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Peer prediction mechanisms incentivize agents to truthfully report their signals, in the absence of a veri�cation

mechanism, by comparing their reports with those of their peers. Prior work in this area is essentially

restricted to the case of homogeneous agents, whose signal distributions are identical. �is is limiting in many

domains, where we would expect agents to di�er in taste, judgment and reliability. Although the Correlated

Agreement (CA) mechanism [30] can be extended to handle heterogeneous agents, the new challenge is with

the e�cient estimation of agent signal types. We solve this problem by clustering agents based on their

reporting behavior, proposing a mechanism that works with clusters of agents and designing algorithms that

learn such a clustering. In this way, we also connect peer prediction with the Dawid and Skene [5] literature

on latent types. We retain the robustness against coordinated misreports of the CA mechanism, achieving

an approximate incentive guarantee of ε-informed truthfulness. We show on real data that this incentive

approximation is reasonable in practice, and even with a small number of clusters.

CCS Concepts: •�eory of computation→ Algorithmic game theory and mechanism design;
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1 INTRODUCTION
Peer prediction is the problem of information elicitation without veri�cation. Peer prediction

mechanisms incentivize users to provide honest reports when the reports cannot be veri�ed, either

because there is no objective ground truth or because it is costly to acquire the ground truth. Peer

prediction mechanisms leverage correlation in the reports of peers in order to score contributions.

In recent years, peer prediction has been studied in several domains, including peer assessment in

massively open online courses (MOOCs) [Gao et al., 2016, Shnayder and Parkes, 2016], feedback

on the local places in a city [Mandal et al., 2016], and in the context of collaborative sensing

platforms [Radanovic and Faltings, 2015a].

�e simplest peer prediction mechanism is output agreement, which pairs up two users and

rewards them in the event that their reports agree (the ESP game [von Ahn and Dabbish, 2004] can

be interpreted this way). However, output agreement is not incentive aligned for reports of a priori
unlikely signals. As a result, there has been a lot of a�ention in recent years to �nding methods

that work more generally, as well as providing robustness to coordinated misreports.
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All existing, general methods are essentially restricted to se�ings with homogeneous participants,

whose signal distributions are identical. �is is a poor �t with many suggested applications of peer

prediction. Consider for example, the problem of peer assessment in MOOCs. DeBoer et al. [2013]

and Wilkowski et al. [2014] observe that students di�er based on their geographical locations,

educational backgrounds, and level of commitment, and indeed the heterogeneity of assessment is

clear from a study of Coursera data [Kulkarni et al., 2015]. A similar problem occurs in determining

whether a news headline is o�ensive or not. Depending on which social community a user belongs

to, we should expect to get di�erent opinions [Zafar et al., 2016]. In feedback about places such as

restaurants or in responses to marketing surveys, user responses will vary because of idiosyncratic

di�erences in taste.

One obstacle behind designing peer prediction mechanisms for heterogeneous agents is an

impossibility result. No mechanism can provide strict incentive for truth-telling to a population

of heterogeneous agents without knowledge of their signal distributions [Radanovic and Faltings,

2015c]. �is negative result holds for minimal mechanisms, which only elicit signals and not beliefs

from agents. One way to alleviate this problem, without going to non-minimal mechanisms, is to

use the reports from agents across multiple tasks to estimate the signal distribution of an agent.

�is is our goal: to use minimal peer prediction mechanisms with heterogeneous agents, while

using reports from agents for both learning and scoring. We also want to provide robustness against

coordinated misreports.

As a starting point, we consider the correlated agreement (CA) mechanism proposed in Shnayder

et al. [2016]. If the agents are homogeneous and the designer has knowledge of their joint signal

distribution, then the CA mechanism is informed truthful, i.e. no (even coordinated) strategy pro�le

provides more expected payment than truth-telling and the expected payment under an uninformed

strategy (where an agent’s report is independent of signal) is strictly less than the expected payment

under truth-telling. �ese two properties remove the incentive for coordinated deviations and

promote e�ort in acquiring and reporting signals, respectively. In a detail-free variation, where the

designer learns the signal distribution from reports, approximate incentive alignment is provided

(still maintaining the second property as a strict guarantee.) �e detail-free CA mechanism can

be extended to handle agent heterogeneity, but a naive approach would require learning the joint

signal distributions between every pair of agents, and the total number of reports that need to be

collected would be prohibitive for many se�ings.

Our contributions: We design the �rst minimal and detail-free mechanism for peer prediction

with heterogeneous agents, and establish that the sample complexity is linear in the number of

agents, while providing an incentive guarantee of approximate informed truthfulness. �rst inAs

with the CA mechanism, this is a multi-task mechanism in that each agent makes reports across

multiple tasks. Since our mechanism has a learning component, the task assignments to agents

should be such that both the goals of incentive alignment and learning are simultaneously achieved.

We consider two assignment schemes under which these goals can be achieved and analyze the

sample complexity of our methods for these schemes.

�e new mechanism clusters the agents based on their reported behavior and learns the pairwise

correlations between these clusters. �e clustering introduces one component of the incentive

approximation, and could be problematic in the absence of a good clustering such that agents

within a cluster behave similarly. Using eight real-world datasets, which contain reports of users on

crowdsourcing platforms for multiple labeling tasks, we show that the clustering error is small in

practice even when using a relatively small number of clusters. �e additional approximation that

results from needing to learn the pairwise correlations between clusters can be made arbitrarily

small using a su�cient number of signal reports.
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Another contribution is to connect, we think for the �rst time, the peer prediction literature

with the extensive and in�uential literature on latent, confusion matrix models of label aggre-

gation [Dawid and Skene, 1979b]. �e Dawid-Skene model assumes that signals are generated

independently, conditional on a latent a�ribute of a task and according to an agent’s confusion

matrix. We estimate the cluster average confusion matrices using recent developments in tensor

decomposition algorithms [Anandkumar et al., 2014, Zhang et al., 2016]. �ese matrices are used to

design reward schemes and achieve approximate informed truthfulness.

In e�ect, the mechanism learns how to translate one agent’s signal reports so that they map onto

the signal reports of other agents. For example, in the context of a MOOC, an agent in an “extremal”

cluster that only uses the ‘A’ and ‘E’ grades may be scored positively when her ‘A’ report is matched

with a ‘B’ report from another agent assigned to the same essay and a member of the “accurate”

cluster. Similarly, an agent in the “contrarian” cluster may be scored positively when her ‘E’ report

is matched with an ‘A’ report from another agent in the “accurate” cluster and assigned to the same

essay. In practice, our mechanism would be trained on the data collected during a semester of peer

assessment reports, with students then clustered, cluster-pairwise signal distributions estimated,

and scores eventually assigned (this scoring done retrospectively).

1.1 Related Work
We focus our discussion on related work about minimal mechanisms, but remark that we are aware

of no, non-minimal mechanisms (following from [Prelec, 2004]) that handle agent heterogeneity.

Miller et al. [2005] introduced the peer prediction problem, and proposed an incentive-aligned

mechanism for a single-task se�ing. However their mechanism requires knowledge of the joint

signal distribution and is vulnerable to coordinated misreports. In regard to coordinated misreports,

Jurca et al. [2009] show how to eliminate uninformative, pure-strategy equilibria through a three-

peer mechanism, and Kong et al. [2016] provide a method to design robust, single-task, binary

signal mechanisms (but need knowledge of the joint signal distribution). Frongillo and Witkowski

[2017] provide a characterization of minimal (single task) peer prediction mechanisms.

Witkowski and Parkes [2013] introduced the combination of learning and peer prediction,

coupling the estimation of the signal prior together with the shadowing mechanism. Some results

make use of reports from a large population. Radanovic and Faltings [2015b], for example, establish

robust incentive properties in a large-market limit where both the number of tasks and the number

of agents assigned to each task grow without bound. Radanovic et al. [2016] provide complementary

theoretical results, giving a mechanism in which truthfulness is the equilibrium with highest payo�

in the asymptote of a large population and with a structural property on the signal distribution.

Dasgupta and Ghosh [2013] show that robustness to coordinated misreports can be achieved for

binary signals in a small population by using a multi-task mechanism. �e idea is to reward agents

if they provide the same signal on the same task, but punish them if one agent’s report on one task

is the same as another’s on another task. �e correlated agreement (CA) mechanism [Shnayder

et al., 2016] generalizes this mechanism to handle multiple signals, and uses reports to estimate the

correlation structure on pairs of signals without compromising incentives. In related work, Kong

and Schoenebeck [2016] show that many peer prediction mechanisms can be derived within a single

information-theoretic framework. �eir results use di�erent technical tools than Shnayder et al.

[2016], and also include a di�erent multi-signal generalization of the Dasgupta-Ghosh mechanism

that provides robustness against coordinated misreports in the limit of a large number of tasks.

Shnayder et al. [2016] adopt replicator dynamics as a model of population learning in peer prediction,

and con�rm that these multi-task mechanisms (including Kamble et al. [2015]) are successful at

avoiding uninformed equilibria.
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�ere are very few results on handling agent heterogeneity in peer prediction. For binary

signals, the method of Dasgupta and Ghosh [2013] is likely to be an e�ective solution because their

assumption on correlation structure will tend to hold for most reasonable models of heterogeneity.

But it will break down for more than binary signals, as explained by Shnayder et al. [2016]. Moreover,

although the CA mechanism can in principle be extended to handle heterogeneity, it is not clear

how the required statistical information about signal distributions can be e�ciently learned and

coupled with an analysis of approximate incentives. For a se�ing with binary signals and where

each task has one of a �xed number of latent types, Kamble et al. [2015] design a mechanism that

provides strict incentive compatibility for a suitably large number of heterogeneous agents, and

when the number of tasks grows without bound (while allowing each agent to only provide reports

on a bounded number of tasks). �eir result is restricted to binary signals, and requires a strong

regularity assumption on the generative model of signals. Finally, we consider only binary e�ort of

a user, i.e. the agent either invests e�ort and receives a signal or does not invest e�ort and receives

an uninformed signal. Other work that has considered the importance of motivating e�ort in the

context of peer prediction includes Liu and Chen [2016] and Witkowski et al. [2013].
1

See Mandal

et al. [2016] for a se�ing with heterogeneous tasks but homogeneous agents.

2 MODEL
Let notation [t] denote {1, . . . , t} for t ∈ N. We consider a population of agents P = [`], and use

indices such as p and q to refer to agents from this population. �ere is a set of tasks M = [m].
When an agent performs a task, she receives a signal from N = [n]. As mentioned before, we

assume that the e�ort of an agent is binary. We also assume that the tasks are ex ante identical,

that is, the signals of an agent for di�erent tasks are sampled i.i.d. We use Sp to denote the random

variable for the signal of agent p for a task.

We work in the se�ing where the agents are heterogeneous, i.e., the distribution of signals can

be di�erent for di�erent agents. We say they vary by signal type. Let Dp,q(i, j) denote the joint

probability that agent p receives signal i while agent q receives signal j on a random task. Let

Dp (i) and Dq(j) denote the corresponding marginal probabilities. We de�ne the Delta matrix ∆p,q
between agents p and q as

∆p,q(i, j) = Dp,q(i, j) − Dp (i) · Dq(j), ∀i, j ∈ [n]. (1)

Shnayder et al. [2016] show that it is without loss of generality for the class of mechanisms we

study in this paper to assume that an agent’s strategy is uniform across di�erent tasks. Given this, let

Rp denote the random variable for the report of agent p for a task. �e strategy of agent p, denoted

Fp , de�nes the distribution on reports for each possible signal i , with F
p
ir = Pr(Rp = r |Sp = i).

�e collection of agent strategies, denoted {Fp }p∈P , is the strategy pro�le. A strategy of agent p is

informed if there exist distinct i, j ∈ [n] and r ∈ [n] such that F
p
ir , F

p
jr , i.e., if not all rows of Fp are

identical. We say that a strategy is uninformed otherwise.

2.1 Multi-Task Peer Prediction
We consider multi-task peer prediction mechanisms. In particular, we adapt the correlated agreement
(CA) mechanism [Shnayder et al., 2016] to our se�ing with heterogeneous agents. For every pair

of agents p,q ∈ P , we de�ne a scoring matrix Sp,q : [n] × [n] → R as a means of scoring agent

1
Cai et al. [2015] work in a di�erent model, showing how to achieve optimal statistical estimation from data provided by

rational agents. �ese authors focus on the cost of e�ort, and do not consider misreports (and their mechanism is vulnerable

to coordinated misreports).
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reports.
2

We randomly divide (without the knowledge of an agent) the set of tasks performed by

each agent into nonempty sets of bonus tasks and penalty tasks. For agent p, we denote the set of

her bonus tasks by M
p
1

and the set of her penalty tasks by M
p
2

.

To calculate the payment to an agent p for a bonus task t ∈ Mp
1

, we do the following:

(1) Randomly select an agent q ∈ P \ {p} such that t ∈ Mq
1

, and the set M
p
2
∪Mq

2
has at least 2

distinct tasks, and call q the peer of p.

(2) Pick tasks t ′ ∈ Mp
2

and t ′′ ∈ Mq
2

randomly such that t ′ , t ′′ (t ′ and t ′′ are the penalty tasks

for agents p and q respectively)

(3) Let the reports of agent p on tasks t and t ′ be r tp and r t
′

p , respectively and the reports of

agent q on tasks t and t ′′ be r tq and r t
′′

q respectively.

(4) �e payment of agent p for task t is then Sp,q(r tp , r tq) − Sp,q(r t
′

p , r
t ′′
q ).

�e total payment to an agent is the sum of payments for the agent’s bonus tasks. We assume that

from an agent’s perspective, every other agent is equally likely to be her peer. �is requires agents

not to know each other’s task assignments. In Section 4 we give two task assignment schemes such

that from an agent’s perspective all peers are equally likely.

�e expected payment to agent p for any bonus task performed by her— equal across all bonus

tasks as the tasks are ex ante identical —is given by

up (Fp , {Fq}q,p ) =
1

` − 1

∑
q,p

∑
i, j

∆p,q(i, j)
∑
rp,rq

Sp,q(rp , rq) · Fpirp · F
q
jrq . (2)

Using the fact that there exist optimal solutions to linear functions that are are extremal, it is

easy to show that there always exists an optimal strategy for agent p that is deterministic (see

also Shnayder et al. [2016]).

Lemma 2.1. For every player p, and any strategies of others, there always exists an optimal strategy
Fp maximizing up that is deterministic.

Herea�er, we assume without loss of generality that agent strategies are deterministic. For a

deterministic strategy Fp of agent p, we will slightly abuse notation and write F
p
i to denote the

signal reported by agent p when she observes signal i . For a deterministic strategy pro�le {Fq}q∈P ,

the expected payment to agent p is

up (Fp , {Fq}q,p ) =
1

` − 1

∑
q,p

∑
i, j

∆p,q(i, j) · Sp,q(Fpi , F
q
j ). (3)

2.2 Informed Truthfulness
Following Shnayder et al. [2016], we de�ne the notion of approximate informed truthfulness for a

multi-task peer prediction mechanism.

De�nition 2.2. (ε-informed truthfulness) We say that a multi-task peer prediction mechanism

is ε-informed truthful, for some ε > 0, if and only if for every strategy pro�le {Fq}q∈P and every

agent p ∈ P , we have up (I, {I}q,p ) > up (Fp , {Fq}q,p ) − ε , where I is the truthful strategy, and

up (I, {I}q,p ) > up (Fp0 , {Fq}q,p ) where F
p
0

is an uninformed strategy.

An ε-informed truthful mechanism ensures that every agent prefers (up to ε) the truthful strategy

pro�le over any other strategy pro�le, and strictly prefers the truthful strategy pro�le over any

uninformed strategy. For a small ε , this is responsive to the main concerns about incentives in peer

2
Multi-task peer prediction mechanisms for homogeneous agents need a single Delta and a single scoring matrix.
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prediction: a minimal opportunity for coordinated manipulations, and a strict incentive to invest

e�ort in collecting and reporting an informative signal.
3

2.3 Agent Clustering
While the natural extension of the detail-free CA mechanism to our se�ing with heterogeneous

agents preserves informed truthfulness, it would require learning the Delta matrix between every

pair of agents. In order to learn this from data without additional assumptions, we would require

Ω(`2) samples, which will o�en be impractical. Rather, the number of reports in a practical

mechanism should scale closer to linearly in the number of agents.

In response, we will assume that agents can be (approximately) clustered into a bounded number

K of agent signal types, with all agents of the same type having nearly identical signal distributions.

Let G1, . . . ,GK denote a partitioning of agents into K clusters. With a slight abuse of notation, we

also use G(p) to denote the cluster to which agent p belongs.

De�nition 2.3. We say that clustering G1, . . . ,GK is ε1-accurate, for some ε1 > 0, if for every pair

of agents p,q ∈ P ,

‖∆p,q − ∆G(p),G(q)‖1 6 ε1, (4)

where ∆G(p),G(q) is the cluster Delta matrix between clusters G(p) and G(q), de�ned as the average

of the Delta matrices between agents in G(p) and agents in G(q):

∆Gs ,Gt =
1

|Gs | × |Gt |
∑

p∈Gs ,q∈Gt

∆p,q .

Our mechanism will use ∆G(p),G(q) in place of ∆p,q to de�ne the scoring matrix Sp,q . �us, the

accuracy of the clustering will translate directly to the incentive guarantee of the mechanism and

we seek a clustering that is as accurate as possible. For the incentive properties to hold, we will

need high between-cluster similarity between agents (i.e., two agents in cluster 1 interact with

agents in other clusters in a similar way).

�ere is an inverse relationship between the number of clusters, K , and the cluster accuracy, ε1.

On the one extreme, we can let every agent be a separate cluster (K = `), which results in ε1 = 0.

On the other hand, a small number of clusters is essential for reasonable sample complexity, as we

will need to learn K2
cluster Delta matrices. In Section 4, we give a learning algorithm that can

learn all the pairwise cluster Delta matrices with Õ(K) samples given a clustering of the agents. In

Section 5, we show using real-world data that a reasonably small clustering error can be achieved

with relatively few clusters.

3 CORRELATED AGREEMENT FOR CLUSTERED, HETEROGENEOUS AGENTS
In this section we de�ne mechanism CAHU, presented as Algorithm 1, which takes as input a

clustering as well as estimates of the cluster Delta matrices. Speci�cally, CAHU takes as input a

clustering G1, . . . ,GK , together with estimates of cluster Delta matrices {∆Gs ,Gt }s,t ∈[K ].

De�nition 3.1. We say that a clustering {Gs }s ∈[K ] and the estimates {∆Gs ,Gt }s,t ∈[K ] are (ε1, ε2)-
accurate if

• ‖∆p,q − ∆G(p),G(q)‖1 6 ε1 for all agents p,q ∈ P , i.e., the clustering is ε1-accurate, and

• ‖∆Gs ,Gt − ∆Gs ,Gt ‖1 6 ε2 for all clusters s, t ∈ [K], i.e., the cluster Delta matrix estimates

are ε2-accurate.

3
We do not model the cost of e�ort explicitly in this paper, but a binary cost model (e�ort→ signal, no-e�ort→ no

signal) can be handled in a straightforward way. See Shnayder et al. [2016].
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When we have a clustering and estimates of the delta matrices which are (ε1, ε2)-accurate, we

prove that the CAHU mechanism is (ε1 + ε2)-informed truthful. In Section 4, we present algorithms

that can learn an ε1-accurate clustering and ε2-accurate estimates of cluster Delta matrices.

�roughout the rest of this section, we will use ε1 to denote the clustering error and ε2 to denote

the learning error. We remark that the clustering error ε1 is determined by the level of similarity

present in agent signal-report behavior, as well as the number of clusters K used, whereas the

learning error ε2 depends on how many samples the learning algorithm sees.

Algorithm 1 Mechanism CAHU

Let Sign(x) = 1 if x > 0, and 0 otherwise.

Input:
A clustering G1, . . . ,GK such that ‖∆p,q − ∆G(p),G(q)‖1 6 ε1 for all p,q ∈ P ;

estimates {∆Gs ,Gt }s,t ∈[K ] such that ‖∆Gs ,Gt − ∆Gs ,Gt ‖1 6 ε2 for all s, t ∈ [K]; and

for each agent p ∈ P , her bonus tasks M
p
1

, penalty tasks M
p
2

, and responses {rpb }b ∈Mp
1
∪Mp

2

.

Method:
1: for every agent p ∈ P do
2: for every task b ∈ Mp

1
do . Reward response r

p
b

3: q ← uniformly at random conditioned on b ∈ Mq
1
∪Mq

2
and (either

��Mq
2

�� > 2,
��Mp

2

�� > 2

or M
q
2
, M

p
2

) . Peer agent

4: Pick tasks b ′ ∈ Mp
2

and b ′′ ∈ Mq
2

randomly such that b ′ , b ′′ . Penalty tasks

5: SG(p),G(q) ← Sign(∆G(p),G(q))
6: Reward to agent p for task b is SG(p),G(q)

(
r
p
b , r

q
b

)
− SG(p),G(q)

(
r
p
b′, r

q
b′′

)
7: end for
8: end for

3.1 Analysis of CAHU
Because mechanism CAHU uses scoring matrix SG(p),G(q) to reward agent p given peer agent q
in place of a separate scoring matrix Sp,q for every pair of agents (p,q), the payo� equation (3)

transforms to

up (Fp , {Fq}q,p ) =
1

` − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · SG(p),G(q)(Fpi , F
q
j ). (5)

Next, we prove a sequence of results that show that mechanism CAHU is (ε1 + ε2)-informed

truthful when the clustering is ε1-accurate and the cluster Delta matrix estimates are ε2-accurate.

We �rst show that the mechanism would be (exactly) informed truthful if it used the Delta matrices

between agents instead of using estimates of cluster Delta matrices. In the following we use u∗p (·)
(resp. up (·)) to denote the utility of agent p under the CA (resp. CAHU) mechanism.

Lemma 3.2. For a strategy pro�le {Fq}q∈P and an agent p ∈ P , de�ne

u∗p (Fp , {Fq}q,p ) =
1

` − 1

∑
q∈P\{p }

∑
i, j

∆p,q(i, j) · Sp,q(Fpi , F
q
j ),

where Sp,q(i, j) = Sign(∆p,q(i, j)) for all i, j ∈ [n]. �en, u∗p (I, {I}q,p ) > u∗p (Fp , {Fq}q,p ). Moreover,
for any uninformed strategy Fp = r , u∗p (I, {I}q,p ) > u∗p (r , {Fq}q,p ).
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�e proof of all theorems and lemmas appear in the full version of the paper.
4

We now use this

result to prove one of our main theorems, which is the desired informed truthfulness guarantee

about mechanism CAHU.

Theorem 3.3. With (ε1, ε2)-accurate clustering and learning, mechanism CAHU is (ε1+ε2)-informed
truthful if minp u

∗
p (I, {I}q,p ) > ε1. In particular,

(1) For every pro�le {Fq}q∈P and agent p ∈ P , we have up (I, {I}q,p ) > up (Fp , {Fq}q,p ) − ε1 − ε2.
(2) For any uninformed strategy F

p
0
, up (Fp0 , {Fq}q,p ) < up (I, {I}q,p ).

�e CAHU mechanism always ensures that there is no strategy pro�le which gives an expected

utility more than ε1 + ε2 above truthful reporting. �e condition minp u
∗
p (I, {I}q,p ) > ε1 is required

to ensure that any uninformed strategy gives strictly less than the truth-telling equilibrium. �is is

important to promote e�ort in collecting and reporting an informative signal. Writing it out, this

condition requires that for each agent p the following holds :

1

` − 1

∑
q,p

∑
i, j :∆p,q (i, j)>0

∆p,q(i, j) > ε1. (6)

In particular, a su�cient condition for this property is that for every pair of agents the expected

reward on a bonus task in the CA mechanism when making truthful reports is at least ε1, i.e. for

every pair of agents p and q, ∑
i, j :∆p,q (i, j)>0

∆p,q(i, j) > ε1. (7)

In turn, as pointed out in Shnayder et al. [2016], the LHS in (7) quantity can be interpreted as

a measure of how much positive correlation there is in the joint distribution on signals between

a pair of agents. Note that it is not important that this is same-signal correlation. For example,

this quantity would be large between an accurate and an always-wrong agent in a binary-signal

domain, since the positive correlation would be between one agent’s report and the �ipped report

from the other agent.

�e incentive properties of the mechanism are retained when used together with learning the

cluster structure and cluster Delta matrices. �is follows because the agents can do no be�er than

have the mechanism be designed with the correct scoring matrices (see Shnayder et al. [2016]).

4 LEARNING THE AGENT SIGNAL TYPES
In this section, we provide algorithms for learning a clustering of agent signal types from reports,

and further, for learning the cluster pairwise ∆ matrices. �e estimates of the ∆ matrices can

then be used to give an approximate-informed truthful mechanism. Along the way, we couple our

methods with the latent “confusion matrix” methods of Dawid and Skene [1979b].

Recall thatm is the total number of tasks about which reports are collected. Reports onm1 of

these tasks will also be used for clustering, and reports on a furtherm2 of these tasks will be used

for learning the cluster pairwise ∆ matrices. We consider two di�erent schemes for assigning

agents to tasks for the purpose of clustering and learning (see Figures 1 and 2):

(1) Fixed Task Assignment: Each agent is assigned to the same, random subset of tasks of

sizem1 +m2 of the givenm tasks.

(2) Uniform Task Assignment: For clustering, we select two agents r1 and r2, uniformly

at random, to be reference agents. �ese agents are assigned to a subset of tasks of size

4
�e full version is available on the authors’ website.
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Fig. 1. Fixed Task Assignment Fig. 2. Uniform Task Assignment

Table 1. Sample complexity for the CAHU mechanism. The rows indicate the assignment scheme and the
columns indicate the modeling assumption. Here ` is the number of agents, n is the number of signals, ε ′ is a
parameter that controls learning accuracy ‡ , γ is a clustering parameter, K is the number of clusters, andm1

(resp.m2) is the size of the set of tasks from which the tasks used for clustering (resp. learning) are sampled.

No Assumption Dawid-Skene

Fixed Assignment

Clustering: Õ
(
`n2

γ 2

)
Learning: Õ

(
Kn2

(ε ′)2
) Clustering: Õ

(
`n2

γ 2

)
Learning: Õ

(
`n7

(ε ′)2
)

Uniform Assignment

Clustering: Õ
(
`n2

γ 2
+m1

)
Learning: Õ

(
Km7/8

2

√
n2

(ε ′)2
) Clustering: Õ

(
`n2

γ 2
+m1

)
Learning: Õ

(
Kn7

(ε ′)2
)
†

m1(< m). For all other agents, we then assign a required number of tasks, s1, uniformly

at random from the set ofm1 tasks. For learning the cluster pairwise ∆-matrices, we also

assign one agent from each cluster to some subset of tasks of size s2, selected uniformly at

random from a second set ofm2(< m −m1) tasks.

For each assignment scheme, the analysis establishes that there are enough agents who have

done a su�cient number of joint tasks. Table 1 summarizes the sample complexity results, stating

them under two di�erent assumptions about the way in which signals are generated.

4.1 Clustering
We proceed by presenting and analyzing a simple clustering algorithm.

De�nition 4.1. A clustering G1, . . . ,GK is ε-good if for some γ > 0

G(q) = G(r ) ⇒ ‖∆pq − ∆pr ‖1 6 ε − 4γ ∀p ∈ [`] \ {q, r } (8)

G(q) , G(r ) ⇒ ‖∆pq − ∆pr ‖1 > ε ∀p ∈ [`] \ {q, r } (9)

We �rst show that an ε-good clustering, if exists, must be unique.

Theorem 4.2. Suppose there exist two clustering {G j }j ∈[K ] and {Ti }i ∈[K ′] that are ε-good. �en
K ′ = K and G j = Tπ (j) for some permutation π over [K].

†
For an arbitrary m2, this bound is Km2 as long as m2 is Ω

(
n7/(ε ′)2

)
‡

In the no assumption approach (resp. Dawid-Skene Model), ε ′ is the error in the estimation of the joint probability

distribution (resp. aggregate confusion matrix).
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Algorithm 2 Clustering

Input: ε,γ such that there exists an ε-good clustering with parameter γ .

Output: A clustering {Ĝt }K̂t=1

1: Ĝ ← ∅, K̂ ← 0 . Ĝ is the list of clusters, K̂ = |Ĝ |
2: Make a new cluster Ĝ1 and add agent 1

3: Add Ĝ1 to Ĝ, K̂ ← K̂ + 1

4: for i = 2, . . . , ` do
5: for t ∈ [K̂] do
6: Pick an arbitrary agent qt ∈ Ĝt
7: Pick pt ∈ [l] \ {i,qt } (Fixed) or pt ∈ {r1, r2} \ {i,qt } (Uniform), such that pt has at

least Ω(n
2

log(K`/δ )
γ 2

) tasks in common with both qt and i

8: Let ∆̄pt ,qt be the empirical Delta matrix from reports of agents pt and qt
9: Let ∆̄pt ,i be the empirical Delta matrix from reports of agents pt and i

10: end for
11: if ∃t ∈ [K̂] : ‖∆̄pt ,qt − ∆̄pt ,i ‖1 6 ε − 2γ then
12: add i to Ĝt (with ties broken arbitrarily for t )
13: else
14: Make a new cluster ĜK̂+1

and add agent i to it

15: Add ĜK̂+1
to Ĝ, K̂ ← K̂ + 1

16: end if
17: end for

Since there is a unique ε-good clustering (up to a permutation), we will refer to this cluster-

ing as the correct clustering. �e assumption that there exists an ε-good clustering is stronger

than Equation (4) introduced earlier.

˜O(n
2 /γ

2 )
i

Õ(n 2/γ 2) qt

pt

Ct

Fig. 3. Algorithm 2 checks whether i and qt
are in the same cluster by estimating ∆pt ,qt
and ∆pt ,i .

In particular, identifying the correct clustering requires

need eq. (9), i.e. the ∆-matrices of two agents belong-

ing to two di�erent clusters are di�erent with respect to

every other agent. So, we need low inter-cluster simi-

larities in addition to high intra-cluster similarities. �e

pseudo-code for the clustering algorithm is presented in

Algorithm 2. �is algorithm iterates over the agents, and

forms clusters in a greedy manner. First, we prove that

as long as we can �nd an agent pt that has Ω(n
2

log(`/δ )
γ 2

)
tasks in common with both qt and i , then the clustering

produced by Algorithm 2 is correct with probability at

least 1 − δ .

Theorem 4.3. If for all i ∈ P and qt ∈ G(i), there exists
pt which has Ω(n

2
log(`/δ )
γ 2

) tasks in common with both qt
and i , then Algorithm 2 recovers the correct clustering i.e. Ĝt = Gt for t = 1, . . . ,K with probability at
least 1 − δ .

Next we show how the assumption in regard to task overlap is satis�ed under each assignment

scheme, and characterize the sample complexity of learning the clusterings under each scheme. In

the �xed assignment scheme, all the agents are assigned to the same set ofm1 = Ω(n2

γ 2
log(K`/δ ))
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tasks. �us, for each agent pair qt and i , any other agent in the population can act as pt . �e total

number of tasks performed is O
(
`n2

γ 2
log(K`/δ )

)
.

In the uniform assignment scheme, we select two agents r1 and r2 uniformly at random to be

reference agents, and assign these agents to each of m1 = Ω(n2

γ 2
log(K`/δ )) tasks. For all other

agents we then assign s1 = Ω(n2

γ 2
log(K`/δ )) tasks uniformly at random from this set ofm1 tasks.

If m1 = s1, then the uniform task assignment is the same as �xed task assignment. However, in

applications, for example [Karger et al., 2011], where one wants the task assignments to be more

uniform across tasks, it will make sense to use a larger value of m1. �e reference agent r1 can

act as pt for all agent pairs qt and i other than r1. Similarly, reference r2 can act as pt for all agent

pairs qt and i other than r2. If qt = r1 and i = r2 or qt = r2 and i = r1, then any other agent can act

as pt . �e total number of tasks performed is Ω( `n2

γ 2
log(K`/δ ) +m1), which is su�cient for the

high probability result.

4.2 Learning the Cluster Pairwise ∆ Matrices
We proceed now under the assumption that the agents are clustered into K groups, G1, . . . ,GK .

Our goal is to estimate the cluster-pairwise delta matrices ∆Gs ,Gt as required by Algorithm 1. We

estimate the ∆Gs ,Gt under two di�erent se�ings: when we have no model of the signal distribution,

and in the Dawid-Skene latent a�ribute model.

Algorithm 3 Learning-∆-No-Assumption

1: for t = 1, . . . ,K do
2: Chose agent qt ∈ Gt arbitrarily.

3: end for
4: for each pair of clusters Gs ,Gt do
5: Let qs and qt be the chosen agents for Gs and Gt , respectively.

6: Let D̄qs ,qt be the empirical estimate of Dqs ,qt such that ‖D̄qs ,qt − Dqs ,qt ‖1 6 ε ′ with

probability at least 1 − δ/K2

7: Let ∆̄qs ,qt be the empirical Delta matrix computed using D̄qs ,qt
8: Set ∆̄Gs ,Gt = ∆̄qs ,qt
9: end for

4.2.1 Learning the ∆-Matrices with No Assumption. We �rst characterize the sample com-

plexity of learning the ∆-matrices in the absence of any modeling assumptions. In order to estimate

∆̄Gs ,Gt , Algorithm 3 �rst picks agent qs from cluster Gs , estimates ∆̄qs ,qt and use this estimate in

place of ∆̄Gs ,Gt . For the �xed assignment scheme, we assign the agents qs to the same set of tasks

of size O
(

n2

(ε ′)2 log(K/δ )
)
. For the uniform assignment scheme, we assign the agents to subsets of

tasks of an appropriate size among the pool ofm2 tasks.

Theorem 4.4. Given an ε-good clustering {Gs }Ks=1
, if the number of shared tasks between any

pair of agents qs ,qt is O
(

n2

(ε ′)2 log(K/δ )
)
, then algorithm 3 guarantees that for all s, t , ‖∆̄Gs ,Gt −

∆Gs ,Gt ‖1 6 3ε ′ + 2ε with probability at least 1 − δ . �e total number of samples collected by

the algorithm is O
(
Kn2

(ε ′)2 log(K/δ )
) (

resp. O
(
Km7/8

2

√
n2

(ε ′)2 log(K/δ )
)
w.h.p.

)
under the �xed (resp.

uniform) assignment scheme.
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4.2.2 Learning the ∆-matrices Under the Dawid-SkeneModel. In this section, we assume

that the agents receive signals according to the Dawid and Skene [1979a] model. In this model,

each task has a latent a�ribute and each agent has a confusion matrix to parameterize its signal

distribution conditioned on this latent value. More formally:

• Let {πk }nk=1
denote the prior probability over n latent values.

• Agent p has confusion matrix Cp ∈ Rn×n , such that C
p
i j = Dp (Sp = j |T = i) where T is the

latent value. Given this, the joint signal distribution for a pair of agents p and q is

Dp,q(Sp = i, Sq = j) =
n∑

k=1

πkC
p
kiC

q
k j , (10)

and the marginal signal distribution for agent p is

Dp (Sp = i) =
n∑

k=1

πkC
p
ki . (11)

For cluster Gt , we write Ct = 1

|Gt |
∑
p∈Gt

Cp
to denote the aggregate confusion matrix of Gt . As

before, we assume that we are given an ε-good clustering, G1, . . . ,GK , of the agents. Our goal is to

provide an estimate of the ∆Gs ,Gt -matrices.

Lemma 4.5 proves that in order to estimate ∆Gs ,Gt within an L1 distance of ε ′, it is enough

to estimate the aggregate confusion matrices within an L1 distance of ε ′/4. So in order to learn

the pairwise delta matrices between clusters, we �rst ensure that for each cluster Gt , we have

‖C̄t −Ct ‖1 6 ε ′/4 with probability at least 1−δ/K , and then use the following formula to compute

the delta matrices:

∆Gs ,Gt (i, j) =
n∑

k=1

πkC̄
s
kiC̄

t
k j −

n∑
k=1

πkC̄
s
ki

n∑
k=1

πkC̄
t
k j (12)

Lemma 4.5. ForallGa ,Gb , ‖C̄a −Ca ‖1 6 ε ′/4 and ‖C̄b −Cb ‖1 6 ε ′/4⇒ ‖∆̄Ga,Gb −∆Ga,Gb ‖ 6 ε ′.

We turn now to estimating the aggregate confusion matrix of each cluster. Let us assume for

now that the agents are assigned to the tasks according to the uniform assignment scheme, i.e.

agent p belonging to cluster Ga is assigned to a subset of Ba tasks selected uniformly at random

from a pool ofm2 tasks. For cluster Ga , we choose Ba =
m2

|Ga | ln(
m2K
β ). �is implies:

(1) For each j ∈ [m2], Pr [agent p ∈ Ga completes task j] = log(m2K/β )
|Ga | , i.e. each agent p in Ga

is equally likely to complete every task j.

(2) Pr [task j is unlabeled by Ga] =
(
1 − log(m2K/β )

|Ga |

) |Ga |
6 β

m2K
. Taking a union bound over

them2 tasks and K clusters, we get the probability that any task is unlabeled is at most β .

Now if we choose β = 1/poly(m2), we observe that with probability at least 1− 1/poly(m2),
each task j is labeled by some agent in each cluster when Ba = Õ( m2

|Ga | ).
Le� to do is to provide an algorithm and sample complexity for learning the aggregate confusion

matrices. For this, we will use n dimensional unit vectors to denote the reports of the agents (recall

that there are n possible signals). In particular agent p’s report on task j, rpj ∈ {0, 1}n . If p’s report

on task j is c , then the c-th coordinate of rpj is 1 and all the other coordinates are 0. �e expected

value of agent p’s report on jth task is E

[
rpj

]
=

∑n
k=1

πkC
p
k �e aggregated report for a cluster Gt

is given as Rt j =
1

|Gt |
∑
p∈Gt

rpj .

Suppose we want to estimate the aggregate confusion matrix C1
of some cluster G1. To do so,

we �rst pick three clusters G1,G2 and G3 and write down the corresponding cross moments. Let
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(a,b, c) be a permutation of the set {1, 2, 3}. We have:

M1 = E[Raj ] =
∑
k

πkC
a
k (13)

M2 = E[Raj ⊗ Rbj ] =
∑
k

πkC
a
k ⊗ C

b
k (14)

M3 = E[Raj ⊗ Rbj ⊗ Rc j ] =
∑
k

πkC
a
k ⊗ C

b
k ⊗ C

c
k (15)

�e cross moments are asymmetric, however using �eorem 3.6 of Anandkumar et al. [2014],

we can write the cross-moments in a symmetric form.

Lemma 4.6. Assume that the vectors {Ct
1
, . . . ,Ct

n} are linearly independent for each t ∈ {1, 2, 3}.
For any permutation (a,b, c) of the set {1, 2, 3} de�ne

R′aj = E

[
Rc j ⊗ Rbj

] (
E

[
Raj ⊗ Rbj

] )−1

Raj

R′bj = E

[
Rc j ⊗ Raj

] (
E

[
Rbj ⊗ Raj

] )−1

Rbj

M2 = E

[
R′aj ⊗ R′bj

]
andM3 = E

[
R′aj ⊗ R′bj ⊗ Rc j

]
�enM2 =

n∑
k=1

πkC
c
k ⊗ C

c
k and M3 =

n∑
k=1

πkC
c
k ⊗ C

c
k ⊗ C

c
k

We cannot compute the moments exactly, but rather estimate the moments from samples observed

from di�erent tasks. Furthermore, for a given task j, instead of exactly computing the aggregate

label Rдj , we select one agent p uniformly at random from Gд and use agent p’s report on task j as

a proxy for Rдj . We will denote the corresponding report as R̃дj . �e next lemma proves that the

cross-moments of {R̃дj }Kд=1
and {Rдj }Kд=1

are the same.

Lemma 4.7. (1) For any group Ga , E

[
R̃aj

]
= E

[
Raj

]
(2) For any pair of groups Ga and Gb , E

[
R̃aj ⊗ R̃bj

]
= E

[
Raj ⊗ Rbj

]
(3) For any three groups Ga ,Gb and Gc , E

[
R̃aj ⊗ R̃bj ⊗ R̃c j

]
= E

[
Raj ⊗ Rbj ⊗ Rc j

]
�e next set of equations show how to approximate the moments M2 and M3:

R̂′aj =

(
1

m2

m2∑
j′=1

R̃c j′ ⊗ R̃bj′
) (

1

m2

m2∑
j′=1

R̃aj′ ⊗ R̃bj′
)−1

R̃aj (16)

R̂′bj =

(
1

m2

m2∑
j′=1

R̃c j′ ⊗ R̃aj′
) (

1

m2

m2∑
j′=1

R̃bj′ ⊗ R̃aj′
)−1

R̃bj (17)

M̂2 =
1

m2

m2∑
j′=1

R̂′aj′ ⊗ R̂′bj′ and M̂3 =
1

m2

m2∑
j′=1

R̂′aj′ ⊗ R̂′bj′ ⊗ R̃c j′ (18)

We use the tensor decomposition algorithm (4) on M̂2 and M̂3 to recover the aggregate confusion

matrix C̄c
and Π̄, where Π̄ is a diagonal matrix whose k-th component is π̄k , an estimate of πk . In

order to analyze the sample complexity of Algorithm 4, we need to make some mild assumptions

about the problem instance. For any two clusters Ga and Gb , de�ne Sab = E

[
Raj ⊗ Rbj

]
=∑n

k=1
πkC

a
k ⊗ C

b
k . We make the following assumptions:
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Algorithm 4 Estimating Aggregate Confusion Matrix

Input: K clusters of agents G1,G2, . . . ,GK and the reports R̃дj ∈ {0, 1}n for j ∈ [m] and д ∈ [K]
Output: Estimate of the aggregate confusion matrices C̄д for all д ∈ [K]

1: Partition the K clusters into groups of three

2: for Each group of three clusters {дa ,дb ,дc } do
3: for (a,b, c) ∈ {(дb ,дc ,дa), (дc ,дa ,дb ), (дa ,дb ,дc )} do
4: Compute the second and the third order moments M̂2 ∈ Rn×n , M̂3 ∈ Rn×n×n . .

Compute C̄д and Π̄ by tensor decomposition

5: Compute whitening matrix Q̂ ∈ Rn×n such that Q̂T M̂2Q̂ = I
6: Compute eigenvalue-eigenvector pairs (α̂k , v̂k )nk=1

of the whitened tensor M̂3(Q̂, Q̂, Q̂)
by using the robust tensor power method

7: Compute ŵk = α̂
−2

k and µ̂k = (Q̂T )−1α̂v̂k
8: For k = 1, . . . ,n set the k-th column of C̄c

by some µ̂k whose k-th coordinate has the

greatest component, then set the k-th diagonal entry of Π̄ by ŵk
9: end for

10: end for

(1) �ere exists σL > 0 such that σn(Sab ) > σL for each pair of clusters a and b, where σn(M)
is the n-th smallest eigenvalue of M .

(2) κ = mint ∈[k ]mins ∈[n]minr,s
{
Ct
r r −Ct

r s
}
> 0

�e �rst assumption implies that the matrices Sab are non-singular. �e second assumption

implies that within a group, the probability of assigning the correct label is always higher than the

probability of assigning any incorrect label. �e following theorem gives the number of tasks each

agent needs to complete to get an ε ′-estimate of the aggregate confusion matrices.

Theorem 4.8. For any ε ′ 6 min

{
31

σ 2

L
, κ

2

}
n2 and δ > 0, if the size of the universe of shared tasksm2

is at least O
(

n7

(ε ′)2σ 11

L
log

( nK
δ

) )
, then we have ‖C̄t −Ct ‖1 6 ε ′ for each cluster Gt . �e total number

of samples collected by Algorithm 4 is Õ (Km2) under the uniform assignment scheme.

Discussion. If the algorithm chooses m2 = Õ
(

n7

(ε ′)2σ 11

L

)
, then the total number of samples

collected under the uniform assignment scheme is at most Õ
(

n7

(ε ′)2σ 11

L

)
. So far we have analyzed the

Dawid-Skene model under the uniform assignment scheme. When the assignment scheme is �xed,

the moments of Raj and R̃aj need not be the same. In this case we will have to run Algorithm 4

with respect to the actual aggregate labels {Rдj }Kд=1
. �is requires collecting samples from every

member of a cluster, leading to a sample complexity of O
(

`n7

(ε ′)2σ 11

L
log

( nK
δ

) )
In order to estimate the confusion matrices, Zhang et al. [2016] require each agent to provide

at least O
(
n5

log((` + n)/δ )/(ε ′)2
)

samples. Our algorithm requires O
(
n7

log(nK/δ )/(ε ′)2
)

samples

from each cluster. �e increase of n2
in the sample complexity comes about because we are

estimating the aggregate confusion matrices in L1 norm instead of the in�nity norm. Moreover

when the number of clusters is small (K << `), the number of samples required from each cluster

does not grow with `. �is improvement is due to the fact that, unlike Zhang et al. [2016], we do

not have to recover individual confusion matrices from the aggregate confusion matrices.

Note that the Dawid and Skene [1979b] based approach, for the uniform assignment scheme,

does not require all agents to provide reports on the same set of shared tasks. Rather, we need
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that for each group of three clusters (as partitioned by Algorithm 4 on line 1) and each task, there

exists one agent from the three clusters who completes the same task. In particular the reports

for di�erent tasks can be acquired from di�erent agents within the same cluster. �e assignment

scheme makes sure that this property holds with high probability.

We now brie�y compare the learning algorithms under the no-assumptions and model-based

approach. When it is di�cult to assign agents to the same tasks, and when the number of signals is

small (which is o�en true in practice), the Dawid-Skene method has a strong advantage. Another

advantage of the Dawid-Skene method is that the learning error ε ′ can be made arbitrarily small

since each aggregate confusion matrix can be learned with arbitrary accuracy, whereas the true

learning error of the no-assumption approach is at least 2ε (see �eorem 4.4), and depends on the

problem instance.

5 CLUSTERING EXPERIMENTS
In this section, we study the clustering error on eight real-world, crowdsourcing datasets. Six of

these datasets are from the SQUARE benchmark [Sheshadri and Lease, 2013], selected to ensure a

su�cient density of worker labels across di�erent latent a�ributes as well as the availability of latent

a�ributes for su�ciently many tasks. In addition, we also use the Stanford Dogs dataset [Khosla

et al., 2011] and the Expressions dataset [Mozafari et al., 2012, 2014]. Below, we brie�y describe

the format of task, the number of agents `, and the number of signals n for each dataset.
5

�e

description of the dataset is available in the full version of the paper.

Recall that the maximum incentive an agent has to use a non-truthful strategy in the CAHU

mechanism can be upper-bounded in terms of two sources of error:

• �e clustering error. �is represents how “clusterable” the agents are. From theory, we

have the upper bound ε1 = maxp,q∈[`] ‖∆p,q − ∆G(p),G(q)‖1.

• �e learning error. �is represents how accurate our estimates for the cluster Delta matrices

are. From theory, we have the upper bound ε2 = maxi, j ∈[K ] ‖∆Gi ,G j − ∆Gi ,G j ‖1.

Based on this, the CAHU mechanism is (ε1 + ε2)-informed truthful (�eorem 3.3) where ε1 is the

clustering error and ε2 is the learning error. Even with the best clustering, the clustering error ε1

cannot be made arbitrarily small because it depends on how close the signal distributions of the

agents are as well as the number of clusters. In contrast, the learning error ε2 of the no-assumption

approach is 3ε ′ + 2ε , (theorem 4.4) where the error due to ε ′ can indeed be made arbitrarily small

by simply acquiring more data about agents’ behavior. Similarly, the learning error ε2 in the

Dawid-Skene approach can be made arbitrarily small by acquiring more agent reports (theorem 4.8).

Hence the total error is dominated by the clustering error ε1.

For this reason, we focus on the clustering error, and show that it can be small even with

a relatively small number of clusters. Rather than the use the weak bound maxp,q∈[`] ‖∆p,q −
∆G(p),G(q)‖1 on the clustering error (which is nevertheless helpful for our theoretical results), we

use the following tighter bound from the proof of �eorem 3.3.

|u∗p (I, {I}q,p ) − up (I, {I}q,p )| =

������ 1

(` − 1)
∑

q∈P\{p }

∑
i, j

∆p,q(i, j)
(
Sign(∆p,q)i, j − Sign(∆G(p),G(q))i, j

) ������
(19)

5
We �lter each dataset to remove tasks for which the latent a�ribute is unknown, and remove workers who only

perform such tasks. ` is the number of agents that remain a�er �ltering.
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�e datasets specify the latent value of each task. Because of this, we can adopt the Dawid-Skene

model, and estimate the confusion matrices from the frequency which with each agent p reports

each label j in the case of each latent a�ribute i .
Typical clustering algorithms take a distance metric over the space of data points and a�empt to

minimize the maximum cluster diameter, which is the maximum distance between any two points

within a cluster. In contrast, our objective (the tighter bound on the incentive in Equation (19)) is a

complex function of the underlying confusion matrices. We therefore compare two approaches:

1) We cluster the confusion matrices using the standard k-means++ algorithm with the L2

norm distance (available in Matlab), and hope that resulting clustering leads to a small

incentive bound.
6

2) In the following lemma, we derive a distance metric between confusion matrices for which

the maximum cluster diameter is provably an upper bound on the incentive, and use

k-means++ with this metric (implemented in Matlab).
7

Note that computing this metric

requires knowledge of the prior over the latent a�ribute.

Lemma 5.1. For all agents p,q, r , we have ‖∆p,q − ∆p,r ‖1 6 2 ·∑k πk
∑

j |C
q
k j −C

r
k j |.

Lemma 5.2. For every pair of agents p,q, we have

‖∆p,q − ∆G(p),G(q)‖1 6 2 · max

a,b,c ∈P :G(a)=G(b)
‖∆a,c − ∆b,c ‖1.

Note that

∑
k πk

∑
j |C

q
k j −C

r
k j | 6 ‖C

q −Cr ‖1 because

∑
j

���Cq
l j −C

r
l j

��� 6 ‖Cq −Cr ‖1. Lemma 5.1,

along with Lemma 5.2, shows that the incentive is upper bounded by four times the maximum

cluster diameter under our metric. For each dataset, we vary the number of clusters K from 5%

to 15% of the number of agents in the dataset. We repeat the experiment 20 times, and select the

clustering that produces the smallest incentive bound. Figures 4 and 5 show the incentive bound

achieved using the standard L2 metric and using our custom metric, respectively. We see that the

incentive bound is small compared to the maximum payment of 1 by CAHU, even with the number

of clusters K as small as 15% of the number of workers. �e number of agents does not seem to

a�ect this bound as long as the number of clusters is small relative to the number of agents. Using

our custom metric leads to a clustering with a noticeably be�er incentive bound.

6 CONCLUSION
We have provided the �rst, general solution to the problem of peer prediction with heterogeneous

agents. �is is a compelling research direction, where new theory and algorithms can help to

guide practice. In particular, heterogeneity is likely to be quite ubiquitous because of di�erences in

taste, context, judgment, and reliability across users. Beyond testing these methods in a real-world

application such as marketing surveys, there remain interesting directions for ongoing research.

For example, is it possible to solve this problem with similar sample complexity but without a

clustering approach, and to couple methods of peer prediction with optimal methods for inference

in crowdsourced classi�cation [Ok et al., 2016], and with methods for task assignment in budgeted

6
We use L2 norm rather than L1 norm because the standard k-means++ implementation uses as the centroid of a

cluster the confusion matrix that minimizes the sum of distances from the confusion matrices of the agents in the cluster.

For L2 norm, this amounts to averaging over the confusion matrices, which is precisely what we want. For L1 norm, this

amounts to taking a pointwise median, which does not even result in a valid confusion matrix. Perhaps for this reason, we

observe that using the L1 norm performs worse.

7
For computing the centroid of a cluster, we still average over the confusion matrices of the agents in the cluster. Also,

since the algorithm is no longer guaranteed to converge (indeed, we observe cycles), we restart the algorithm when a cycle

is detected, at most 10 times.
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Fig. 4. Incentive bound on each of the 8 di�erent data
sets when using k-means++ with the L2 norm

Fig. 5. Incentive bound on each of the 8 di�erent data
sets when using k-means++ with our custom metric

se�ings [Karger et al., 2014]? �is should include a�ention to adaptive assignment schemes [Khetan

and Oh, 2016] that leverage generalized Dawid-Skene models [Zhou et al., 2015], and could connect

with recent progress on task heterogeneity within peer prediction [Mandal et al., 2016].

REFERENCES
Animashree Anandkumar, Rong Ge, Daniel J Hsu, Sham M Kakade, and Matus Telgarsky. 2014. Tensor Decompositions for

Learning Latent Variable Models. Journal of Machine Learning Research 15, 1 (2014), 2773–2832.

Yang Cai, Constantinos Daskalakis, and Christos Papadimitriou. 2015. Optimum Statistical Estimation with Strategic Data

Sources. In Proceedings of �e 28th Conference on Learning �eory. 280–296.

Anirban Dasgupta and Arpita Ghosh. 2013. Crowdsourced Judgement Elicitation with Endogenous Pro�ciency. In Proceedings
of the 22nd international conference on World Wide Web. ACM, 319–330.

Alexander Philip Dawid and Allan M Skene. 1979a. Maximum Likelihood Estimation of Observer Error-Rates Using the EM

Algorithm. Applied statistics (1979), 20–28.

Philip A Dawid and Allan M Skene. 1979b. Maximum Likelihood Estimation of Observer Error-Rates Using the EM Algorithm.

Applied statistics 28 (1979), 20–28.

Jennifer DeBoer, Glenda S Stump, Daniel Seaton, and Lori Breslow. 2013. Diversity in MOOC Students’ Backgrounds

and Behaviors in Relationship to Performance in 6.002 x. In Proceedings of the Sixth Learning International Networks
Consortium Conference, Vol. 4.

Rafael Frongillo and Jens Witkowski. 2017. A Geometric Perspective on Minimal Peer Prediction. ACM Transactions on
Economics and Computation (TEAC) (2017).

Alice Gao, James R Wright, and Kevin Leyton-Brown. 2016. Incentivizing Evaluation via Limited Access to Ground Truth:

Peer-Prediction Makes �ings Worse. EC 2016 Workshop on Algorithmic Game �eory and Data Science (2016).

Radu Jurca, Boi Faltings, et al. 2009. Mechanisms for Making Crowds Truthful. Journal of Arti�cial Intelligence Research 34,

1 (2009), 209.

Vijay Kamble, David Marn, Nihar Shah, Abhay Parekh, and Kannan Ramachandran. 2015. Truth Serums for Massively

Crowdsourced Evaluation Tasks. �e 5th Workshop on Social Computing and User-Generated Content (2015).

David R. Karger, Sewoong Oh, and Devavrat Shah. 2011. Budget-Optimal Task Allocation for Reliable Crowdsourcing

Systems. CoRR abs/1110.3564 (2011). h�p://arxiv.org/abs/1110.3564

David R. Karger, Sewoong Oh, and Devavrat Shah. 2014. Budget-Optimal Task Allocation for Reliable Crowdsourcing

Systems. Operations Research 62, 1 (2014), 1–24. h�ps://doi.org/10.1287/opre.2013.1235

Ashish Khetan and Sewoong Oh. 2016. Achieving budget-optimality with adaptive schemes in crowdsourcing. In Annual
Conference on Neural Information Processing Systems. 4844–4852.

Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Li Fei-Fei. 2011. Novel Dataset for Fine-Grained Image

Categorization. In First CVPR Workshop on Fine-Grained Visual Categorization.

Yuqing Kong, Katrina Lige�, and Grant Schoenebeck. 2016. Pu�ing Peer Prediction Under the Micro (economic) scope and

Making Truth-telling Focal. In International Conference on Web and Internet Economics. Springer, 251–264.

Yuqing Kong and Grant Schoenebeck. 2016. A Framework For Designing Information Elicitation Mechanism �at Rewards

Truth-telling. (2016). h�p://arxiv.org/abs/1605.01021

http://arxiv.org/abs/1110.3564
https://doi.org/10.1287/opre.2013.1235
http://arxiv.org/abs/1605.01021


Agarwal, Mandal, Parkes, and Shah

Chinmay Kulkarni, Koh Pang Wei, Huy Le, Daniel Chia, Kathryn Papadopoulos, Justin Cheng, Daphne Koller, and Sco� R

Klemmer. 2015. Peer and Self Assessment in Massive Online Classes. In Design thinking research. Springer, 131–168.

Yang Liu and Yiling Chen. 2016. Sequential Peer Prediction: Learning to Elicit E�ort using Posted Prices. arXiv preprint
arXiv:1611.09219 (2016).

Debmalya Mandal, Ma�hew Leifer, David C Parkes, Galen Pickard, and Victor Shnayder. 2016. Peer Prediction with

Heterogeneous Tasks. NIPS 2016 Workshop on Crowdsourcing and Machine Learning (2016).

Nolan Miller, Paul Resnick, and Richard Zeckhauser. 2005. Eliciting informative feedback: �e peer-prediction method.

Management Science 51 (2005), 1359–1373.

Barzan Mozafari, Purnamrita Sarkar, Michael J. Franklin, Michael I. Jordan, and Samuel Madden. 2012. Active Learning for

Crowd-Sourced Databases. CoRR abs/1209.3686 (2012).

Barzan Mozafari, Purnamrita Sarkar, Michael J. Franklin, Michael I. Jordan, and Samuel Madden. 2014. Scaling Up Crowd-

Sourcing to Very Large Datasets: A Case for Active Learning. PVLDB 8, 2 (2014), 125–136.

Jungseul Ok, Sewoong Oh, Jinwoo Shin, and Yung Yi. 2016. Optimality of Belief Propagation for Crowdsourced Classi�cation.

In Proc. 33nd Int. Conf. on Machine Learning (ICML). 535–544.

Drazen Prelec. 2004. A Bayesian Truth Serum For Subjective Data. Science 306, 5695 (2004), 462.

Goran Radanovic and Boi Faltings. 2015a. Incentive Schemes for Participatory Sensing. In Proc. Int. Conf. on Autonomous
Agents and Multiagent Systems, AAMAS. 1081–1089.

Goran Radanovic and Boi Faltings. 2015b. Incentive Schemes for Participatory Sensing. In AAMAS 2015.

Goran Radanovic and Boi Faltings. 2015c. Incentives for Subjective Evaluations with Private Beliefs. In Proc. 29th AAAI
Conf. on Art. Intell. (AAAI’15). 1014–1020.

Goran Radanovic, Boi Faltings, and Radu Jurca. 2016. Incentives for e�ort in crowdsourcing using the peer truth serum.

ACM Transactions on Intelligent Systems and Technology (TIST) 7, 4 (2016), 48.

Aashish Sheshadri and Ma�hew Lease. 2013. SQUARE: A Benchmark for Research on Computing Crowd Consensus. In

Proc. 1st AAAI Conf. on Human Computation (HCOMP). 156–164.

Victor Shnayder, Arpit Agarwal, Rafael Frongillo, and David C Parkes. 2016. Informed Truthfulness in Multi-Task Peer

Prediction. In Proceedings of the 2016 ACM Conference on Economics and Computation. ACM, 179–196.

Victor Shnayder, Rafael Frongillo, and David C. Parkes. 2016. Measuring Performance Of Peer Prediction Mechanisms Using

Replicator Dynamics. In Proc. 25th Int. Joint Conf. on Art. Intell. (IJCAI’16). 2611–2617.

Victor Shnayder and David C Parkes. 2016. Practical Peer Prediction for Peer Assessment. In Fourth AAAI Conference on
Human Computation and Crowdsourcing.

Luis von Ahn and Laura Dabbish. 2004. Labeling Images with a Computer Game. In Proc. SIGCHI Conf. on Human Factors in
Computing Systems (CHI’04). 319–326.

Julia Wilkowski, Amit Deutsch, and Daniel M Russell. 2014. Student Skill and Goal Achievement in the Mapping with

Google MOOC. In Proceedings of the �rst ACM conference on Learning@ scale conference. ACM, 3–10.

Jens Witkowski, Yoram Bachrach, Peter Key, and David Parkes. 2013. Dwelling on the negative: Incentivizing e�ort in peer

prediction. In First AAAI Conference on Human Computation and Crowdsourcing.

Jens Witkowski and David C Parkes. 2013. Learning the Prior in Minimal Peer Prediction. In Proceedings of the 3rd Workshop
on Social Computing and User Generated Content at the ACM Conference on Electronic Commerce. 14.

Muhammad Bilal Zafar, Krishna P Gummadi, and Cristian Danescu-Niculescu-Mizil. 2016. Message Impartiality in Social

Media Discussions. In ICWSM. 466–475.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I Jordan. 2016. Spectral Methods Meet EM: A Provably Optimal

Algorithm for Crowdsourcing. Journal of Machine Learning Research 17, 102 (2016), 1–44.

Dengyong Zhou, Qiang Liu, John C. Pla�, Christopher Meek, and Nihar B. Shah. 2015. Regularized Minimax Conditional

Entropy for Crowdsourcing. CoRR abs/1503.07240 (2015). h�p://arxiv.org/abs/1503.07240

http://arxiv.org/abs/1503.07240

	Abstract
	1 Introduction
	1.1 Related Work

	2 Model
	2.1 Multi-Task Peer Prediction
	2.2 Informed Truthfulness
	2.3 Agent Clustering

	3 Correlated Agreement for Clustered, Heterogeneous Agents
	3.1 Analysis of CAHU

	4 Learning the Agent Signal Types
	4.1 Clustering
	4.2 Learning the Cluster Pairwise  Matrices

	5 Clustering Experiments
	6 Conclusion
	References


 
 
    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 2 to page 18
     Mask co-ordinates: Horizontal, vertical offset 18.16, 647.37 Width 463.42 Height 35.53 points
     Origin: bottom left
      

        
     1
     0
     BL
            
                
         2
         SubDoc
         18
              

       CurrentAVDoc
          

     18.158 647.3682 463.4225 35.5264 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     1
     18
     17
     17
      

   1
  

    
   HistoryItem_V1
   AddMaskingTape
        
     Range: From page 1 to page 1
     Mask co-ordinates: Horizontal, vertical offset 37.11, 51.31 Width 191.05 Height 33.16 points
     Origin: bottom left
      

        
     1
     0
     BL
    
            
                
         1
         SubDoc
         1
              

       CurrentAVDoc
          

     37.1054 51.3136 191.0533 33.158 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2 2.0
     Quite Imposing Plus 2
     1
      

        
     0
     18
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



