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Abstract

Designing provably fair decision-making algo-
rithms is a task of growing interest and impor-
tance. In this article, I argue that preference-based
notions of fairness proposed decades ago in the
economics literature and subsequently explored in-
depth within computer science (specifically, within
the field of computational social choice) are aptly
suited for a wide range of modern decision-making
systems, from conference peer review to recom-
mender systems to participatory budgeting.

1 Introduction
With machine learning (ML) deployed worldwide to make
critical decisions, there is exploding interest in ensuring that
the ML models treat (groups of) people fairly. While algorith-
mic fairness is a nascent subject of study in machine learning,
it has deep roots in social choice theory from economics. The
more recent field of computational social choice at the inter-
section of computer science and economics has explored the
applicability of these economic fairness notions to algorith-
mic paradigms. The purpose of this article is to demonstrate
that these notions are well-suited to a broad range of algorith-
mic decision-making settings and deserve an in-depth study.

Take, for example, the classical economic notion of the
core [Gillies, 1953], which demands that when collective re-
sources are divided amongst a group of people, no subset
of them be able to find a better1 allocation of their “entitled
share” of the collective resources. This applies to participa-
tory budgeting [Fain et al., 2018], where a city allocates a
public budget to fund infrastructure projects and the “entitled
share” of any group of residents is defined in proportion to the
size of the group. The same notion also applies to conference
peer review [Aziz et al., 2023], where the “resource” being
divided is the reviewing capacity and the “entitled share” of
any group of authors is the reviewing capacity they contribute
by also serving as potential reviewers.

These types of fairness notions are appealing because they
are well-defined for a wide range of domains, including ones

1Here, “better” means a Pareto improvement, which makes at
least one person happier without hurting anyone.

with highly complex decision spaces, and they pay explicit at-
tention to the preferences of the stakeholders involved. In this
article, I will survey their applications to various algorithmic
decision-making paradigms, based partly on my own work,
and argue that these notions can play a key role in realizing
the grand vision of an overarching theory for algorithmic fair-
ness that spans a diverse set of applications.

In Section 2, I will first define several fairness definitions,
some proposed in my own work, using an example applica-
tion: the allocation of homogeneous divisible goods. Then,
in Section 3, I will demonstrate their applicability to a wide
range of real-world domains, which my work has explored
extensively. Finally, in Section 4, I will conclude with a call to
arms for exploring the applicability of such preference-based
fairness definitions in novel domains in an attempt to develop
an overarching theory for algorithmic fairness.

2 Fairness Definitions
Let us review the basic model for allocating homogeneous
divisible goods, which will serve as our reference context.
There is a set of agents N and a set of divisible goods M .
Each agent i ∈ N values each good g ∈ M at vi,g , and
agents have additive linear preferences: for receiving Xg ∈
[0, 1] fraction of each good g, the utility of agent i is given
by vi(X) =

∑
g∈M Xg · vi,g , where X = (Xg)g∈M . Let

vi(M) ,
∑

g∈M vi,g be the total value of agent i.
An allocation A ∈ [0, 1]N×M allocates Ai,g fraction of

each good g to each agent i; a valid allocation must satisfy∑
g∈M Ai,g ≤ 1 for all i ∈ N . Denoting Ai = (Ai,g)g∈M ,

each agent i derives utility vi(Ai) under this allocation.
This models many real-world applications where divisible re-
sources must be allocated; an example is the division of food
items (such as milk or rice) donated to a food bank.

Next, let us review some prominent fairness definitions.

2.1 Entitlement-Based Notions
Some definitions focus on a notion of entitlement of an agent
or a group of agents and aim to treat each agent or group
of agents no worse than their entitlement. I refer to them
as entitlement-based notions. One example is the classical
notion of proportionality [Steinhaus, 1948].
Definition 1 (Proportionality). An allocation A is propor-
tional if vi(Ai) ≥ (1/n) · vi(M) for each i ∈ N . Here, agent
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Figure 1: Logical relations between fairness axioms for the allocation of homogeneous divisible goods. Solid arrows indicate implications
that hold for arbitrary monotone preferences, while dashed arrows indicate implications that hold under additive linear preferences.

i is viewed as entitled to receiving 1/n-th of her total value.

The notion of the core [Gillies, 1953], imported from the
economic theory of non-transferable utility games, lifts this
idea to all (2n − 1 many) non-empty groups of agents.

Definition 2 (The Core). An allocation A is in the core if
there is no non-empty group of agents S ⊆ N and allocation
B of the goods to agents in S such that vi(Ai) ≤ (|S|/n) ·
vi(Bi) for all i ∈ S and at least one inequality is strict. Here,
each group S is viewed as entitled to receiving |S|/n-th of any
combination of values they can achieve by dividing the goods
amongst themselves.

Note that the core logically implies proportionality, as
the latter basically imposes the core condition on singleton
groups. Let me remark that instead of letting group S di-
vide all the goods amongst themselves and scaling their util-
ity down by a factor of |S|/n (utility-scaling version), one may
allow them to divide only |S|/n fraction of each good and not
perform any utility scaling (endowment-scaling version). For
our reference application, the two are equivalent due to ad-
ditive linear preferences, but in general they can differ sig-
nificantly (e.g., see Section 3.2). The utility-scaling version
is more broadly defined because in some applications it may
not be clear what resources to scale or how. But when there is
a compelling way to scale resources, the endowment-scaling
version can often make more sense.

2.2 Comparison-Based Notions
Other notions focus on comparing the treatment provided
to two agents or two groups of agents. I refer to them as
comparison-based notions. A widely known example is envy-
freeness [Gamow and Stern, 1958; Foley, 1967].

Definition 3 (Envy-freeness). An allocation A is envy-free if
vi(Ai) ≥ vi(Aj) for all i, j ∈ N . Here, the allocations to
agents i and j are being compared using the preferences of
agent i (and, due to the quantifier, also those of agent j).

Crucially, the definition uses the same valuation function
on both sides of the equation, thus avoiding any interpersonal
comparison of utilities. Group envy-freeness [Varian, 1974;
Berliant et al., 1992] extends this to all pairs of groups of
agents of equal size.

Definition 4 (Group Envy-freeness). An allocation A is
group envy-free if there are no non-empty groups S, T ⊆ N
with |S| = |T | and allocation B of the resources ∪j∈TAj al-
located to group T to agents in S such that vi(Ai) ≤ vi(Bi)
for all i ∈ S and at least one inequality is strict. This ensures
that group S does not envy group T collectively.

2.3 The Master Axiom
In recent work [Conitzer et al., 2019], we formulated a
novel fairness definition that is logically stronger than both
the core and group envy-freeness, thus sitting at the apex
of both entitlement-based and comparison-based notions de-
fined above. These logical implications are depicted in Fig-
ure 1. Group fairness extends group envy-freeness to all pairs
of groups S and T , but with a careful adjustment to the notion
of envy based on the difference in the sizes of the groups.
Definition 5 (Group Fairness). An allocation A is group fair
if there are no non-empty groups S, T ⊆ N and allocation B
of the resources ∪j∈TAj allocated to T to agents in S such
that vi(Ai) ≤ (|S|/|T |) · vi(Bi) for all i ∈ S and at least one
inequality is strict. Here, after allowing S to reallocate T ’s
resources amongst themselves, their utilities are scaled down
by |S|/|T |, reflecting the difference in group sizes.

At this point, one wonders whether any algorithm can prov-
ably satisfy these notions of fairness. Proportionality and
envy-freeness are rather easy to satisfy, e.g., by dividing each
good equally among the agents. Prior work in economics
shows that an allocation maximizing the Nash social welfare
(i.e., product of utilities) of the agents, which coincides with
the competitive equilibrium from equal incomes (CEEI), sat-
isfies the core [Varian, 1974] and group envy-freeness [Var-
ian, 1974; Berliant et al., 1992]. We prove that it actually
satisfies group fairness [Conitzer et al., 2019] and, together
with a mild axiom, it is in fact characterized by group fair-
ness [Freeman et al., 2020].

3 Expansive Applicability
I will now review several applications for which these fair-
ness notions have been shown to be appealing in recent work,
including in some of my own. In addition to the applications
listed below, I have also explored them for public good allo-
cation [Conitzer et al., 2017a; Fain et al., 2018; Banerjee et



al., 2023], ad allocation [Hosseini et al., 2023], multi-armed
bandits [Hossain et al., 2021], land division [Caragiannis et
al., 2022], and team formation [Li et al., 2023].

3.1 Allocating Indivisible Goods

In the reference setting of Section 2, if the goods being al-
located are indivisible (i.e., cannot be split fractionally be-
tween agents), none of the fairness notions can be guaranteed.
Nonetheless, our work has shown that maximizing the Nash
social welfare2 satisfies “up to one good”-style relaxations of
these notions,3 all the way up to group fairness [Caragiannis
et al., 2019; Conitzer et al., 2019].

One may find the violation of fairness, even up to one good,
troubling, especially if a high-valued good causes a large vi-
olation. There are multiple ways to address this. On the one
end, our work has shown that the violation can be removed
ex-ante by using randomization: specifically, there always
exists a randomization over envy-free up to one good alloca-
tions that is (exactly) envy-free in expectation [Freeman et al.,
2020]. On the other end, we have also identified a stronger ex-
post guarantee of envy-freeness up to any good (EFX), which
informally demands that the fairness violation be caused by
the least-valued good. Resolving whether an EFX alloca-
tion always exists is “fair division’s biggest problem” [Pro-
caccia, 2020], and there are promising recent developments
towards a (positive) resolution [Chaudhury et al., 2020;
Amanatidis et al., 2021; Akrami et al., 2023].

Our work has also shown that some of these fairness
guarantees remain achievable when allocating (negatively-
valued) chores instead of goods [Ebadian et al., 2022b;
Freeman et al., 2020], but many important questions remain
open; see the recent survey by Amanatidis et al. [2022].

3.2 Participatory Budgeting

Participatory budgeting (PB) is a process whereby residents
of a geographical region vote over how a portion of the pub-
lic budget should be allocated to fund some of the proposed
public projects, and hundreds of millions of dollars have been
allocated worldwide via PB. See our recent book chapter for
a detailed account of research on PB [Aziz and Shah, 2021].

Here, (the endowment-scaling version of) the core espe-
cially makes natural sense: it demands that no group of resi-
dents be able to find an allocation of their proportional share
of the budget4 that they prefer to chosen allocation of the
whole budget. We show that Õ(logm)-approximate core is
achievable with m proposed projects [Fain et al., 2018].

Stronger notions such as group fairness or proportional
fairness [Kelly, 1997] remain unexplored for PB, although
our recent work explores proportional fairness for random-
ized single-winner selection [Ebadian et al., 2022a], which
can be viewed as a special case of PB.

2The exact rule is a subtle refinement of this.
3Informally, violation of fairness must be due to a single good.
4It is reasonable to demand that tax dollars be spent equitably, so

each resident is entitled an equal share of the available budget and
any group of residents can pool their entitlements together.

3.3 Conference Peer Review
Large conferences such as IJCAI, AAAI, and NeurIPS invite
submissions from many subcommunities, and the authors of
the submissions often serve as reviewers too. An advantage
touted by such conferences is that their large reviewer pool
can enable finding suitable reviewers with diverse expertise
for many submissions. But the algorithms used to match re-
viewers to submissions can also mistreat a community by as-
signing its submissions to less qualified external reviewers,
incentivizing the community to leave and set up its own con-
ference, in which its submissions can be reviewed by more
qualified reviewers from within the community.

The core turns out to be aptly-suited to addressing this is-
sue. Defining a group of researcher’s “entitled share of re-
sources” as the reviewing capacity they offer, the core de-
mands that no group be able to find a better reviewing assign-
ment for their submissions using their entitled share of re-
sources, thus preventing groups from breaking off and setting
up their own conferences. Here, in addition to guaranteeing
fairness, the core also contributes stability to the system.

We prove that, at least in a limited model with single-author
submissions and mild conditions on authors’ preferences over
reviewers, a reviewing assignment in the core that satisfies
load and conflict avoidance constraints always exists, and can
be computed efficiently [Aziz et al., 2023]. It remains to be
seen whether this can be extended to more realistic models.

3.4 Locating Public Facilities
Another interesting application of the core is public facility
location via clustering, where the goal is to choose k loca-
tions for building public facilities that would fairly serve n
people in a geographical region (represented as points in met-
ric space). This application admits a natural definition of en-
titlements: each group of n/k people is entitled to one public
facility, each group of 2n/k people is entitled to two public
facilities, and so on. Then, the core demands that, for any `,
no group of at least `n/k people be able to find ` locations
such that each member is closer to some one of the ` new lo-
cations than to any of the k locations chosen by the algorithm.

Chen et al. [2019] prove that there are instances with no
clustering in the core, but a (1 +

√
2)-approximate core clus-

tering exists for any metric. We prove that for the common
case of L2 distance over a Euclidean space Rt, the approxi-
mation factor can be improved to 2 [Micha and Shah, 2020].

3.5 Allocating Educational/Computing Resources
While the maximum Nash social welfare solution works well
for additive preferences, our prior work shows that another
solution called the leximin solution, a refinement of Rawls’
egalitarian criterion, is more appealing for other preferences.

We consider the problem of allocating unused classrooms
in public schools to local charter schools [Kurokawa et al.,
2018], a process mandated by California’s Proposition 39.
After extensive discussions with public school districts in
California, we observe that a particular style of dichotomous
preferences best models the needs of the charter schools, and
prove that for such preferences the (randomized) leximin so-
lution satisfies proportionality and envy-freeness, while also



ensuring that no group of charter schools can manipulate the
process to their advantage.

In other work, we consider the problem of allocating com-
puting resources such as CPU, RAM, and network bandwidth
among processes in a cluster environment [Parkes et al.,
2015], where the class of Leontief preferences is more suit-
able. Noticing that the Dominant Resource Fairness (DRF)
algorithm implemented in the popular distributed computing
framework Apache Hadoop essentially implements the egali-
tarian criterion, we prove that using its leximin refinement in-
stead would again satisfy proportionality, envy-freeness, and
resistance to strategic manipulations by groups of users.

3.6 Recommender Systems
While the above applications model one-sided markets in
which resources are allocated to agents with preferences,
these versatile fairness notions can also be extended to two-
sided markets, in which agents on two sides of a market are
matched to each other and agents on each side have prefer-
ences over those on the other side. This models, e.g., match-
ing consumers to products (and, in turn, to producers) in rec-
ommender systems, matching students to schools or medical
residents to hospitals, or matching refugees to pro bono ser-
vice providers. A natural goal in this case is to ensure fairness
among agents on each side of the market simultaneously.

In recent work [Freeman et al., 2021], we propose such an
extension of envy-freeness, dubbed double envy-freeness, for
many-to-many two-sided matching markets, and prove that,
at least when agents on each side agree over a ranking of the
agents on the other side (but may disagree in intensities), an
“up to one”-style relaxation of double envy-freeness can be
guaranteed in polynomial time. A natural direction for the
future is to design algorithms satisfying two-sided versions
of other fairness notions from Section 2.

3.7 Classification
The groupwise fairness notions of the core and group envy-
freeness strengthen the individual fairness notions of propor-
tionality and envy-freeness, respectively. But in some appli-
cations, individual fairness may already be a bar too high. For
example, when using a classification algorithm to determine
which defendants to grant bail or which loan applications to
approve, certain individuals would inevitably be left empty-
handed. Traditional ML fairness notions such as statistical
parity and equalized odds thus impose fairness with respect
to specific groups only on average over their members.

Building on prior work [Balcan et al., 2019], we show that
envy-freeness can also be extended in this fashion to prevent
envy between groups on average, this new fairness notion
subsumes notions like statistical parity and equalized odds as
special cases, and it generalizes well from a small sample to
an underlying population [Hossain et al., 2020].

The key advantage of such preference-based fairness no-
tions is that they naturally apply to non-binary decisions.
Thus, they prevent classifiers from “gerrymandering” fairness
guarantees by, e.g., granting bail to black and white defen-
dants at the same rate, thus satisfying statistical parity, but
discriminating in the average bail amounts assigned to the two
groups [Arnold et al., 2018].

4 The Quest for an Overarching Theory
The grand vision here is to develop an overarching theory for
algorithmic fairness, which can be used to pick or formulate
the best-suited notions of fairness for any application at hand
and design efficient algorithms provably satisfying them.

One should not mistake this for a quest for an “ultimate no-
tion of fairness” that supersedes all others. Such an assertive
notion, which certifies that no unfairness would remain upon
its satisfaction, does not yet exist as this requires a deep un-
derstanding of long-term impacts of algorithmic decisions.
Instead, we have preventive notions, each of which prevent
the algorithm from imposing a specific type of harm. Since
there exist many types of harms, we need to aim for (approx-
imately) satisfying multiple fairness notions simultaneously.

Several milestones must be conquered along the long road
to achieving this grand vision. Surely, we need to identify
novel types of harms and formulate fairness notions which
prevent them. As we design provably fair algorithms, we also
need to understand their generalization guarantees [Balcan et
al., 2019; Micha and Shah, 2020; Hossain et al., 2020] and
the price of imposing fairness in terms of other objectives of
interest [Barman et al., 2020; Hossain et al., 2020].

But most importantly, we need to expand the study of fair-
ness to new domains. For example, these notions are applica-
ble to online problems where agents and/or resources arrive
and depart over time [Kash et al., 2014; Hosseini et al., 2023;
Banerjee et al., 2023]. Another domain of significant recent
interest is political redistricting or gerrymandering [Borodin
et al., 2018; Borodin et al., 2022], for which the core
seems aptly-suited to define a fair redistricting [Benade et al.,
2023]. Finally, the core can also be used to automate moral
decision-making [Noothigattu et al., 2018; Lee et al., 2019;
Conitzer et al., 2017b]. For example, in the classical trolley
problem, where one must decide whether to divert a trolley to
save five people at the expense of one, the core demands that
the diversion happen with probability exactly 5/6, the collec-
tive entitlement of the five people. This is an ethical position
worth exploring, but the real strength of the core lies in gener-
alizing this basic idea to arbitrarily complex ethical scenarios.

To that end, let me reiterate that notions like the core
are appealing because they simultaneously provide guaran-
tees for all possible groups without needing to prespecify
them based on fixed attributes such as race, gender, or sex-
ual orientation. Most other fairness notions apply either
only to prespecified groups (e.g., statistical parity, equal-
ized odds [Hardt et al., 2016], and calibration [Dawid, 1982;
Pleiss et al., 2017]) or to exponentially many groups (e.g.,
multicalibration [Hébert-Johnson et al., 2018] and subgroup
fairness [Kearns et al., 2018]), but not to all possible groups.

I conclude with a call to arms for exploring preference-
based fairness notions in a wide range of domains and under-
standing how well they align with human perceptions of fair-
ness [Saxena et al., 2019; Lee et al., 2019; Gal et al., 2017].
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