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Abstract. We consider Markov decision processes (MDPs) with ω-regular spec-
ifications given as parity objectives. We consider the problem of computing the
set of almost-sure winning states from where the objective can be ensured with
probability 1. The algorithms for the computation of the almost-sure winning set
for parity objectives iteratively use the solutions for the almost-sure winning set
for Büchi objectives (a special case of parity objectives). Our contributions are
as follows: First, we present the first subquadratic symbolic algorithm to com-
pute the almost-sure winning set for MDPs with Büchi objectives; our algorithm
takes O(n ·

√
m) symbolic steps as compared to the previous known algorithm

that takes O(n2) symbolic steps, where n is the number of states and m is the
number of edges of the MDP. In practice MDPs often have constant out-degree,
and then our symbolic algorithm takes O(n ·

√
n) symbolic steps, as compared

to the previous known O(n2) symbolic steps algorithm. Second, we present a
new algorithm, namely win-lose algorithm, with the following two properties: (a)
the algorithm iteratively computes subsets of the almost-sure winning set and its
complement, as compared to all previous algorithms that discover the almost-sure
winning set upon termination; and (b) requires O(n ·

√
K) symbolic steps, where

K is the maximal number of edges of strongly connected components (scc’s) of
the MDP. The win-lose algorithm requires symbolic computation of scc’s. Third,
we improve the algorithm for symbolic scc computation; the previous known
algorithm takes linear symbolic steps, and our new algorithm improves the con-
stants associated with the linear number of steps. In the worst case the previous
known algorithm takes 5·n symbolic steps, whereas our new algorithm takes 4·n
symbolic steps.

1 Introduction
Markov decision processes. The model of systems in verification of probabilistic sys-
tems are Markov decision processes (MDPs) that exhibit both probabilistic and non-
deterministic behavior [12]. MDPs have been used to model and solve control prob-
lems for stochastic systems [10]: there, nondeterminism represents the freedom of the
controller to choose a control action, while the probabilistic component of the behav-
ior describes the system response to control actions. MDPs have also been adopted
as models for concurrent probabilistic systems [6], probabilistic systems operating in
open environments [18], and under-specified probabilistic systems [1]. A specification
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describes the set of desired behaviors of the system, which in the verification and con-
trol of stochastic systems is typically an ω-regular set of paths. The class of ω-regular
languages extends classical regular languages to infinite strings, and provides a robust
specification language to express all commonly used specifications, such as safety, live-
ness, fairness, etc [21]. Parity objectives are a canonical way to define such ω-regular
specifications. Thus MDPs with parity objectives provide the theoretical framework to
study problems such as the verification and control of stochastic systems.

Qualitative and quantitative analysis. The analysis of MDPs with parity objectives
can be classified into qualitative and quantitative analysis. Given an MDP with parity
objective, the qualitative analysis asks for the computation of the set of states from
where the parity objective can be ensured with probability 1 (almost-sure winning). The
more general quantitative analysis asks for the computation of the maximal probability
at each state with which the controller can satisfy the parity objective.

Importance of qualitative analysis. The qualitative analysis of MDPs is an important
problem in verification that is of interest irrespective of the quantitative analysis prob-
lem. There are many applications where we need to know whether the correct behavior
arises with probability 1. For instance, when analyzing a randomized embedded sched-
uler, we are interested in whether every thread progresses with probability 1 [8]. Even
in settings where it suffices to satisfy certain specifications with probability p < 1,
the correct choice of p is a challenging problem, due to the simplifications introduced
during modeling. For example, in the analysis of randomized distributed algorithms it
is quite common to require correctness with probability 1 (see, e.g., [16, 15, 20]). Fur-
thermore, in contrast to quantitative analysis, qualitative analysis is robust to numerical
perturbations and modeling errors in the transition probabilities, and consequently the
algorithms for qualitative analysis are combinatorial. Finally, for MDPs with parity ob-
jectives, the best known algorithms and all algorithms used in practice first perform the
qualitative analysis, and then performs a quantitative analysis on the result of the qual-
itative analysis [6, 7, 5]. Thus qualitative analysis for MDPs with parity objectives is
one of the most fundamental and core problems in verification of probabilistic systems.
One of the key challenges in probabilistic verification is to obtain efficient and sym-
bolic algorithms for qualitative analysis of MDPs with parity objectives, as symbolic
algorithms allow to handle MDPs with a large state space.

Previous results. The qualitative analysis for MDPs with parity objectives is achieved
by iteratively applying solutions of the qualitative analysis of MDPs with Büchi objec-
tives [6, 7, 5]. The qualitative analysis of an MDP with a parity objective with d prior-
ities can be achieved by O(d) calls to an algorithm for qualitative analysis of MDPs
with Büchi objectives, and hence we focus on the qualitative analysis of MDPs with
Büchi objectives. The classical algorithm for qualitative analysis for MDPs with Büchi
objectives works in O(n ·m) time, where n is the number of states, and m is the number
of edges of the MDP [6, 7]. The classical algorithm can be implemented symbolically,
and it takes at most O(n2) symbolic steps. An improved algorithm for the problem was
given in [4] that works in O(m ·

√
m) time. The algorithm of [4] crucially depends on

maintaining the same number of edges in certain forward searches. Thus the algorithm
needs to explore edges of the graph explicitly and is inherently non-symbolic. In the
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literature, there is no symbolic subquadratic algorithm for qualitative analysis of MDPs
with Büchi objectives.

Our contribution. In this work our main contributions are as follows.

1. We present a new and simpler subquadratic algorithm for qualitative analysis of
MDPs with Büchi objectives that runs in O(m ·

√
m) time, and show that the al-

gorithm can be implemented symbolically. The symbolic algorithm takes at most
O(n ·

√
m) symbolic steps, and thus we obtain the first symbolic subquadratic al-

gorithm. In practice, MDPs often have constant out-degree: for example, see [9]
for MDPs with large state space but constant number of actions, or [10, 17] for ex-
amples from inventory management where MDPs have constant number of actions
(the number of actions correspond to the out-degree of MDPs). For MDPs with
constant out-degree our new symbolic algorithm takes O(n ·

√
n) symbolic steps,

as compared to O(n2) symbolic steps of the previous best known algorithm.
2. All previous algorithms for the qualitative analysis of MDPs with Büchi objectives

iteratively discover states that are guaranteed to be not almost-sure winning, and
only when the algorithm terminates the almost-sure winning set is discovered. We
present a new algorithm (namely win-lose algorithm) that iteratively discovers both
states in the almost-sure winning set and its complement. Thus if the problem is to
decide whether a given state s is almost-sure winning, and the state s is almost-sure
winning, then the win-lose algorithm can stop at an intermediate iteration unlike all
the previous algorithms. Our algorithm works in time O(

√
KE ·m) time, where KE

is the maximal number of edges of any scc of the MDP (in this paper we write scc
for maximal scc). We also show that the win-lose algorithm can be implemented
symbolically, and it takes at most O(

√
KE · n) symbolic steps.

3. Our win-lose algorithm requires to compute the scc decomposition of a graph in
O(n) symbolic steps. The scc decomposition problem is one of the most fundamen-
tal problem in the algorithmic study of graph problems. The symbolic scc decom-
position problem has many other applications in verification: for example, check-
ing emptiness of ω-automata, and bad-cycle detection problems in model checking,
see [2] for other applications. An O(n · log n) symbolic step algorithm for scc de-
composition was presented in [2], and the algorithm was improved in [11]. The
algorithm of [11] is a linear symbolic step scc decomposition algorithm that re-
quires at most min{ 5 · n, 5 ·D ·N + N } symbolic steps, where D is the diameter
of the graph, and N is the number of scc’s of the graph. We present an improved
version of the symbolic scc decomposition algorithm. Our algorithm improves the
constants of the number of the linear symbolic steps. Our algorithm requires at most
min{ 3 ·n+N, 5 ·D∗ +N } symbolic steps, where D∗ is the sum of the diameters
of the scc’s of the graph. Thus, in the worst case, the algorithm of [11] requires 5 ·n
symbolic steps, whereas our algorithm requires 4 ·n symbolic steps. Moreover, the
number of symbolic steps of our algorithm is always bounded by the number of
symbolic steps of the algorithm of [11] (i.e. our algorithm is never worse).

Our experimental results show that our new algorithms perform better than the previous
known algorithms both for qualitative analysis of MDPs with Büchi objectives and
symbolic scc computation.
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2 Definitions
Markov decision processes (MDPs). A Markov decision process (MDP) G =
((S, E), (S1, SP ), δ) consists of a directed graph (S, E), a partition (S1,SP ) of the fi-
nite set S of states, and a probabilistic transition function δ: SP → D(S), where D(S)
denotes the set of probability distributions over the state space S. The states in S1 are
the player-1 states, where player 1 decides the successor state, and the states in SP are
the probabilistic (or random) states, where the successor state is chosen according to
the probabilistic transition function δ. We assume that for s ∈ SP and t ∈ S, we have
(s, t) ∈ E iff δ(s)(t) > 0, and we often write δ(s, t) for δ(s)(t). For a state s ∈ S, we
write E(s) to denote the set { t ∈ S | (s, t) ∈ E } of possible successors. For technical
convenience we assume that every state in the graph (S, E) has at least one outgoing
edge, i.e., E(s) 6= ∅ for all s ∈ S.

Plays and strategies. An infinite path, or a play, of the game graph G is an infinite
sequence ω = 〈s0, s1, s2, . . .〉 of states such that (sk, sk+1) ∈ E for all k ∈ N. We
write Ω for the set of all plays, and for a state s ∈ S, we write Ωs ⊆ Ω for the set of
plays that start from the state s. A strategy for player 1 is a function σ: S∗ ·S1 → D(S)
that chooses the probability distribution over the successor states for all finite sequences
w ∈ S∗ · S1 of states ending in a player-1 state (the sequence represents a prefix of
a play). A strategy must respect the edge relation: for all w ∈ S∗ and s ∈ S1, if
σ(w · s)(t) > 0, then t ∈ E(s). A strategy is deterministic (pure) if it chooses a
unique successor for all histories (rather than a probability distribution), otherwise it
is randomized. Player 1 follows the strategy σ if in each player-1 move, given that the
current history of the game is w ∈ S∗ · S1, she chooses the next state according to
σ(w). We denote by Σ the set of all strategies for player 1. A memoryless player-1
strategy does not depend on the history of the play but only on the current state; i.e., for
all w,w′ ∈ S∗ and for all s ∈ S1 we have σ(w ·s) = σ(w′ ·s). A memoryless strategy
can be represented as a function σ: S1 → D(S), and a pure memoryless strategy can
be represented as σ : S1 → S.

Once a starting state s ∈ S and a strategy σ ∈ Σ is fixed, the outcome of the MDP
is a random walk ωσ

s for which the probabilities of events are uniquely defined, where
an event A ⊆ Ω is a measurable set of plays. For a state s ∈ S and an event A ⊆ Ω,
we write Prσ

s (A) for the probability that a play belongs to A if the game starts from the
state s and player 1 follows the strategy σ.

Objectives. We specify objectives for the player 1 by providing a set of winning plays
Φ ⊆ Ω. We say that a play ω satisfies the objective Φ if ω ∈ Φ. We consider ω-
regular objectives [21], specified as parity conditions. We also consider the special case
of Büchi objectives.

– Büchi objectives. Let T be a set of target states. For a play ω = 〈s0, s1, . . .〉 ∈ Ω,
we define Inf(ω) = { s ∈ S | sk = s for infinitely many k } to be the set of states
that occur infinitely often in ω. The Büchi objective requires that some state of T
be visited infinitely often, and defines the set of winning plays Büchi(T ) = { ω ∈
Ω | Inf(ω) ∩ T 6= ∅ }.

– Parity objectives. For c, d ∈ N, we write [c..d] = { c, c + 1, . . . , d }. Let p:
S → [0..d] be a function that assigns a priority p(s) to every state s ∈ S,
where d ∈ N. The parity objective is defined as Parity(p) = { ω ∈ Ω |
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min
(
p(Inf(ω))

)
is even }. In other words, the parity objective requires that the

minimum priority visited infinitely often is even. In the sequel we will use Φ to
denote parity objectives.

Qualitative analysis: almost-sure winning. Given a player-1 objective Φ, a strategy
σ ∈ Σ is almost-sure winning for player 1 from the state s if Prσ

s (Φ) = 1. The almost-
sure winning set 〈〈1〉〉almost(Φ) for player 1 is the set of states from which player 1 has
an almost-sure winning strategy. The qualitative analysis of MDPs correspond to the
computation of the almost-sure winning set for a given objective Φ. It follows from the
results of [6, 7] that for all MDPs and all reachability and parity objectives, if there is an
almost-sure winning strategy, then there is a memoryless almost-sure winning strategy.
The qualitative analysis of MDPs with parity objectives is achieved by iteratively ap-
plying the solutions of qualitative analysis for MDPs with Büchi objectives [7, 5], and
hence in this work we will focus on qualitative analysis for Büchi objectives.

Theorem 1 ([6, 7]). For all MDPs G and all parity objectives Φ, there exists a pure
memoryless strategy σ∗ such that for all s ∈ 〈〈1〉〉almost(Φ) we have Prσ∗

s (Φ) = 1.

Scc and bottom scc. Given a graph G = (S, E), a set C of states is an scc if for all
s, t ∈ C there is a path from s to t going through states in C. In sequel we write scc for
maximal scc. An scc C is a bottom scc if for all s ∈ C all out-going edges are in C,
i.e., E(s) ⊆ C.

Markov chains, closed recurrent sets. A Markov chain is a special case of MDP
with S1 = ∅, and hence for simplicity a Markov chain is a tuple ((S, E), δ) with a
probabilistic transition function δ : S → D(S), and (s, t) ∈ E iff δ(s, t) > 0. A
closed recurrent set C of a Markov chain is a bottom scc in the graph (S, E). Let
C =

⋃
C is closed recurrent C. It follows from the results on Markov chains [14] that for all

s ∈ S, the set C is reached with probability 1 in finite time, and for all C such that C is
closed recurrent, for all s ∈ C and for all t ∈ C, if the starting state is s, then the state
t is visited infinitely often with probability 1.

Markov chain from a MDP and memoryless strategy. Given a MDP G =
((S, E), (S1, SP ), δ) and a memoryless strategy σ∗ : S1 → D(S) we obtain a Markov
chain G′ = ((S, E′), δ′) as follows: E′ = E ∩ (SP ×S)∪{ (s, t) | s ∈ S1, σ∗(s)(t) >
0 }; and δ′(s, t) = δ(s, t) for s ∈ SP , and δ′(s, t) = σ(s)(t) for s ∈ S1 and t ∈ E(s).
We will denote by Gσ∗ the Markov chain obtained from an MDP G by fixing a memo-
ryless strategy σ∗ in the MDP.

Symbolic encoding of an MDP. All algorithms of the paper will only depend on the
graph (S, E) of the MDP and the partition (S1, SP ), and not on the probabilistic tran-
sition function δ. Thus the symbolic encoding of an MDP is obtained as the standard
encoding of a transition system (with an OBDD [19]), with one additional bit, and the
bit denotes whether a state belongs to S1 or SP .

3 Symbolic Algorithms for Büchi Objectives
In this section we will present a new improved algorithm for the qualitative analysis
of MDPs with Büchi objectives, and then present a symbolic implementation of the
algorithm. Thus we obtain the first symbolic subquadratic algorithm for the problem.
We start with the notion of attractors that is crucial for our algorithm.
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Random and player 1 attractor. Given an MDP G, let U ⊆ S be a subset of states. The
random attractor AttrR(U) is defined inductively as follows: X0 = U , and for i ≥ 0,
let Xi+1 = Xi∪{s ∈ SP | E(s)∩Xi 6= ∅}∪{s ∈ S1 | E(s) ⊆ Xi }. In other words,
Xi+1 consists of (a) states in Xi, (b) player-1 states whose all successors are in Xi and
(c) random states that have at least one edge to Xi. Then AttrR(U) =

⋃
i≥0 Xi. The

definition of player-1 attractor Attr1(U) is analogous and is obtained by exchanging
the role of random states and player 1 states in the above definition.
Property of attractors. Given an MDP G, and set U of states, let A = AttrR(U).
Then from A player 1 cannot force to avoid U , in other words, for all states in A and for
all player 1 strategies, the set U is reached with positive probability. For A = Attr1(U)
there is a player 1 memoryless strategy to ensure that the set U is reached with certainty.
The computation of random and player 1 attractor is the computation of alternating
reachability and can be achieved in O(m) time [13], and can be achieved in O(n)
symbolic steps.

3.1 A new subquadratic algorithm
The classical algorithm for computing the almost-sure winning set in MDPs with Büchi
objectives has O(n · m) running time, and the symbolic implementation of the algo-
rithm takes at most O(n2) symbolic steps. A subquadratic algorithm, with O(m ·

√
m)

running time, for the problem was presented in [4]. The algorithm of [4] uses a mix of
backward exploration and forward exploration. Every forward exploration step consists
of executing a set of DFSs (depth first searches) simultaneously for a specified number
of edges, and must maintain the exploration of the same number of edges in each of
the DFSs. The algorithm thus depends crucially on maintaining the number of edges
traversed explicitly, and hence the algorithm has no symbolic implementation. In this
section we present a new subquadratic algorithm to compute 〈〈1〉〉almost(Büchi(T )).
The algorithm is simpler as compared to the algorithm of [4] and we will show that our
new algorithm can be implemented symbolically. Our new algorithm has some similar
ideas as the algorithm of [4] in mixing backward and forward exploration, but the key
difference is that the new algorithm never stops the forward exploration after a certain
number of edges, and hence need not maintain the traversed edges explicitly. Thus the
new algorithm is simpler, and our correctness and running time analysis proofs are dif-
ferent. We show that our new algorithm works in O(m ·

√
m) time, and requires at most

O(n ·
√

m) symbolic steps.
Improved algorithm for almost-sure Büchi. Our algorithm iteratively removes states
from the graph, until the almost-sure winning set is computed. At iteration i, we denote
the remaining subgraph as (Si, Ei), where Si is the set of remaining states, Ei is the
set of remaining edges, and the set of remaining target states as Ti (i.e., Ti = Si ∩ T ).
The set of states removed will be denoted by Zi, i.e., Si = S \ Zi. The algorithm will
ensure that (a) Zi ⊆ S \ 〈〈1〉〉almost(Büchi(T )); and (b) for all s ∈ Si ∩ SP we have
E(s) ∩ Zi = ∅. In every iteration the algorithm identifies a set Qi of states such that
there is no path from Qi to the set Ti. Hence clearly Qi ⊆ S\〈〈1〉〉almost(Büchi(T )). By
the random attractor property from AttrR(Qi) the set Qi is reached with positive prob-
ability against any strategy for player 1. The algorithm maintains the set Li+1 of states
that were removed from the graph since (and including) the last iteration of Case 1,
and the set Ji+1 of states that lost an edge to states removed from the graph since the
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last iteration of Case 1. Initially L0 := J0 := ∅, Z0 := ∅, and let i := 0 and we de-
scribe the iteration i of our algorithm, and we call our algorithm IMPRALGO (Improved
Algorithm) and the formal pseudocode is in [3].
1. Case 1. If ((|Ji| ≥

√
m) or i = 0), then

(a) Let Yi be the set of states that can reach the current target set Ti (this can be
computed in O(m) time by a graph reachability algorithm).

(b) Let Qi := Si \ Yi, i.e., there is no path from Qi to Ti.
(c) Zi+1 := Zi ∪AttrR(Qi). The set AttrR(Qi) is removed from the graph.
(d) The set Li+1 is the set of states removed from the graph in this iteration (i.e.,

Li+1 := AttrR(Qi)) and Ji+1 be the set of states in the remaining graph with
an edge to Li+1.

(e) If Qi is empty, the algorithm stops, otherwise i := i + 1 and go to the next
iteration.

2. Case 2. Else (|Ji| ≤
√

m), then
(a) We do a lock-step search from every state s in Ji as follows: we do a DFS from

s and (a) if the DFS tree reaches a state in Ti, then we stop the DFS search from
s; and (b) if the DFS is completed without reaching a state in Ti, then we stop
the entire lock-step search, and all states in the DFS tree are identified as Qi.
The set AttrR(Qi) is removed from the graph and Zi+1 := Zi∪AttrR(Qi). If
DFS searches from all states s in Ji reach the set Ti, then the algorithm stops.

(b) The set Li+1 is the set of states removed from the graph since the last iter-
ation of Case 1 (i.e., Li+1 := Li ∪ AttrR(Qi), where Qi is the DFS tree
that stopped without reaching Ti in the previous step of this iteration) and
Ji+1 be the set of states in the remaining graph with an edge to Li+1, i.e.,
Ji+1 := (Ji \AttrR(Qi)) ∪Xi, where Xi is the subset of states of Si with an
edge to AttrR(Qi).

(c) i := i + 1 and go to the next iteration.
The proof of Lemma 1 is available in [3]. We then present the running time analysis.

Lemma 1. Algorithm IMPRALGO correctly computes the set 〈〈1〉〉almost(Büchi(T )).

Lemma 2. Given an MDP G with m edges, Algorithm IMPRALGO takes O(m ·
√

m)
time.

Proof. The total work of the algorithm, when Case 1 is executed, over all iterations is
at most O(

√
m ·m): this follows because between two iterations of Case 1 at least

√
m

edges must have been removed from the graph (since |Ji| ≥
√

m everytime Case 1 is
executed other than the case when i = 0), and hence Case 1 can be executed at most
m/

√
m =

√
m times. Since each iteration can be achieved in O(m) time, the O(m ·√

m) bound for Case 1 follows. We now show that the total work of the algorithm, when
Case 2 is executed, over all iterations is at most O(

√
m·m). The argument is as follows:

consider an iteration i such that Case 2 is executed. Then we have |Ji| ≤
√

m. Let Qi

be the DFS tree in iteration i while executing Case 2, and let E(Qi) = ∪s∈QiE(s).
The lock-step search ensures that the number of edges explored in this iteration is at
most |Ji| · |E(Qi)| ≤

√
m × |E(Qi)|. Since Qi is removed from the graph we charge

the work of
√

m · |E(Qi)| to edges in E(Qi), charging work
√

m to each edge. Since
there are at most m edges, the total charge of the work over all iterations when Case 2
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is executed is at most O(m ·
√

m). Note that if instead of
√

m we would have used a
bound k in distinguishing Case 1 and Case 2, we would have achieved a running time
bound of O(m2/k + m · k), which is optimized by k =

√
m.

Theorem 2. Given an MDP G and a set T of target states, the algorithm IMPRALGO
correctly computes the set 〈〈1〉〉almost(Büchi(T )) in time O(m ·

√
m).

3.2 Symbolic implementation of IMPRALGO

In this subsection we will a present symbolic implementation of each of the steps of
algorithm IMPRALGO. The symbolic algorithm depends on the following symbolic op-
erations that can be easily achieved with an OBDD implementation. For a set X ⊆ S of
states, let

Pre(X) = { s ∈ S | E(s) ∩X 6= ∅ }; Post(X) = { t ∈ S | t ∈
⋃

s∈X E(s) };
CPre(X) = { s ∈ SP | E(s) ∩X 6= ∅ } ∪ { s ∈ S1 | E(s) ⊆ X }.

In other words, Pre(X) is the predecessors of states in X; Post(X) is the successors of
states in X; and CPre(X) is the set of states Y such that for every random state in Y
there is a successor in X , and for every player 1 state in Y all successors are in Y .

We now present a symbolic version of IMPRALGO. For the symbolic version the
basic steps are as follows: (i) Case 1 of the algorithm is same as Case 1 of IMPRALGO,
and (ii) Case 2 is similar to Case 2 of IMPRALGO, and the only change in Case 2
is instead of lock-step search exploring the same number of edges, we have lock-step
search that executes the same number of symbolic steps. The details of the symbolic
implementation are as follows, and we will refer to the algorithm as SYMBIMPRALGO.
1. Case 1. In Case 1(a) we need to compute reachability to a target set T . The symbolic

implementation is standard and done as follows: X0 = T and Xi+1 := Xi ∪
Pre(Xi) until Xi+1 = Xi. The computation of the random attractor is also standard
and is achieved as above replacing Pre by CPre. It follows that every iteration of
Case 1 can be achieved in O(n) symbolic steps.

2. Case 2. For analysis of Case 2 we present a symbolic implementation of the lock-
step forward search. The lock-step ensures that each search executes the same num-
ber of symbolic steps. The implementation of the forward search from a state s in
iteration i is achieved as follows: P0 := { s } and Pj+1 := Pj ∪ Post(Pj) unless
Pj+1 = Pj or Pj ∩Ti 6= ∅. If Pj ∩Ti 6= ∅, then the forward search is stopped from
s. If Pj+1 = Pj and Pj ∩Ti = ∅, then we have identified that there is no path from
states in Pj to Ti.

3. Symbolic computation of cardinality of sets. The other key operation required by
the algorithm is determining whether the size of set Ji is at least

√
m or not. The

details of this symbolic operation is in [3].

Correctness and runtime analysis. The correctness of SYMBIMPRALGO is estab-
lished following the correctness arguments for algorithm IMPRALGO. We now analyze
the worst case number of symbolic steps. The total number of symbolic steps executed
by Case 1 over all iterations is O(n ·

√
m) since between two executions of Case 1 at

least
√

m edges are removed, and every execution is achieved in O(n) symbolic steps.
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The work done for the symbolic cardinality computation is charged to the edges already
removed from the graph, and hence the total number of symbolic steps over all itera-
tions for the size computations is O(m). We now show that the total number of symbolic
steps executed over all iterations of Case 2 is O(n ·

√
m). The analysis is achieved as

follows. Consider an iteration i of Case 2, and let the number of states removed in the
iteration be ni. Then the number of symbolic steps executed in this iteration for each
of the forward search is at most ni, and since |Ji| ≤

√
m, it follows that the number of

symbolic steps executed is at most ni ·
√

m. Since we remove ni states, we charge each
state removed from the graph with

√
m symbolic steps for the total ni ·

√
m symbolic

steps. Since there are at most n states, the total charge of symbolic steps over all itera-
tions is O(n ·

√
m). Thus it follows that we have a symbolic algorithm to compute the

almost-sure winning set for MDPs with Büchi objectives in O(n ·
√

m) symbolic steps.

Theorem 3. Given an MDP G and a set T of target states, the symbolic algorithm
SYMBIMPRALGO correctly computes 〈〈1〉〉almost(Büchi(T )) in O(n ·

√
m) symbolic

steps.

Remark 1. In many practical cases, MDPs have constant out-degree and hence we ob-
tain a symbolic algorithm that works in O(n ·

√
n) symbolic steps, as compared to the

previous known (symbolic implementation of the classical) algorithm that takes O(n2)
symbolic steps.

4 The Win-Lose Algorithm
All the algorithms known for computing the almost-sure winning set (including the al-
gorithms presented in the previous section) iteratively compute the set of states from
where it is guaranteed that there is no almost-sure winning strategy for the player. The
almost-sure winning set is discovered only when the algorithm stops. In this section,
first we will present an algorithm that iteratively computes two sets W1 and W2, where
W1 is a subset of the almost-sure winning set, and W2 is a subset of the complement of
the almost-sure winning set. The algorithm has O(K ·m) running time, where K is the
size of the maximal strongly connected component (scc) of the graph of the MDP. We
then present an improved version of the algorithm, using the techniques to obtain IM-
PRALGO from the classical algorithm, and finally present the symbolic implementation
of the new algorithm.
4.1 The basic win-lose algorithm

The basic steps of the new algorithm are as follows. The algorithm maintains W1 and
W2, that are guaranteed to be subsets of the almost-sure winning set and its complement
respectively. Initially W1 = ∅ and W2 = ∅. We also maintain that W1 = Attr1(W1)
and W2 = AttrR(W2). We denote by W the union of W1 and W2. We describe an
iteration of the algorithm and we will refer to the algorithm as the WINLOSE algorithm
(formal pseudocode in [3]).
1. Step 1. Compute the scc decomposition of the remaining graph of the MDP, i.e.,

scc decomposition of the MDP graph induced by S \W .
2. Step 2. For every bottom scc C in the remaining graph: if C ∩ Pre(W1) 6= ∅ or

C ∩T 6= ∅, then W1 = Attr1(W1∪C); else W2 = AttrR(W2∪C), and the states
in W1 and W2 are removed from the graph.
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The stopping criterion is as follows: the algorithm stops when W = S. Observe that in
each iteration, a set C of states is included in either W1 or W2, and hence W grows in
each iteration.
Correctness of the algorithm. Note that in Step 2 we ensure that Attr1(W1) = W1

and AttrR(W2) = W2, and hence in the remaining graph there is no state of player 1
with an edge to W1 and no random state with an edge to W2. We show by induction that
after every iteration W1 ⊆ 〈〈1〉〉almost(Büchi(T )) and W2 ⊆ S \〈〈1〉〉almost(Büchi(T )).
The base case (with W1 = W2 = ∅) follows trivially. We prove the inductive case
considering the following two cases.
1. Consider a bottom scc C in the remaining graph such that C ∩ Pre(W1) 6= ∅ or

C∩T 6= ∅. Consider the randomized memoryless strategy σ for the player that plays
all edges in C uniformly at random, i.e., for s ∈ C we have σ(s)(t) = 1

|E(s)∩C| for
t ∈ E(s)∩C. If C∩Pre(W1) 6= ∅, then the strategy ensures that W1 is reached with
probability 1, since W1 ⊆ 〈〈1〉〉almost(Büchi(T )) by inductive hypothesis it follows
C ⊆ 〈〈1〉〉almost(Büchi(T )). Hence Attr1(W1 ∪ C) ⊆ 〈〈1〉〉almost(Büchi(T )). If
C ∩ T 6= ∅, then since there is no edge from random states to W2, it follows that
under the randomized memoryless strategy σ, the set C is a closed recurrent set
of the resulting Markov chain, and hence every state is visited infinitely often with
probability 1. Since C ∩ T 6= ∅, it follows that C ⊆ 〈〈1〉〉almost(Büchi(T )), and
hence Attr1(W1 ∪ C) ⊆ 〈〈1〉〉almost(Büchi(T )).

2. Consider a bottom scc C in the remaining graph such that C ∩ Pre(W1) = ∅ and
C ∩ T = ∅. Then consider any strategy for player 1: (a) If a play starting from a
state in C stays in the remaining graph, then since C is a bottom scc, it follows
that the play stays in C with probability 1. Since C ∩ T = ∅ it follows that T is
never visited. (b) If a play leaves C (note that C is a bottom scc of the remaining
graph and not the original graph, and hence a play may leave C), then since C ∩
Pre(W1) = ∅, it follows that the play reaches W2, and by hypothesis W2 ⊆ S \
〈〈1〉〉almost(Büchi(T )). In either case it follows that C ⊆ S\〈〈1〉〉almost(Büchi(T )).
It follows that AttrR(W2 ∪ C) ⊆ S \ 〈〈1〉〉almost(Büchi(T )).

The correctness of the algorithm follows as when the algorithm stops we have W1 ∪
W2 = S and running time analysis is given in [3].

Theorem 4. Given an MDP with a Büchi objective, the WINLOSE algorithm iteratively
computes the subsets of the almost-sure winning set and its complement, and in the
end correctly computes the set 〈〈1〉〉almost(Büchi(T )) and the algorithm runs in time
O(KS · m), where KS is the maximum number of states in an scc of the graph of the
MDP.

4.2 Improved WINLOSE algorithm and symbolic implementation

Improved WINLOSE algorithm. The improved version of the WINLOSE algorithm
performs a forward exploration to obtain a bottom scc like Case 2 of IMPRALGO. At
iteration i, we denote the remaining subgraph as (Si, Ei), where Si is the set of re-
maining states, and Ei is the set of remaining edges. The set of states removed will be
denoted by Zi, i.e., Si = S \ Zi, and Zi is the union of W1 and W2. In every iteration
the algorithm identifies a set Ci of states such that Ci is a bottom scc in the remain-
ing graph, and then it follows the steps of the WINLOSE algorithm. We will consider
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two cases. The algorithm maintains the set Li+1 of states that were removed from the
graph since (and including) the last iteration of Case 1, and the set Ji+1 of states that
lost an edge to states removed from the graph since the last iteration of Case 1. Initially
J0 := L0 := Z0 := W1 := W2 := ∅, and let i := 0 and we describe the iteration i of
our algorithm. We call our algorithm IMPRWINLOSE (formal pseudocode in [3]).
1. Case 1. If ((|Ji| ≥

√
m) or i = 0), then

(a) Compute the scc decomposition of the remaining graph.
(b) For each bottom scc Ci, if Ci ∩ T 6= ∅ or Ci ∩ Pre(W1) 6= ∅, then W1 :=

Attr1(W1 ∪ Ci), else W2 := AttrR(W2 ∪ Ci).
(c) Zi+1 := W1 ∪W2. The set Zi+1 \ Zi is removed from the graph.
(d) The set Li+1 is the set of states removed from the graph in this iteration and

Ji+1 be the set of states in the remaining graph with an edge to Li+1.
(e) If Zi is S, the algorithm stops, otherwise i := i+1 and go to the next iteration.

2. Case 2. Else (|Ji| ≤
√

m), then
(a) Consider the set Ji to be the set of vertices in the graph that lost an edge to the

states removed since the last iteration that executed Case 1.
(b) We do a lock-step search from every state s in Ji as follows: we do a DFS from

s, until the DFS stops. Once the DFS stops we have identified a bottom scc Ci.
(c) If Ci ∩ T 6= ∅ or Ci ∩ Pre(W1) 6= ∅, then W1 := Attr1(W1 ∪ Ci), else

W2 := AttrR(W2 ∪ Ci).
(d) Zi+1 := W1 ∪W2. The set Zi+1 \ Zi is removed from the graph.
(e) The set Li+1 is the set of states removed from the graph since the last iteration

of Case 1 and Ji+1 be the set of states in the remaining graph with an edge to
Li+1.

(f) If Zi = S, the algorithm stops, otherwise i := i+1 and go to the next iteration.
Correctness and running time. The correctness of the algorithm follows from the
correctness of the WINLOSE algorithm. The running time analysis of the algorithm
is similar to IMPRALGO algorithm, and this shows the algorithm runs in O(m ·

√
m)

time. Applying the IMPRWINLOSE algorithm bottom up on the scc decomposition of
the MDP gives us a running time of O(m ·

√
KE), where KE is the maximum number

of edges of an scc of the MDP.

Theorem 5. Given an MDP with a Büchi objective, the IMPRWINLOSE algorithm it-
eratively computes the subsets of the almost-sure winning set and its complement, and
in the end correctly computes the set 〈〈1〉〉almost(Büchi(T )) and the algorithm runs in
time O(

√
KE ·m), where KE is the maximum number of edges in an scc of the graph

of the MDP.

Symbolic implementation. The symbolic implementation of IMPRWINLOSE algo-
rithm is obtained in a similar fashion as SYMBIMPRALGO was obtained from IM-
PRALGO. The only additional step required is the symbolic scc computation. It follows
from the results of [11] that scc decomposition can be computed in O(n) symbolic
steps. In the following section we will present an improved symbolic scc computation
algorithm.

Corollary 1. Given an MDP with a Büchi objective, the symbolic IMPRWINLOSE
algorithm (SYMBIMPRWINLOSE) iteratively computes the subsets of the almost-
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sure winning set and its complement, and in the end correctly computes the set
〈〈1〉〉almost(Büchi(T )) and the algorithm runs in O(

√
KE · n) symbolic steps, where

KE is the maximum number of edges in an scc of the graph of the MDP.

Remark 2. It is clear from the complexity of the WINLOSE and IMPRWINLOSE algo-
rithms that they would perform better for MDPs where the graph has many small scc’s,
rather than few large ones.

5 Improved Symbolic SCC Algorithm
A symbolic algorithm to compute the scc decomposition of a graph in O(n · log n)
symbolic steps was presented in [2]. The algorithm of [2] was based on forward and
backward searches. The algorithm of [11] improved the algorithm of [2] to obtain an
algorithm for scc decomposition that takes at most linear amount of symbolic steps. In
this section we present an improved version of the algorithm of [11] that improves the
constants of the number of linear symbolic steps required. We first describe the main
ideas of the algorithm of [11] and then present our improved algorithm. The algorithm
of [11] improves the algorithm of [2] by maintaining the right order for forward sets.
The notion of spine-sets and skeleton of a forward set was designed for this purpose.
Spine-sets and skeleton of a forward set. Let G = (S, E) be a directed graph. Con-
sider a finite path τ = (s0, s1, . . . , s`), such that for all 0 ≤ i ≤ ` − 1 we have
(si, si+1) ∈ E. The path is chordless if for all 0 ≤ i < j ≤ ` such that j − i > 1, there
is no edge from si to sj . Let U ⊆ S. The pair (U, s) is a spine-set of G iff G contains
a chordless path whose set of states is U that ends in s. For a state s, let FW(s) denote
the set of states that is reachable from s (i.e., reachable by a forward search from s).
The set (U, t) is a skeleton of FW(s) iff t is a state in FW(s) whose distance from s is
maximum and U is the set of states on a shortest path from s to t. The following lemma
was shown in [11] establishing relation of skeleton of forward set and spine-set.

Lemma 3 ([11]). Let G = (S, E) be a directed graph, and let FW(s) be the forward
set of s ∈ S. The following assertions hold: (1) If (U, t) is a skeleton of a forward-set
FW(s), then U ⊆ FW(s). (2) If (U, t) is a skeleton of FW(s), then (U, t) is a spine-set
in G.

The intuitive idea of the algorithm. The algorithm of [11] is a recursive algorithm, and
in every recursive call the scc of a state s is determined by computing FW(s), and then
identifying the set of states in FW(s) having a path to s. The choice of the state to be
processed next is guided by the implicit inverse order associated with a possible spine-
set. This is achieved as follows: whenever a forward-set FW(s) is computed, a skeleton
of such a forward set is also computed. The order induced by the skeleton is then used
for the subsequent computations. Thus the symbolic steps performed to compute FW(s)
is distributed over the scc computation of the states belonging to a skeleton of FW(s).
The key to establish the linear complexity of symbolic steps is the amortized analysis.
We now present the main procedure SCCFIND and the main sub-procedure SKELFWD
of the algorithm from [11].
Procedures SCCFIND and SKELFWD. The main procedure of the algorithm is SC-
CFIND that calls SKELFWD as a sub-procedure. The input to SCCFIND is a graph
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(S, E) and (A,B), where either (A,B) = (∅, ∅) or (A,B) = (U, { s }), where (U, s)
is a spine-set. If S is ∅, then the algorithm stops. Else, (a) if (A,B) is (∅, ∅), then the
procedure picks an arbitrary s from S and proceeds; (b) otherwise, the sub-procedure
SKELFWD is invoked to compute the forward set of s together with the skeleton (U ′, s′)
of such a forward set. The SCCFIND procedure has the following local variables:
FWSet,NewSet,NewState and SCC. The variable FWSet that maintains the forward
set, whereas NewSet and NewState maintain U ′ and { s′ }, respectively. The variable
SCC is initialized to s, and then augmented with the scc containing s. The partition of
the scc’s is updated and finally the procedure is recursively called over:
1. the subgraph of (S, E) is induced by S\FWSet and the spine-set of such a subgraph

is obtained from (U, { t }) by subtracting SCC;
2. the subgraph of (S, E) induced by FWSet \ SCC and the spine-set of such a sub-

graph obtained from (NewSet,NewState) by subtracting SCC.
The SKELFWD procedure takes as input a graph (S, E) and a state s, first it computes
the forward set FW(s), and second it computes the skeleton of the forward set. The
forward set is computed by symbolic breadth first search, and the skeleton is computed
with a stack. The detailed pseudocodes are in [3]. We will refer to this algorithm of [11]
as SYMBOLICSCC. The following result was established in [11]: for the proof of the
constant 5, refer to the appendix of [11] and the last sentence explicitly claims that
every state is charged at most 5 symbolic steps.

Theorem 6 ([11]). Let G = (S, E) be a directed graph. The algorithm SYMBOLICSCC
correctly computes the scc decomposition of G in min{5·|S|, 5·D(G)·N(G)+N(G)}
symbolic steps, where D(G) is the diameter of G, and N(G) is the number of scc’s in
G.

Improved symbolic algorithm. We now present our improved symbolic scc algorithm
and refer to the algorithm as IMPROVEDSYMBOLICSCC. Our algorithm mainly modi-
fies the sub-procedure SKELFWD. The improved version of SKELFWD procedure takes
an additional input argument Q, and returns an additional output argument that is stored
as a set P by the calling SCCFIND procedure. The calling function passes the set U as
Q. The way the output P is computed is as follows: at the end of the forward search we
have the following assignment: P := FWSet ∩Q. After the forward search, the skele-
ton of the forward set is computed with the help of a stack. The elements of the stacks
are sets of states stored in the forward search. The spine set computation is similar to
SKELFWD, the difference is that when elements are popped of the stack, we check if
there is a non-empty intersection with P , if so, we break the loop and return. Moreover,
for the backward searches in SCCFIND we initialize SCC by P rather than s. We refer
to the new sub-procedure as IMPROVEDSKELFWD (detailed pseudocode in [3]).
Correctness. Since s is the last element of the spine set U , and P is the intersection
of a forward search from s with U , it means that all elements of P are both reachable
from s (since P is a subset of FW(s)) and can reach s (since P is a subset of U ). It
follows that P is a subset of the scc containing s. Hence not computing the spine-set
beyond P does not change the future function calls, i.e., the value of U ′, since the
omitted parts of NewSet are in the scc containing s. The modification of starting the
backward search from P does not change the result, since P will anyway be included
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in the backward search. So the IMPROVEDSYMBOLICSCC algorithm gives the same
result as SYMBOLICSCC, and the correctness follows from Theorem 6.

Symbolic steps analysis. We present two upper bounds on the number of symbolic
steps of the algorithm. Intuitively following are the symbolic operations that need to
be accounted for: (1) when a state is included in a spine set for the first time in IM-
PROVEDSKELFWD sub-procedure which has two parts: the first part is the forward
search and the second part is computing the skeleton of the forward set; (2) when a
state is already in a spine set and is found in forward search of IMPROVEDSKELFWD
and (3) the backward search for determining the scc. We now present the number of
symbolic steps analysis for IMPROVEDSYMBOLICSCC.
1. There are two parts of IMPROVEDSKELFWD, (i) a forward search and (ii) a back-

ward search for skeleton computation of the forward set. For the backward search,
we show that the number of steps performed equals the size of NewSet computed.
One key idea of the analysis is the proof where we show that a state becomes part
of spine-set at most once, as compared to the algorithm of [11] where a state can
be part of spine-set at most twice. Because, when it is already part of a spine-set, it
will be included in P and we stop the computation of spine-set when an element of
P gets included. We now split the analysis in two cases: (a) states that are included
in spine-set, and (b) states that are not included in spine-set.
(a) We charge one symbolic step for the backward search of IMPROVEDSKELFWD

(spine-set computation) to each element when it first gets inserted in a spine-
set. For the forward search, we see that the number of steps performed is the
size of spine-set that would have been computed if we did not stop the skeleton
computation. But by stopping it, we are only omitting states that are part of
the scc. Hence we charge one symbolic step to each state getting inserted into
spine-set for the first time and each state of the scc. Thus, a state getting inserted
in a spine-set is charged two symbolic steps (for forward and backward search)
of IMPROVEDSKELFWD the first time it is inserted.

(b) A state not inserted in any spine-set is charged one symbolic step for backward
search which determines the scc.

Along with the above symbolic steps, one step is charged to each state for the
forward search in IMPROVEDSKELFWD at the time its scc is being detected.
Hence each state gets charged at most three symbolic steps. Besides, for computing
NewState, one symbolic step is required per scc found. Thus the total number of
symbolic steps is bounded by 3 · |S|+ N(G), where N(G) is the number of scc’s
of G.

2. Let D∗ be the sum of diameters of the scc’s in a G. Consider a scc with diameter
d. In any scc the spine-set is a shortest path, and hence the size of the spine-set
is bounded by d. Thus the three symbolic steps charged to states in spine-set con-
tribute to at most 3·d symbolic steps for the scc. Moreover, the number of iterations
of forward search of IMPROVEDSKELFWD charged to states belonging to the scc
being computed are at most d. And the number of iterations of the backward search
to compute the scc is also at most d. Hence, the two symbolic steps charged to
states not in any spine-set also contribute at most 2 · d symbolic steps for the scc.
Finally, computation of NewSet takes one symbolic step per scc. Hence we have
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5 · d + 1 symbolic steps for a scc with diameter d. We thus obtain an upper bound
of 5D∗ + N(G) symbolic steps.

It is straightforward to argue that the number of symbolic steps of IMPROVEDSCCFIND
is at most the number of symbolic steps of SCCFIND. The detailed pseudocode and
running time analysis is presented in [3].

Theorem 7. Let G = (S, E) be a directed graph. The algorithm IMPROVEDSYMBOL-
ICSCC correctly computes the scc decomposition of G in min{ 3 · |S| + ·N(G), 5 ·
D∗(G) + N(G) } symbolic steps, where D∗(G) is the sum of diameters of the scc’s of
G, and N(G) is the number of scc’s in G.

Remark 3. Observe that in the worst case SCCFIND takes 5 ·n symbolic steps, whereas
IMPROVEDSCCFIND takes at most 4 · n symbolic steps. Thus our algorithm improves
the constant of the number of linear symbolic steps required for symbolic scc decom-
position.

6 Experimental Results
In this section we present our experimental results. We first present the results for sym-
bolic algorithms for MDPs with Büchi objectives and then for symbolic scc decom-
position. We present the results for symbolic steps comparison and the running time
comparison is similar (see [3]).

Symbolic algorithm for MDPs with Büchi objectives. We implemented all the sym-
bolic algorithms (including the classical one) and ran the algorithms on randomly gener-
ated graphs. If we consider arbitrarily randomly generated graphs, then in most cases it
gives rise to trivial MDPs. Hence we generated large number of MDP graphs randomly,
first chose the ones where all the algorithms required the most number of symbolic
steps, and then considered random graphs obtained by small uniform perturbations of
them. Our results of average symbolic steps required are shown in Table 1 and show
that the new algorithms perform significantly better than the classical algorithm.

Number of states Classical SYMBIMPRALGO SYMBIMPRWINLOSE

5000 16508 3382 4007
10000 57438 6807 7146
20000 121376 11110 12519

Table 1. The symbolic steps required by symbolic algorithms for MDPs with Büchi objectives.

Symbolic scc computation. We implemented the symbolic scc decomposition algo-
rithm from [11] and our new symbolic algorithm. We ran the algorithms on randomly
generated graphs. Again arbitrarily randomly generated graphs in many cases gives rise
to graphs that are mostly disconnected or completely connected. Hence we generated
random graphs by first constructing a topologically sorted order of the scc’s and then
adding edges randomly respecting the topologically sorted order. Our results of average
symbolic steps are shown in Table 2 and shows that our new algorithm performs better
(around 15% improvement).
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Number of states Algorithm from [11] Our Algorithm Percentage Improvement
10000 1045 877 16.06
25000 2642 2262 14.38
50000 6298 5398 14.27

Table 2. The symbolic steps required for scc computation.

References

1. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems.
In FSTTCS 95, volume 1026 of LNCS, pages 499–513. Springer-Verlag, 1995.

2. R. Bloem, H. N. Gabow, and F. Somenzi. An algorithm for strongly connected component
analysis in log symbolic steps. In FMCAD, pages 37–54, 2000.

3. K. Chatterjee, M. Henzinger, M. Joglekar, and N. Shah. Symbolic algorithms for qual-
itative analysis of Markov decision processes with Büchi objectives. CoRR, 2011.
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