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This paper is part of an emerging line of work at the intersection of machine learning and mechanism design,

which aims to avoid noise in training data by correctly aligning the incentives of data sources. Specifically,

we focus on the ubiquitous problem of linear regression, where strategyproof mechanisms have previously

been identified in two dimensions. In our setting, agents have single-peaked preferences and can manipulate

only their response variables. Our main contribution is the discovery of a family of group strategyproof
linear regression mechanisms in any number of dimensions, which we call generalized resistant hyperplane
mechanisms. The game-theoretic properties of these mechanisms — and, in fact, their very existence — are

established through a connection to a discrete version of the Ham Sandwich Theorem.

1 INTRODUCTION
Designing machine learning algorithms that are robust to noise in training data is a topic of intense

research. A large body of work addresses stochastic noise [20, 29]. On the other extreme, another

branch of the literature focuses on adversarial noise [6, 12, 25], that is, errors are introduced by an

adversary with the explicit purpose of sabotaging the algorithm. The latter approach is often too

pessimistic, and generally leads to negative results.

More recently, some researchers have taken a game-theoretic viewpoint; it suggests a model of

strategic noise that can be seen as occupying the middle ground of noise models. Specifically, training

data is provided by strategic sources — hereinafter agents — that may intentionally introduce errors

to maximize their own benefit. Compared to adversarial noise, the advantage of this model (when its

underlying assumptions hold true) is that, if we aligned the agents’ incentives correctly, it would

be possible to obtain uncontaminated data. From this viewpoint, the ideal is the design of learning

algorithms that in addition to being statistically efficient, are strategyproof, i.e., where supplying
pristine data is a dominant strategy for each agent.

We subscribe to this agenda, and advance it in the context of the ubiquitous problem of linear

regression, i.e., fitting a hyperplane through given data. We consider agents who can manipulate
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their dependent variables in order to minimize their vertical distance from the output hyperplane,

and design strategyproof regression mechanisms without payments.

When does this type of strategic regression problem arise? Dekel et al. [15] give the real-world

example of the global fashion chain Zara, whose distribution process relies on regression [9].

Specifically, the demand for each product at each store is predicted based on historical data, as

well as information provided by store managers. Since the supply of popular items is limited, store

managers may strategically manipulate requested quantities so that the output of the regression

process would better fit their needs, and, indeed, there is ample evidence that many of them have

done so [10]. More generally, as discussed in detail by Perote and Perote-Peña [36], this type of

setting is relevant whenever “data could come from surveys composed by agents interested in not

being perceived as real outliers if the estimation results could be used in the future to change the

economic situation of the agents that generate the sample.”

1.1 Our Model and Results
A bit more formally, we study a linear regression setting in which the task is to fit a hyperplane

through data points (xi ,yi ) for i ∈ {1, . . . ,n}, where xi ∈ Rd are the independent variables and

yi ∈ R is the dependent variable. Following Dekel et al. [15] and Perote and Perote-Peña [36],

we assume that the independent variables are public information, but dependent variable yi is
held privately by agent i . A mechanism elicits the private information of the agents, and returns a

hyperplane represented by vector β = (β1, β0) ∈ Rd+1. Under this outcome, the residual for agent

i is ri = yi − βT
1
xi − β0, and, loosely speaking, agents wish to minimize |ri | (see Section 2 for a

precise description of agent preferences).

Our starting point is the work of Dekel et al. [15], who show that empirical risk minimization

(ERM) with the L1 loss (in short, L1-ERM), coupled with a specific tie-breaking rule, is group

strategyproof, that is, no coalition of agents can be weakly better off by misreporting. We extend

this result and show that replacing the L1 loss by aweighted L1 loss and adding convex regularization
to the risk function preserves group strategyproofness. But this still gives a relatively restricted

family of strategyproof mechanisms, and we seek a broader understanding of what is possible in

our setting.

To that end, we look to the work of Perote and Perote-Peña [36], who focus on the two-

dimensional case (known as simple linear regression), i.e., fitting a line through points on a plane.

They propose a wide family of strategyproof mechanisms, which they call clockwise repeated median
(CRM) mechanisms. These mechanisms are parametrized by two subsets of agents S and S ′. Perote
and Perote-Peña [36] establish conditions on S and S ′ under which they claim that CRMmechanisms

are strategyproof. We identify a mistake in this result, present counterexamples showing violation

of strategyproofness under their conditions, and identify three stricter conditions under which we

can recover strategyproofness — in fact, we prove group strategyproofness. Under one of our condi-

tions, CRM mechanisms coincide with a family of mechanisms from the statistics literature known

as resistant line mechanisms [24]. Our work therefore establishes the group strategyproofness of

these mechanisms.

Our main result is that we generalize the CRM family to higher dimensions, thereby justifying the

title of this paper. We introduce the family of generalized resistant hyperplane (GRH) mechanisms,

which, to the best of our knowledge, is the first extension of resistant line mechanisms beyond the

plane. In d + 1 dimensions, GRH mechanisms are parametrized by d + 1 subsets of agents. Through
a surprising connection to the literature on the Ham Sandwich Theorem, we find a condition

on the subsets under which GRH mechanisms are group strategyproof. Strikingly, our proof of

this general group strategyproofness result in any number of dimensions is much shorter than the
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(incorrect) proof of Perote and Perote-Peña [36] for the strategyproofness of CRM mechanisms in

two dimensions.
We also study a property called impartiality, which is stricter than strategyproofness. We establish

the existence of a wide family of impartial mechanisms, which, unlike our generalized L1-ERM
and generalized resistant hyperplane mechanisms, are strategyproof but not group strategyproof

(except for constant functions). Building upon the work of Moulin [33], we also provide two

non-constructive characterizations of strategyproof mechanisms for linear regression.

Strategyproofness is not the sole desideratum; constant functions (e.g., the flat hyperplane y = 0)

are strategyproof but not necessarily desirable. We would also like the mechanism to have good

statistical efficiency. For that, we compare (families of) strategyproof mechanisms in terms of their

approximation of the optimal squared loss, leveraging our characterization. Most importantly,

we establish a lower bound of 2 on the approximation ratio of any strategyproof mechanism,

which means that any mechanism that is even close to ordinary least squares regression must be

manipulable.

1.2 Related Work
As discussed above, our work is most closely related to that of Perote and Perote-Peña [36] and

Dekel et al. [15]. Here we try to give a broader picture of the state of research on machine learning

algorithms that are robust to strategic noise. This research can be categorized using three key

axes: (i) manipulable information, (ii) goal of the agents, and (iii) use of payments and incentive

guarantees.

On the first axis, like us, most papers assume that independent variables (or feature vectors in
the language of classification) are public information, and dependent variables (labels) are private,

manipulable information [15, 32, 35, 36], though some papers also design algorithms robust to

strategic feature vectors [16, 21]. Meir et al. [32] provide strong positive results for designing

strategyproof classifiers when there are either only two classifiers, or the agents are interested in a

shared set of input points. On the other hand, Hardt et al. [21] study the problem of constructing

classifiers that are robust to agents strategically misreporting their feature vector, in order to trick

the algorithm into misclassifying them. Their setting is modeled as a one-shot Stackelberg game.

The more recent work of Dong et al. [16] models the same problem in an online setting; they

provide guarantees that ensure that the problem is convex, and, therefore, they are able to derive a

computationally efficient learning algorithm that has diminishing Stackelberg regret.
On the second axis, one line of research focuses on agents motivated by privacy concerns, with a

tradeoff between accuracy and privacy [7, 13]; another focuses on agents who want the algorithm

to make accurate assessment on their own sample, even if this reduces the overall accuracy. This

form of strategic manipulation has been studied for estimation [8], classification [30–32], and

regression [15, 36] problems. Our problem falls squarely into the second category.

Finally, on the third axis, various papers differ on whether monetary payments to agents are

allowed [7], and on how strongly to guarantee truthful reporting: the stronger strategyproofness

requirement [32, 35, 36] versus the weaker Bayes-Nash incentive compatibility [13, 23]. Our work

falls into the literature of mechanism design without money; we study linear regression mechanisms

that enforce strategyproofness without paying the agents, or asking the agents to pay.

2 MODEL
Let [k] ≜ {1, . . . ,k } be the set of first k natural numbers, and R = R∪ {−∞,∞} be the extended real

line. Given numbers t1, . . . , tk ∈ R, let min(t1, . . . , tk ) denote the smallest value, andmin
j (t1, . . . , tk )

denote the jth smallest value. Let med(t1, . . . , tk ) denote their median: when k is odd, this is equal to
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min
(k+1)/2 (t1, . . . , tk ), but when k is even, this could be either min

k/2 (t1, . . . , tk ) (the “left median”)

or min
k/2+1 (t1, . . . , tk ) (the “right median”).

1

Our work focuses on the problem of linear regression, i.e., fitting a hyperplane through given

data. Let N = [n]. We are given a collection of data points D = (xi ,yi )i ∈N , where xi ∈ Rd and

yi ∈ R are called the independent and dependent variables of point i , respectively. Let xi = (xi , 1).
Our goal is to find a vector β = (β1, β0) ∈ Rd+1 such that βTxi = βT

1
xi +β0 is a good approximation

of yi for each i ∈ N . The quantity ri = yi − βTxi is called the residual of point i .

Strategic setting. We study a setting in which each data point pi = (xi ,yi ) is provided by a

strategic agent i . We also denote the set of agents by N . Following Perote and Perote-Peña [36]

and Dekel et al. [15], we assume that the independent variables x = (xi )i ∈N constitute public
information, which the agents cannot manipulate. Each agent i holds the dependent variable yi
as private information, and may report a different value ỹi in order to receive a more preferred

outcome. Thus, the principal observes the reported data points D̃ = (xi , ỹi )i ∈N . Let us denote
y = (yi )i ∈N and ỹ = (ỹi )i ∈N .

Mechanisms. Because the agents cannot changex , we can effectively treat it as fixed. Amechanism

for linear regressionMx
is therefore defined for given public information x , takes as input reported

private information ỹ, and returns a vector β . We omit x when it is clear from the context.

Agent preferences. When a mechanism returns β , we say that the outcome for agent i is ŷi (β ) =
βT xi . We omit β when it is clear from the context. The agent only cares about her own outcome ŷi ,
and would like it to be as close to yi as possible. Formally, we assume that agent i has single-peaked
preferences [3, 33] over ŷi with peak at yi . We represent the weak preference relation by ≽i and

the strict preference relation by ≻i . Formally, for all a,b ∈ R, yi > a ≥ b or yi < a ≤ b must imply

yi ≻i a ≽i b.

Game-theoretic desiderata. Our goal is to prevent agents from misreporting their private informa-

tion. The game theory literature offers a strong desideratum under which agents have no incentive

to misreport even if they have know what the other agents would report.

Definition 2.1 (Strategyproofness). A mechanism Mx
is called strategyproof (SP) if each agent

weakly prefers truthfully reporting her private information to misreporting it, regardless of the

reports of the other agents. Formally, for each i ∈ N ,yi ∈ R, and ỹ ∈ Rn , we need ŷi (Mx (yi , ỹ−i )) ≽i
ŷi (M

x (ỹ)). Note that this must hold for any possible single-peaked preferences the agent may

have.

While no individual agent can benefit from misreporting under a strategyproof mechanism, a

group of agents may still be able to collude, and benefit by simultaneously misreporting. This can

be prevented by imposing a stronger desideratum.

Definition 2.2 (Group Strategyproofness). A mechanismMx
is called group strategyproof (GSP)

if no coalition of agents can simultaneously misreport in a way that no agent in the coalition is

strictly worse off and some agent in the coalition is strictly better off, irrespective of the reports of

the other agents. Formally, for each S ⊆ N , yS = (yi )i ∈S ∈ R
|S |
, and ỹ ∈ Rn , it should not be the

case that ŷi (M
x (ỹ)) ≽i ŷi (M

x (yS , ỹN \S )) for every i ∈ S , and the preference is strict for at least

one i ∈ S .

1
This is different from the standard definition, which takes the average of the left and right medians, but necessary to

ensure incentive guarantees.
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The game theory literature also considers a weaker notion of group strategyproofness in which

not all the agents in a manipulating coalition should be strictly better off. We do not consider this

notion because our group strategyproof mechanisms are able to satisfy the stronger notion.

Note that we do not assume that the data points are generated by an underlying statistical

process. Our results are independent of how the data points were generated.

3 FAMILIES OF STRATEGYPROOF MECHANISMS
In this section, we analyze families of (group) strategyproof mechanisms for linear regression. Our

results generalize existing families of mechanisms, and propose novel families.

3.1 Empirical Risk Minimization with the L1 Loss
Consider a single dimensional setting, in which each agent i has a private valueyi , reports a possibly
different value ỹi , and the mechanism returns a single value ŷ. Each agent i has single-peaked
preferences over ŷ with peak at yi . This corresponds to the special case of our setting in which

xi = x j for all i, j ∈ N , or alternatively, the dimension d = 0. In this setting, it has long been known

that choosing the median of the reported values achieves group strategyproofness [17]. It can be

shown that the median minimizes the sum of absolute (L1) losses with respect to the reports, i.e.,

giveny, it chooses argminy∈R
∑n

i=1 |y −yi |, with an appropriate tie-breaking when n is even. In the

machine learning terminology, the median is the empirical risk minimizer (ERM) with the L1 loss.
Inspired by this, Dekel et al. [15] study ERM with the L1 loss in a more general regression setting,

and show that it remains group strategyproof. Specifically, they focus on finding a (potentially

non-linear) regression function f : Rd → R from a given convex set F . Given D = (xi ,yi )i ∈N ,

define the empirical L1 risk of a regression function f ∈ F as R̂ ( f ,D) =
∑

i ∈N |yi − f (xi ) |. Let
∥ · ∥ : F → R be a strictly convex function. They show that minimizing the empirical L1 risk, and
breaking ties among the optimal solutions by minimizing ∥ · ∥ is group strategyproof. We refer to

this mechanism by L1-ERM
2
. For linear regression, this approach is known by various names in

the literature, such as Least Absolute Deviations (LAD), Minimum Sum of Absolute Errors (MSAE),

or Least Absolute Value (LAV). The tie-breaking step is crucially required because the empirical L1
risk may have multiple minimizers.

We present a generalization of their mechanism while retaining group strategyproofness. In

particular, we extend the objective function R̂ in two ways: i) we allow a weighted L1 loss, in which

the loss of each agent i is multiplied by a weightwx
i , and ii) we allow adding a convex regularizer

h : F → R. Note that regularization is widely used in machine learning to prevent ERM from

overfitting. Our generalization, which we term generalized L1-ERM, is presented as Algorithm 1.

While we are only interested in linear regression, we note that generalized L1-ERM works for the

general regression setting of Dekel et al. [15].

ALGORITHM 1: Generalized L1-ERM (Regularized ERM with a weighted L1 loss)

Input: Data points D = (xi ,yi )i ∈N , convex hypothesis space F , constants (wx
i )i ∈N , convex regularizer

h : F → R, strictly convex function ∥ · ∥ : F → R.
Output: Function f ∗ ∈ F .

∀f ∈ F , R̂ ( f ,D) ≜
∑
i ∈N wx

i · |yi − f (xi ) | + h( f );

r∗ ← inf f ∈F R̂ ( f ,D);

return f ∗ ← argminf ∈F :R̂ (f ,D)=r ∗ ∥ f ∥;

2
For a formal description of the algorithm, we refer the interested reader to the full version of our paper (available on the

authors’ webpages).
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Theorem 3.1. Generalized L1-ERM is a group strategyproof regression mechanism.

Our proof, presented in the full version for completeness, essentially mirrors the proof of Dekel

et al. [15]; we identify three steps in their proof where they use the structure of the risk function R̂,
and observe that these steps follow through with our more general risk function.

There are several potential advantages of generalized L1-ERM over the vanilla L1-ERM. First,

generalized L1-ERM allows eliminating the tie-breaking step if the new risk function is guaranteed

to have a unique minimizer. For instance, adding a strictly convex regularizer would achieve this.

Second, for the aforementioned single dimensional setting, Moulin [33] proved that every strat-

egyproof
3
and anonymous

4
mechanism is a generalized median: for every α1, . . . ,αn+1 ∈ R, the

corresponding generalizedmedian returnsmed{y1, . . . ,yn ,α1, . . . ,αn+1}. Here, {α j }j ∈[n+1] are called
“phantoms”. We can alternatively view this as returning argminy∈R

∑
i ∈[n] |y − yi | + h(y), where

h(y) =
∑

j ∈[n+1] s.t. α j ∈R |y − α j | + (k−∞ − k∞) · y, and for t ∈ {−∞,∞}, kt = |{j : α j = t }|.5 Since
h(y) is a convex function, we can view it as a regularizer in our generalized L1-ERM. Hence, for

the single dimensional setting, generalized L1-ERM covers all generalized medians. In contrast,

L1-ERM reduces to a specific mechanism in this family, the median.

Finally, algorithms that add convex regularization to L1-ERM have been studied in the ma-

chine learning literature [41, 42]; our generalization establishes group strategyproofness of these

algorithms.

We also note that in the statistics literature, the vanilla L1-ERM is treated as a member of the

more general family of quantile regression mechanisms [27], which, given q ∈ [0, 1], minimize the

following empirical risk function:

R̂q ( f ,D) =
∑

i ∈N :yi ≥f (xi )

q · |yi − f (xi ) | +
∑

i ∈N :yi<f (xi )

(1 − q) · |yi − f (xi ) |. (1)

L1-ERM corresponds to the choice of q = 0.5. In the one-dimensional setting, other values of q
correspond to different quantiles (i.e., correspond to min

k
for various k), and thus induce strate-

gyproof mechanisms. One might wonder if quantile regression remains strategyproof in higher

dimensions. We answer this negatively by providing an example in the full version, in which the

quantile regression mechanism for q = 0.4 is shown to violate strategyproofness. It is an interesting

question to discover a strategyproof version of quantiles for linear regression.

3.2 Generalized Resistant Hyperplane Mechanisms
In this section, we introduce a novel family of strategyproof mechanisms for linear regression. Our

family extends the known family of resistant line mechanisms from the statistics literature [24],

which were only defined for simple linear regression (d = 1), to higher dimensions. We first take a

slight detour through a previous approach in the literature.

3.2.1 A Detour Through Clockwise Repeated Median Mechanisms. Perote and Perote-Peña [36]

introduced a novel family of mechanisms, which they termed Clockwise Repeated Median (CRM)

mechanisms. CRM mechanisms are only defined for the special case of simple linear regression, i.e.,
for fitting a straight line through a set of points on a plane. In describing these mechanisms, we use

scalar notations where possible. For instance, we use xi to denote the x-coordinate of agent i , and

3
Moulin [33] shows that for the single dimensional setting, strategyproofness is equivalent to group strategyproofness.

4
A mechanism is anonymous if permuting the reports of the agents does not change the output of the mechanism. This is a

reasonable desideratum in the single dimensional setting due to the absence of public information that distinguishes agents

naturally.

5
When all phantoms are finite, h (y ) =

∑
j∈[n+1] |y − α j |. The term |y − α j | has derivative 1 when y > α j , and −1 when

y < α j . For α j = −∞ (resp.∞), we can mimic this effect by adding a different term whose derivative is always −1 (resp. 1).
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β1 to denote the slope of the regression line. For CRM mechanisms to be well defined, we also need

to assume that the set of points is “admissible”.

Definition 3.2 (Admissible Set). A collection of data points D = (xi ,yi )i ∈N is called admissible if
xi , x j for all distinct i, j ∈ N .

The CRM family is parametrized by two subsets of agents, S, S ′ ⊆ N . These subsets must be

chosen based on the public information x , and therefore can be treated as fixed. Informally, given

S, S ′ ⊆ N , the (S, S ′)-CRM mechanism first computes the median clockwise angle (CWA), defined

below, from each point i ∈ S to points in S ′. Then, it chooses the point i∗ ∈ S whose median

CWA is the median of the median CWAs from all points in S . If the median CWA from point i∗

is towards point j∗ ∈ S ′, then the mechanism returns the straight line passing through points i∗

and j∗. Formally, the mechanism is defined as follows. Perote and Perote-Peña [36] established the

equivalence of this formal definition and the aforementioned informal description.

Definition 3.3 (CRM Mechanisms). Define the clockwise angle (CWA) from (xi ,yi ) to (x j ,yj ) as:

CWA((xi ,yi ), (x j ,yj )) = π + sign(x j − xi ) ·
π

2

+ sign

(
yj − yi

x j − xi

) �����arctan
(
yj − yi

x j − xi

) ����� . (2)

Given D = (xi ,yi )i ∈N and S, S ′ ⊆ N , let the directing angle be defined as:

DA(S, S ′) = med

i ∈S
med

j ∈S ′:j,i
CWA((xi ,yi ), (x j ,yj )). (3)

Then, the (S, S ′)-CRM mechanism returns the line β = (β1, β0) given by:

β1 = tan

[
DA(S, S ′) − π −

π

2

· sign (DA(S, S ′) − π )
]
,

β0 = med

i ∈S
(yi − β1 · xi ).

(4)

First, we notice that the definition of the CRM family uses three medians: two to define the

directing angle DA(S, S ′), and one to define the y-intercept β0. Each median, when taken over an

even number of values, can be the left median or the right median. While Perote and Perote-Peña

[36] do not mention how these choices should be made, it is easy to check that in order to achieve

the desired incentive properties, these choices cannot be made independently of each other. Later,

we present a generalization which captures the different feasible choices in a simpler form.

Perote and Perote-Peña [36] claimed that the (S, S ′)-CRM mechanism is strategyproof when

S ⊆ S ′ or S ∩ S ′ = ∅, and provided an involved, geometric proof. However, we have identified a

mistake in their proof. In fact, we have found two counterexamples, one with S ⊆ S ′ and one with

S ∩ S ′ = ∅, for which the corresponding (S, S ′)-CRM mechanisms violate strategyproofness, thus

disproving their claim. These counterexamples are presented in Figure 1,

Example 3.4 (Example with S ∩ S ′ = ∅.). This example is shown in Figure 1a. Points in filled dots

are in S , while points in empty dots are in S ′. The coordinates of these points are as follows.

S = {(1, 0), (3, 1), (5, 1.9)} , S ′ = {(0, 1), (2, 2), (4, 3)} .

Notice that S ∩ S ′ = ∅. Also, |S | and |S ′ | are odd, alleviating the need to choose between left and

right medians in the CRM definition.

When the agents truthfully report, one can check that CRM returns the line connecting points

(3, 1) from S and (0, 1) from S ′. This line is given by the equation y = 1.

Suppose that the agent i controlling the point at x = 4 misreports ỹi = 1.8 instead of yi = 3.

The new point is depicted with a cross. One can check that this causes the CRM mechanism to

switch to the dashed line (y = 0.1 · x + 1.4), which makes agent i strictly better off, and violates

strategyproofness.
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(a) S ∩ S ′ = ∅
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(b) S ⊆ S ′

Fig. 1. Counterexamples showing violation of strategyproofness of (S, S ′)-CRMmechanisms. Figure 1a shows
a case with S ∩ S ′ = ∅, while Figure 1b shows a case with S ⊆ S ′.

Example 3.5 (Example with S ⊆ S ′.). This example is shown in Figure 1b. Points in S (thus also in

S ′) are depicted with filled dots, while points in S ′ \S are depicted with empty dots. The coordinates

of these points are as follows.

S = {(3, 12), (9, 9.5), (11, 9), (13, 4.5), (14, 11)} , S ′ = S ∪ {(4, 8), (4.3, 12), (7, 6.5), (8, 7.5), (12, 11)} .

Notice that S ⊆ S ′. Further, |S | is odd, and |S ′ | is even (thus, for each i ∈ S , |S ′ \ {i}| is odd), once
again eliminating the need to choose between the left and the right medians in the CRM definition.

When all points are reported truthfully, one can check that the CRM mechanism chooses the

solid line (3y = 2x + 8). Suppose now that agent i with point (12, 11) reports ỹi = 0, instead of

yi = 11. Then, the CRM mechanism chooses the dashed line, which makes agent i strictly better

off, again violating strategyproofness.

Nevertheless, we have been able to identify a subset of the CRM family, for which we can establish

strategyproofness (in fact, group strategyproofness). In particular, we replace S ⊆ S ′ with the more

restrictive condition S = S ′, and for S ∩ S ′ = ∅, we either add |S | = 1 or |S ′ | = 1, or replace it with a

stricter condition that we define below.

Definition 3.6 (Separable Sets of Points in a Plane). Let S, S ′ be two sets of points in R2. We say

that S and S ′ are separable if maxi ∈S xi < minj ∈S ′ x j or maxj ∈S ′ x j < mini ∈S xi . In other words, it

should be possible to separate them by a vertical line.

Note that separability of S and S ′ implies S ∩ S ′ = ∅. We now present a corrected version of the

result of Perote and Perote-Peña [36], and claim the stronger guarantee of group strategyproofness.

We do not present a proof as we later introduce a much broader family of mechanisms, and prove

their group strategyproofness directly.

Theorem 3.7. Given S, S ′ ⊆ N , the (S, S ′)-CRM mechanism is group strategyproof if one of the
following conditions holds.
(1) S = S ′.
(2) S and S ′ are separable.
(3) S ∩ S ′ = ∅ and min( |S |, |S ′ |) = 1.

The third condition partially resembles dictatorship as the agent in the singleton set is guaranteed

to have zero residual (i.e., be on the regression line).

3.2.2 Generalized Resistant Line Mechanisms on a Plane. In this section, our goal is to introduce

a novel family of group strategyproof mechanisms that include, as special cases, the mechanisms

covered in the three cases of Theorem 3.7. Our starting point is the family of resistant line (RL)

, Vol. 1, No. 1, Article . Publication date: May 2018.



mechanisms from the statistics literature [24], which Perote and Perote-Peña [36] showed to be

equivalent to the case of separable S and S ′.
The standard formulation of the RL mechanism involves three sets L,M,R ⊆ N such that

maxi ∈L xi < mini ∈M xi and maxi ∈M xi < mini ∈R xi , and returns a line β = (β1, β0) given by

medi ∈L yi − β1 · xi − β0 = medi ∈R yi − β1 · xi − β0 = 0.

That is, the line makes the median residuals in L and R zero. It is known that this equation yields a

unique solution [24]. Perote and Perote-Peña [36] showed that this is identical to the (L,R)-CRM
mechanism. Indeed, separability of L and R makes clockwise angles from points in L to points

in R monotonic in (and thus replaceable by) slopes, yielding the following formulation for the

(L,R)-CRM mechanism.

β1 = medi ∈L medj ∈R
yj−yi
x j−xi
,

β0 = medi ∈L yi − β1xi = medj ∈R yj − β1x j .

The alternative definition of β0 = medj ∈R (yj − β1 · x j ) follows from the fact that if the line passes

through i∗ ∈ L, it is directed towards the point in R which is at the median angle or slope, and thus

bisects R in addition to bisecting L.
Along with Theorem 3.7, this observation establishes group strategyproofness of all resistant

line mechanisms. Two popular mechanisms from this family are the Brown-Mood mechanism [5],

in which L and R each contain half of the points whileM is empty, and the Tukey mechanism [40],

in which L,M , and R each contain a third of the points.

Our next step is to extend this family. A natural idea is that instead of making the median
residuals from S and S ′ zero, we make the k th smallest residual in S and the (k ′)th smallest residual

in S ′ zero, for fixed k ∈ [|S |] and k ′ ∈ [|S ′ |].

Definition 3.8 (Generalized Resistant Line (GRL) Mechanisms). Given separable sets S, S ′ ⊆ N ,

k ∈ [|S |], and k ′ ∈ [|S ′ |], the (S, S ′,k,k ′)-generalized resistant line (GRL) mechanism returns the

line β = (β1, β0) given by

min
k
i ∈S yi − β1xi − β0 = min

k ′
j ∈S ′ yj − β1x j − β0 = 0. (5)

We show that these mechanisms are well defined (i.e., there is a unique solution to Equation (5)),

and they are group strategyproof. Once again, we omit the proof because we later introduce an

even broader family of mechanisms, for which we prove these results directly.

Theorem 3.9. For separable sets S, S ′ ⊆ N , k ∈ [|S |] and k ′ ∈ [|S ′ |], the (S, S ′,k,k ′)-generalized
resistant line mechanism is well defined and group strategyproof.

While it is clear that generalized resistant line mechanisms cover the second case of Theorem 3.7

(i.e., separable S and S ′), we surprisingly find that they also cover the first case (S = S ′) and the

third case (S ∩ S ′ = ∅ and min( |S |, |S ′ |) = 1). That is, Theorem 3.9 strictly generalizes Theorem 3.7.

The proof of the next result is in the full version.

Lemma 3.10. The (S, S ′)-CRMmechanism is a generalized resistant line mechanism when (1) S = S ′,
(2) S and S ′ are separable, or (3) S ∩ S ′ = ∅ and min( |S |, |S ′ |) = 1.

3.2.3 Generalized Resistant Hyperplane Mechanisms in High Dimensions. Surprisingly, the sta-
tistics literature does not offer an extension of resistant line mechanisms to higher dimensions.

In our efforts to do so, we quickly realized that this is a non-trivial task. In two dimensions, a

generalized resistant line mechanism takes two subsets of data points separable by a vertical line,

and returns the regression line which makes prescribed percentiles of residuals in each set zero.

, Vol. 1, No. 1, Article . Publication date: May 2018.



In d + 1 dimensions (recall that xi ∈ Rd and yi ∈ R), it seems natural to take d + 1 “separable”

subsets of data points, and return the regression hyperplane which makes prescribed percentiles

of residuals in each set zero. However, the separability condition must now ensure existence of a

unique hyperplane with this property, even if we ignore our game-theoretic desiderata.

In resolving this issue, we make a connection to the literature on the Ham Sandwich Theorem
and its generalizations. Hereinafter, given a hyperplane H , we denote by H+ and H− its positive
and negative closed half-spaces, respectively. A basic version of the ham sandwich theorem due

to Stone and Tukey [38] states that given k continuous measures µ1, . . . , µk on Rk , there exists a
hyperplane H such that µi (H

+) = 1/2 for each i ∈ [k]. A discrete version of this result due to Elton

and Hill [18] states that given k finite sets S1, . . . , Sk ⊆ R
k
, there exists a hyperplane H such that

for each i ∈ [k], H “bisects” Si and H ∩ Si , ∅. Here, we say that a hyperplane H bisects a set of

points S if each closed half-space of H contains at least ⌈|S |/2⌉ points.
For linear regression, this implies that given S1, . . . , Sd+1 ⊆ D, there exists a “resistant hyperplane”

which makes the median residual from St zero, for each t ∈ [d + 1]. While this seems like a natural

generalization of resistant line mechanisms, it is easy to check that such a hyperplane is not always

unique, even in two dimensions. Further, if the median is replaced by other percentiles, the existence

is no longer guaranteed.
6

Steiger and Zhao [37] provide a generalization that almost perfectly fits our needs. They show

that under certain conditions on S1, . . . , Sd+1, there exists a unique hyperplane H which contains a

given number of points from each set in its negative closed half-space. This discrete result builds

upon previous continuous variants [1, 4]. We first define a condition they require, which also plays

a key role in our result.

Definition 3.11 (Well Separable Sets [26]). Given t ∈ [k + 1], finite sets S1, . . . , St of points in
Rk are called well separable if for all disjoint I , J ⊆ [t], there exists a hyperplane H such that

Si ⊂ H+ \H for each i ∈ I and S j ⊂ H− \H for each j ∈ J , i.e., H separates ∪i ∈ISi from ∪j ∈JS j by
putting them in different open half-spaces.

Well separable sets are sometimes called affinely independent sets [4]. Well separability is equiva-

lent to various other conditions [4, 37]. In what follows, Conv(·) denotes the convex hull.

Proposition 3.12. For t ∈ [k + 1], finite sets S1, . . . , St ⊂ Rk are well separable if and only if:
(1) For all choices of (xi ∈ Conv(Si ))i ∈[t ], the affine hull of x1, . . . ,xt is a (t − 1)-dimensional flat.
(2) No (t − 2)-dimensional flat has a nonempty intersection with Conv(Si ) for each i ∈ [t].
(3) Conv(S1), . . . ,Conv(St ) are well separable.

Steiger and Zhao [37] impose an additional condition, which we eliminate in our work.

Definition 3.13 (Weak General Position). Finite sets S1, . . . , Sk ⊂ Rk are said to have weak general
position if for every choice of (xi ∈ Si )i ∈[k], the affine hull of x1, . . . ,xk is a (k − 1)-dimensional flat

which contains no other point of ∪i ∈[k]Si .

Theorem 3.14 ([37]). If finite sets S1, . . . , Sk ⊂ Rk are well separable and have weak general
position, then given any choice of ki ∈ [|Si |] for i ∈ [k], there exists a unique hyperplane H such that
for each i ∈ [k], H ∩ Si , ∅ and |H− ∩ Si | = ki .

This result gives us almost what we want for linear regression in Rd+1. Given a family of sets

S1, . . . , Sd+1 ⊆ D that are well separable and have weak general position, and kt ∈ [|St |] for
t ∈ [d + 1], it ensures the existence of a unique hyperplane which makes the k tht smallest residual

in each set St zero. However, it falls short of our requirements in two key aspects.

6
Recall that even in two dimensions, we needed an additional condition on the sets S and S ′: separability by a vertical line.
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• Theorem 3.14 allows the assignment of points in D to sets S1, . . . , Sd+1 to depend on the

private information y. For strategyproofness, we need this assignment to be based solely

on the public information x . Recall that in two dimensions, we required sets S and S ′ to
be separable by a vertical line. We choose the d + 1 sets so that they are well separable in

the d-dimensional public information space,
7
and establish group strategyproofness using a

technical lemma, which may be of independent interest.

• While we only want to make the k tht smallest residual in each St zero, Steiger and Zhao [37]

aim for something stronger: they want the number of points from each St in the negative

closed halfspace to be exactly kt . This necessitates their weak general position assumption,

which we relax.

We are now ready to present our results. They closely mirror, but do not make use of, the results

of Steiger and Zhao [37]. We revert to using notation of our linear regression setting. Recall that a

hyperplane β = (β1, β0) passes through (xi , βT xi ) for each i ∈ N , where xi = (xi , 1).

Definition 3.15. Given a family S = (S1, . . . , Sk ) of nonempty, pairwise disjoint subsets of N , and

a set of points P = (pi )i ∈N , define the partition function P (P ,S) = (Pt )t ∈[k], where Pt = (pi )i ∈St
for each t ∈ [k]. That is, P (P ,S) partitions the set of points P based on index sets from S.

Definition 3.16 (Publicly Separable Sets of Agents). We say that a family S = (S1, . . . , Sd+1) of
nonempty, pairwise disjoint subsets of N is publicly separable if P (x ,S) is well separable.

Definition 3.17 (Generalized Resistant Hyperplane (GRH) Mechanisms). Given a family S =

(S1, . . . , Sd+1) of publicly separable sets of agents, and k = (k1, . . . ,kd+1) with kt ∈ [|St |] for
t ∈ [d + 1], the (S,k )-generalized resistant hyperplane (GRH) mechanism returns a hyperplane

β such that min
kt
i ∈St

(ri ≜ yi − βT xi ) = 0 for each t ∈ [d + 1]. That is, it makes the k tht smallest

residual from every set St ∈ S zero.

We first need to establish that the GRH mechanisms are well defined, i.e., the hyperplane they

seek is guaranteed to exist and be unique. To that end, we prove a useful technical lemma, which

may be of independent interest.

Lemma 3.18 (Hyperplane Comparison Lemma). Given a family S = (S1, . . . , Sd+1) of publicly
separable sets of agents, and two distinct hyperplanes β1 and β2 in Rd+1, there exists a set St ∈ S such
that either (β1)T xi < (β2)T xi for all i ∈ St , or (β1)T xi > (β2)T xi for all i ∈ St .

Proof. Consider the intersection of the two hyperplanes in Rd+1, and letW be its projection on

Rd (the public information space). Note thatW is a (d − 1)-dimensional hyperplane in Rd . Given an

open half-space ofW (sayW +
), let Z be the set of points Rd+1 whose projection on Rd lies inW +

.

Then, either (β1)T p > (β2)T p for all p ∈ Z , or (β1)T p < (β2)T p for all p ∈ Z , where p = (p, 1).
Let P (x ,S) = (X1, . . . ,Xd+1). Because S is publicly separable, X1, . . . ,Xd+1 are well separable.

By Proposition 3.12, no (d − 1)-dimensional flat has a nonempty intersection with Conv(Xt ) for
each t ∈ [d + 1]. BecauseW is a (d − 1)-dimensional flat, there exists t ∈ [d + 1] such thatW
does not intersect Conv(Xt ), i.e., Xt lies entirely in an open half-space ofW . Using the previous

argument, either (β1)T xi < (β2)T xi for all i ∈ St , or (β1)T xi > (β2)T xi for all i ∈ St . ■

Proposition 3.19. Generalized resistant hyperplane mechanisms are well defined. That is, given a
family S = (S1, . . . , Sd+1) of publicly separable sets of agents, and k = (k1, . . . ,kd+1) with kt ∈ [|St |]
for t ∈ [d +1], there exists a unique hyperplane β for whichmin

kt
i ∈St

yi −βT xi = 0 for each t ∈ [d +1].

7
While Theorem 3.14 uses d + 1 well separable sets in Rd+1, even Rd allows up to d + 1 well separable sets.
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Proof. First, we show that if such a hyperplane exists, it must be unique. Suppose for contra-

diction that there are two distinct hyperplanes β1
and β2

which make the k tht smallest residual

from every St ∈ S zero. By the hyperplane comparison lemma (Lemma 3.18), there exists St ∈ S
such that either (β1)T xi < (β2)T xi for all i ∈ St , or (β1)T xi > (β2)T xi for all i ∈ St . Without

loss of generality, suppose it is the former. Then, at least kt points in St which have a non-positive

residual under β2
have a negative residual under β1

, contradicting the fact that β1
makes the k tht

smallest residual from St zero.
For proving existence, we use a counting technique. Create two bipartite graphsG = (V ∪W ,E)

and G ′ = (V ′ ∪W ,E ′). Let V (resp. V ′) contain a vertex vk (resp. v ′
k
) corresponding to each

k = (k1, . . . ,kd+1) such that kt ∈ [|St |] for each t ∈ [d + 1]. Thus, |V | = |V ′ | =
∏d+1

t=1 |St |. LetW
contain a vertex wβ corresponding to every traversal hyperplane β , i.e., every hyperplane that

passes through at least one point from each set St ∈ S.
In graphG , we draw an edge betweenvk andwβ if β makes the k tht smallest residual zero in each

St ∈ S. For constructing graph G ′, we fix an arbitrary ordering of points in each set, so that we

can write St = {i
t
1
, . . . , it

|St |
}. Then, we draw an edge in G ′ between v ′

k
andwβ if β passes through

point itkt for each t ∈ [d + 1].

Our goal is to show that each vertex vk ∈ V has exactly one incident edge in graph G . We prove

this through a sequence of claims. First, we argue that each vertex v ′
k
∈ V ′ has exactly one incident

edge in graph G ′. The fact that it has at least one incident edge follows from the fact that any

set of d + 1 points in Rd+1 (in particular, T = {itkt }t ∈[d+1]) lie on a hyperplane. If v ′
k
has two or

more incident edges, then there exist two distinct hyperplanes β1
and β2

which pass through all

points in T . Then, their intersection β∗, which is a (d − 1)-dimensional flat in Rd+1, must also pass

through all points in T . Let P (x ,S) = (X1, . . . ,Xd+1). Then, the projection of β∗ on the public

information space Rd is a (d − 1)-dimensional hyperplane in Rd which intersects each Xt (and thus

each Conv(Xt )). However, S is a publicly separable family, i.e., X1, . . . ,Xd+1 are well separable in

Rd . This violates the first condition of Proposition 3.12.

Since each vertex in V ′ has exactly one incident edge, we have |E ′ | = |V ′ | =
∏d+1

t=1 |St |. We next

argue that |E | = |E ′ |. Take a vertex wβ ∈W . Note that if hyperplane β passes through at points

from each St ∈ S, then it has degree

∏d+1
t=1 at in both G and G ′. Since each vertex inW has the

same degree in both graphs, we have |E | = |E ′ | = |V ′ | = |V |.
Finally, we already established that if there is a hyperplane which makes the k tht smallest residual

in each St zero, then it must be unique. Thus, each vertex in V has at most one incident edge in G.
Together with |E | = |V |, this implies that each vertex in V has exactly one incident edge in G. ■

We are now ready to present our main contribution.

Theorem 3.20. Every generalized resistant hyperplane mechanism is group strategyproof.

Proof. Consider an (S,k )-generalized resistant hyperplane mechanism. Consider a set of data

points D = (xi ,yi )i ∈N . Suppose a coalition S ⊆ N of agents changes their report to (ỹi )i ∈S , and

changes the resulting hyperplane from β to β̃ . Set ỹi = yi for i ∈ N \ S , and let D̃ = (xi , ỹi )i ∈N .
By the hyperplane comparison lemma (Lemma 3.18), there exists St ∈ S such that either

βT xi < β̃T xi for all i ∈ St , or βT xi > β̃T xi for all i ∈ St .
Without loss of generality, suppose it is the former. The k tht smallest residual from St is zero

under β in D, and under β̃ in D̃. If S ∩ St = ∅, or if every manipulator in S ∩ St has a positive
residual under β in D, then at least kt non-manipulators in N \ S have a non-positive residual

under β in D, and thus a strictly negative residual under β̃ in D̃, which contradicts the fact that β̃

makes the k tht smallest residual in St zero in D̃.
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In other words, there must exist a manipulator i ∈ S ∩ St who has a non-positive residual under

β in D. Thus, β̃T xi > βT xi ≥ yi , implying that the manipulator is strictly worse off after the

manipulation. Hence, the mechanism is group strategyproof. ■

For two dimensions (d = 1), we already argued that our sub-family of group strategyproof CRM

mechanisms given by Theorem 3.7 is part of the larger family of GRL mechanisms (Lemma 3.10). It

is easy to see that GRL mechanisms are precisely GRH mechanisms in two dimensions. Indeed,

GRH mechanisms would require two subsets of agents S1, S2 that are publicly separable, i.e., well

separable on the x-axis. Note that this coincides with the separability definition used by GRL

mechanisms (Definition 3.6). Hence, the (S, S ′,k,k ′)-GRL mechanism is precisely the (S,k )-GRH
mechanism with S = (S, S ′) and k = (k,k ′). In three or more dimensions, we do not know if, given

x , one can always construct a family S of publicly separable sets of agents such that each set St ∈ S
contains at least a constant fraction of the agents.

3.3 Strategyproofness vs Group Strategyproofness
In the single dimensional setting (d = 0), Moulin [33] proved that all strategyproof mechanisms are

also group strategyproof. This alternatively follows from a result by Barberà et al. [2], who gave a

sufficient condition on the underlying domain for the sets of strategyproof and group strategyproof

mechanisms to coincide.

Interestingly, all known strategyproof mechanisms for the multidimensional linear regression

setting (including generalized L1-ERM and generalized resistant hyperplane mechanisms) are group

strategyproof as well. However, it is easy to check that the linear regression setting does not satisfy

the sufficient condition of Barberà et al. [2]. Is it still true that all strategyproof mechanisms for

linear regression are also group strategyproof? We answer this question negatively.

Example 3.21. Consider the simple linear regression setting (d = 1) with n = 2 agents. Fix the

public information x = (x1,x2) ∈ R
2
, and consider the mechanism M that, on input y = (y1,y2),

returns the line passing through points (x1,y2) and (x2,y1). Under this mechanism, the outcome

for each agent is independent of the agent’s report: indeed, the outcome for agent 1 (resp. agent

2) is ŷ1 = y2 (resp. ŷ2 = y1). Hence, the mechanism is clearly strategyproof. However, group

strategyproofness is violated because when y1 , y2, the two agents can collude, and report

ỹ = (y2,y1). This makes the resulting line pass through both agents, making both strictly better off.

The requirement that the outcome for each agent be independent of the agent’s report, called

impartiality in mechanism design, is stricter than (i.e., logically implies) strategyproofness, and has

been studied for aggregating opinions or dividing rewards [14, 19, 22, 28, 39].

Definition 3.22 (Impartial Mechanisms). A mechanismM is called impartial if the outcome for

each agent is independent of the agent’s report. Formally, for every agent i ∈ N , reports y, and
alternative report y ′i by agent i , we require that ŷi (M (y)) = ŷi (M (y ′i ,y−i )).

In linear regression, when the number of agents is n = d + 1, we can easily characterize all

impartial mechanisms because we can set ŷi to be an arbitrary function of y−i , and return a

hyperplane passing through the resulting d + 1 points (xi , ŷi )i ∈N .

Proposition 3.23. For n = d + 1, mechanism M is impartial if and only if there exist functions
f1, . . . , fn : Rn−1 → R such that given y,M returns a hyperplane passing through (xi , fi (y−i ))i ∈N .

Note that functions fi can even be discontinuous, which can make the regression hyperplane

discontinuous in the input y. However, we later show (Theorem 4.3) that under any strategyproof

mechanism, the outcome ŷi for agent i must be a continuous function of yi (it is a constant function
of yi in case of impartial mechanisms).
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With n > d + 1 points, the question of whether impartial mechanisms even exist is non-trivial.

While we still need to set each ŷi as a function of y−i , it cannot be done arbitrarily as the resulting

points (xi , ŷi )i ∈N may no longer lie on a hyperplane. In other words, setting ŷi as a function of

y−i for d + 1 agents already determines the hyperplane, and thus ŷj for all remaining agents j . The
mechanism must ensure that these ŷj are also independent of yj . At first glance, this may seem

impossible, except in the trivial case where a constant hyperplane is returned regardless of y.
Nonetheless, we show that there exists a wide family of non-trivial impartial mechanisms for

linear regression. Our family provides a full characterization of impartial mechanisms for d = 1

(i.e., for simple linear regression). In the result below, we use the notation

〈
a,b

〉
instead of aTb for

the sake of simplicity. Its proof is in the full version.

Theorem 3.24. Given x , mechanismMx for linear regression is impartial if there exist functions
{дxi : R→ Rd }i ∈N and constant cx ∈ R such that for all y, we haveMx (y) = β = (β1, β0), where

β1 =
∑

i ∈N дxi (yi ), β0 = c
x −

∑
i ∈N

〈
дxi (yi ),xi

〉
. (6)

For d = 1 and an admissible set of points, this characterizes all impartial mechanisms.

Impartial mechanisms are not compelling from a statistical viewpoint. For instance, in the

standard two-dimensional stochastic model where the data points are assumed to be generated by

taking points on an underlying line and introducing i.i.d. errors in the dependent variables, it is

easy to show that no impartial mechanism can produce an unbiased estimator of the underlying

line. Nonetheless, impartial mechanisms help us establish the existence of a rather wide family

of strategyproof mechanisms that are not group strategyproof. In fact, the next result shows that

almost all impartial mechanisms violate group strategyproofness; its proof is in the full version.

Proposition 3.25. For simple linear regression (d = 1) with an admissible set of points, an impartial
mechanism is group strategyproof if and only if it is a constant function (i.e., it returns a fixed regression
line regardless of its input).

4 CHARACTERIZING STRATEGYPROOF MECHANISMS
As mentioned in Section 3.1, Moulin [33] studied the one-dimensional setting (d = 0), and analyti-

cally characterized all strategyproof mechanisms for n agents. While we are unable to provide an

analytical characterization for multidimensional linear regression, we provide two non-constructive

characterizations, and discuss their implications.

Interestingly, to characterize strategyproof mechanisms for linear regression with n agents, we

use the characterization of strategyproof mechanisms for the one-dimensional setting with a single

agent. In this case, Moulin [33] shows that a mechanism is strategyproof if and only if there exist

constants α1,α2 ∈ R such that when the agent reports y, the mechanism returns ŷ = med(y,α1,α2).
Constants α1

and α2
are called phantoms. First, we extend this result by providing an alternative

characterization, which uses the following definition. The proof of the next result is in the full

version.

Definition 4.1 (Locally Constant Function). For A,B ⊆ R, function f : A → B is called locally

constant at x ∈ A if there exists ϵ > 0 such that for all x ′ ∈ [x − ϵ,x + ϵ], f (x ′) = f (x ).

Lemma 4.2. Suppose mechanism π : R → R for the one-dimensional setting with a single agent
elicits private value y from the agent and returns π (y). Then, π being strategyproof is equivalent to
each of the following conditions.

(a) There exist constants α1,α2 ∈ R ≜ R∪ {−∞,∞} such that for all y ∈ R, π (y) = med(y,α1,α2).
(b) π is continuous, and for every y ∈ R, either π (y) = y or π is locally constant at y.
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In the one-dimensional setting, Moulin [33] observed that a mechanism is strategyproof if and

only if its outcome is strategyproof in the report of each individual agent when other agents’ reports

are fixed. That is, a mechanism π : Rn → R for n agents is strategyproof if and only if

∀i ∈ [n], ∃α1

i ,α
2

i ∈ R independent of yi s.t. π (y1, . . . ,yn ) = med(yi ,α
1

i ,α
2

i ). (7)

Moulin [33] solved Equation (7) to derive an elegant analytical expression for π in terms of {yi }i ∈[n].
Note that in this equation, the outcome ŷ = π (y1, . . . ,yn ) is common to all agents.

In contrast, in linear regression each agent i has a potentially different outcome ŷi . Like before,
strategyproofness requires that each ŷi obey the conditions in Lemma 4.2, when seen as a function

of yi , when other agents’ reports are fixed. However, the outcomes for different agents are now

constrained so that (xi , ŷi )i ∈N lie on a hyperplane. This added complexity prevented us from solving

the equations to derive an analytical characterization, despite significant effort. The only exception

was the special case of impartial mechanisms, where we further restrict ŷi to be independent of yi
(Theorem 3.24). This corresponds to the case where α1

i = α2

i for each agent i . Nonetheless, by simply

applying Lemma 4.2 for every agent i , we obtain the following non-constructive characterization

of strategyproof mechanisms for linear regression.

Theorem 4.3. Given public information x , mechanismMx for linear regression being strategyproof
is equivalent to each of the following conditions.

(a) For every y−i ∈ Rn−1 and i ∈ N , there exist ℓi ,hi ∈ R such that ŷi (Mx (y)) = med(yi , ℓi ,hi )
for all yi ∈ R;

(b) For every y−i ∈ Rn−1 and i ∈ N , function fi (·) = ŷi (M (·,y−i )) is continuous, and for every
yi ∈ R, either fi (yi ) = yi or fi is locally constant at yi .

The first condition provides an analytical form of ŷi in terms ofyi , and is perhaps the more useful

characterization. For instance, we crucially use this characterization in the next section to give a

lower bound on the efficiency of strategyproof mechanisms. Our earlier (more complex) proof of

group strategyproofness of GRH mechanisms (Theorem 3.20) was also based on this condition, and

identified the precise ℓi and hi for each agent i .
Note that for fixed y−i , we have ŷi = yi when yi ∈ [ℓi ,hi ]. For yi ≤ ℓi , ŷi = ℓi is fixed, and for

yi ≥ hi , ŷi = hi is fixed. We therefore say that agent i is influential over the interval (ℓi ,hi ), and
call ℓi and hi the lower and upper influence bounds, respectively. Analysis of influence bounds has
received attention in the statistics literature, where it is called sensitivity analysis. For instance,
Narula and Wellington [34] observed that under L1-ERM, the regression hyperplane is unaffected

when the dependent variable of a point is changed so that the point still lies on the same side of

the hyperplane as before. From Theorem 4.3, we can see that for every strategyproof mechanism,

doing so should at least keep the outcome for agent i unchanged. Narula and Wellington [34] also

focused on computing the influence bounds. Theorem 4.3 lends a simple algorithm to compute

influence bounds (see the full version). Finally, note that while ŷi must be continuous in yi , it need
not be continuous in y (see our discussion on Proposition 3.23).

5 EFFICIENCY OF STRATEGYPROOF MECHANISMS
Insofar, we studied families of strategyproof mechanisms for linear regression. In the absence

of strategic considerations, a popular mechanism for linear regression is the OLS (ordinary least

squares), which is the empirical risk minimizer for the squared loss. Under this loss function,

which is also called the residual sum of squares (RSS), the loss when choosing hyperplane β given

data points D is RSS(D, β ) =
∑

i ∈N

(
yi − βT xi

)
2

. A classic justification for the OLS is due to

the Gauss-Markov theorem, which states that when the errors (deviations of data points from an
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underlying hyperplane we wish to identify) are stochastic, zero in expectation, uncorrelated, and

of equal variance, the OLS is the best linear unbiased estimator.
However, in our strategic setting, the OLS is not strategyproof [15]. This raises an important

question: Is there a strategyproof mechanism that is close to the OLS?We assess this by the worst-case

approximation ratio of a mechanism for the optimal squared loss.

Definition 5.1 (Efficiency). Given x , we say that mechanismMx
for linear regression is c-efficient

if for every D = (xi ,yi )i ∈N , we have RSS(D,Mx (y)) ≤ c · infβ RSS(D, β ).

We show that no strategyproof mechanism that is too close to the OLS can be strategyproof. The

proof of the next result leverages our characterization of strategyproof mechanisms (Theorem 4.3).

Theorem 5.2. For n ≥ 4, there exist x for which no strategyproof mechanism is (2 − ϵ )-efficient for
any ϵ > 0.

Proof. For simplicity of notation, we use n + 1 agents instead of n agents (and assume n + 1 ≥ 4,

i.e., n ≥ 3). We also consider simple linear regression (d = 1); the proof easily extends to higher

dimensions by simply setting all other coordinates to zero. Fix n ≥ 3. Consider a setting with n + 1
agents where xi = i for i ∈ [n], and xn+1 = X , where X is the solution of the following equation:

n3 − n

2(1 + 3n + 2n2 + 6X 2 − 6Xn − 6X )
= 1. (8)

Interested readers may note that X = Θ(n1.5). Let T denote the LHS in Equation (8).

Consider a strategyproof mechanismMx
. SupposeMx

is c-efficient. We want to show that c ≥ 2.

We consider a family of inputs y, in which we fix yi = 0 for i ∈ [n], and vary yn+1 = Y . First, we
note that the optimal RSS, as a function of Y , is given by

f0 (Y ) = Y
2 ·

n3 − n

2 + 5n + 4n2 + n3 − 12X − 12nX + 12X 2
= Y 2 ·

T

T + 1
=
Y 2

2

,

where the first transition is obtained by minimizing (Y − X · β1 − β0)
2 +

∑n
i=1 (i · β1 + β0)

2
over all

(β1, β0), the second transition follows through simple algebra, and the final transition follows from

Equation (8).

Recall that we fixed yi for i ∈ [n]. Due to our characterization result (Theorem 4.3), there exist

ℓ,h ∈ R with ℓ ≤ h such that the line returned by the mechanism passes through (X ,med(Y , ℓ,h))
for all Y . We take two cases.

Case 1: h > 0. Set Y = h. Then, the line returned by the mechanism passes through (X ,h). In this

case, we can show that the RSS of the mechanism is at least

f1 = h
2 ·

n3 − n

2(1 + 3n + 2n2 + 6X 2 − 6Xn − 6X )
= h2 ·T = h2,

where the first transition is obtained by minimizing (Y − β1 · X − β0)
2 +

∑n
i=1 (β1 · i + β0)

2
over

all (β1, β0) which satisfy β1 · X + β0 = Y , and the rest follows from Equation (8). This implies

c ≥ f1/f0 (h) = 2.

Case 2: h ≤ 0. Set Y = 1. Then, the line returned by the mechanism passes through (X ,h). In this

case, the RSS of the mechanism is at least f2 = 1 because agent n + 1 contributes (1−h)2 ≥ 1 to the

squared loss. Once again, we have c ≥ f2/f0 (1) = 2.

The proof is complete as we have c ≥ 2 in each case. ■

For n = 2 agents (or n = d + 1 agents in d + 1 dimensions), there is an obvious 1-efficient

strategyproof mechanism which returns a hyperplane passing through all input points. Theorem 4.3

leaves open the case of n = 3 in two dimensions.
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6 DISCUSSION
Our work leaves several open questions. Perhaps the most ambitious one is to find a constructive

characterization of all strategyproof or group strategyproof mechanisms for linear regression,

which may allow us to pinpoint the most efficient strategyproof mechanism; Caragiannis et al.

[8] provide a similar analysis in the one-dimensional setting. It is easy to show that L1-ERM is

n-efficient (see the full version). Does there exist a more efficient strategyproof mechanism? It

would also be interesting to analyze efficiency in a stochastic setting where the data points are

drawn from an underlying distribution.

The characterization result of Moulin [33] for strategyproof and anonymous mechanisms in

the one-dimensional setting extends the median to generalized medians by adding fixed phantom

values, and then taking the median. It is also shown that adding n + 1 phantoms is sufficient to

obtain full generality. We can extend all our proposed families of mechanisms by adding a certain

number of “phantom points” in Rd+1, and then applying the mechanisms to the union of data points

and phantom points. The resulting mechanism retains the incentive guarantees.
8
Given n data

points, how many phantoms are sufficient to obtain full generality? Do the phantoms play a role in

obtaining the elusive constructive characterization?

Another interesting observation is that our generalized resistant hyperplane mechanisms are

guaranteed pass through d + 1 input points in d + 1 dimensions. It is known that at least one

minimizer of the L1 loss also has this property. It would be interesting to identify a generic family

of conditions, which, when imposed in addition to the requirement of making d + 1 residuals zero,
yield group strategyproofness.

Finally, Dekel et al. [15] study a regression setting in which a single agent may control multi-

ple data points, show that L1-ERM is no longer strategyproof, and provide novel strategyproof

mechanisms. It would be useful to see if our ideas can be used to design additional strategyproof

mechanisms in this model. Another interesting variant is when only a small number of data points

are held by strategic agents, but the mechanism does not know which ones. A similar setting was

studied by Charikar et al. [11], but for classification and with adversarial manipulations. On a

high level, we view our work as a stepping stone to studying incentives in more realistic machine

learning environments.
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