab, Wha). By the forego-

ing discussion, clearly k(o) > 0. This objective function is
also intuitive, in the following sense: While h gives mod-
erate weight to a voter who is completely uncertain about
his preferences (and hence reports a uniform distribution),
h essentially ignores such a voter because he is going to be
equally happy with any social ranking.

Interestingly, on the example we use to establish the lower
bound in the proof of Theorem 4, minimizing the sum of dis-
tances from the central rankings has an infinite approxima-

tion ratio according to h. Thus, as usual, the multiplicative
approximation factor is sensitive to the way the objective
function is defined. Finally, observe that our optimality and
approximation results (Theorems 1 and 2) also apply to op-

timizing the alternative objective function h.

5 Experimental Results

In Section 4 we demonstrated that in the worst case, ignor-
ing uncertainty in the preferences can blow up the objec-
tive function value (which we seek to minimize) by a factor
of 3 when using the standard objective function s or un-
boundedly when using the alternative objective function h.
We now explore the impact of ignoring uncertainty using re-
alistic, rather than worst case, preferences.

Due to the lack of real-world datasets with uncertain sub-
jective preferences, we rely on datasets from Preflib (Mattei
and Walsh 2013) that have subjective rankings, and intro-
duce simulated uncertainty. Specifically, we use five datasets
from Preflib: AGH Course Selection (D7), Netflix (D5),
Skate (D3), Sushi (Dy), and T-Shirt (Ds). Each dataset con-
tains multiple preference profiles, with as many as 14, 000
voters (more than 750 on average) and as many as 30 al-
ternatives (more than 5 on average). For each preference
profile, we compute the approximation ratio averaged over
1000 simulations. In each simulation each vote in the pro-
file is converted into an uncertain vote, represented as the
Mallows model whose central ranking is the vote itself and
whose noise parameter ¢ is chosen uniformly at random
from [0, 1]. We use CPLEX to find the minimum feedback
arc set through integer linear programming.

Figure 1(a) shows that there is up to 1% (that is, a mild)
increase in the standard objective function h when ignor-
ing uncertainty. With the alternative objective function h,
however, the increase can be infinite. Figure 1(b) shows the



1 o 100 -
S 8 o s | o
08| ° _so| o % o
S N 3 8 s
206 g Z 60 | o o 2 o
5 ° ° 5 |°o g °© 5
g0.4— s 40| © é o g 102 |- 8
o & 2 g
Z02f 9 20 - < S ©
0 Q E o 0} \ 0 o) \ \ 10-1 \ \ \
D1 D2 D3 D4 D5 D1 D2 D3 D4 D5 D2 D3 D5
Datasets Datasets Datasets

(a) Average increase in h

(b) Frequency of infinite increase in h

(c) Average finite increase in h

Fig. 1: Effect of ignoring uncertainty in real preferences. Each dot represents a preference profile.

chances of observing infinite increase, which is significant
for most preference profiles. While in datasets AGH and
Sushi the multiplicative approximation factor always seems
to be either infinity or 1, profiles from the other datasets
exhibit a large increase in the alternative objective function
even when averaged over simulations where it is not infinite;
this is shown in Figure 1(c). Simulated profiles (simulating
the central rankings, too, from either the Mallows model or
the uniform distribution) give similar results.

6 Discussion

While the model of uncertainty we use — a general distri-
bution over rankings — is very expressive, one may wish
to generalize it further. Inspired by the random utility model
(RUM), which has recently gained popularity in the machine
learning literature (Azari Soufiani, Parkes, and Xia 2012,
2013; Azari Soufiani et al. 2013; Soufiani et al. 2013; Oh and
Shah 2014), one may model the real subjective preferences
of a voter as a utility for each alternative, and the uncertainty
as a distribution over these utilities. It is unclear if restricted
elicitation can lead to (approximately) optimal outcomes in
this real-valued domain.

In addition, we would like to emphasize that uncertainty
is ubiquitous, and our work opens doors to a variety of re-
lated domains. For example, in the closely related social
choice setting with an underlying ground truth and objec-
tive (rather than subjective) votes, which is popular in the
analysis of crowdsourcing systems, Shah and Zhou (2015)
study mechanisms for incentivizing workers to correctly re-
port their confidence levels. Optimal aggregation of the re-
ported confidences is an open question; its analysis may lead
to more accurate estimates of the ground truth, and thus to
more effective crowdsourcing systems.
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