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Abstract

We consider the problem of fairly dividing a collection of in-
divisible goods among a set of players. Much of the exist-
ing literature on fair division focuses on notions of individual
fairness. For instance, envy-freeness requires that no player
prefer the set of goods allocated to another player to her own
allocation. We observe that an algorithm satisfying such in-
dividual fairness notions can still treat groups of players un-
fairly, with one group desiring the goods allocated to another.
Our main contribution is a notion of group fairness, which im-
plies most existing notions of individual fairness. Group fair-
ness (like individual fairness) cannot be satisfied exactly with
indivisible goods. Thus, we introduce two “up to one good”
style relaxations. We show that, somewhat surprisingly, cer-
tain local optima of the Nash welfare function satisfy both
relaxations and can be computed in pseudo-polynomial time
by local search. Our experiments reveal faster computation
and stronger fairness guarantees in practice.

1 Introduction
Algorithms have come to play an increasingly prominent
role in our everyday lives, augmenting, or even replacing,
traditional human decision making. As our dependence on
algorithms in high-stakes domains has increased, the spot-
light has been placed on the potential for algorithms to ex-
acerbate inequalities, highlighting the need to design algo-
rithms with fairness in mind to ensure that some segments
of the population are not treated differently than others.

While fairness is a relatively new design criterion in many
areas of algorithmic decision making, it has a long history of
study in the literature on resource allocation, in which a set
of goods or resources must be divided among players with
competing needs. In the context of resource allocation—
often referred to as fair division—fairness is usually con-
sidered at an individual level. For instance, the classic defi-
nition of envy-freeness (Foley 1967) requires that no player
should prefer another’s allocation to her own. When goods
are indivisible, envy-freeness cannot always be guaranteed;
consider a single good that must be given to one of two play-
ers. Therefore, it is often relaxed to envy-freeness “up to one
good,” which allows for a player to envy another as long as
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this envy can be eliminated by removing a single good from
the envied player’s bundle.

In this paper, we ask whether such individual-level guar-
antees can be strengthened to ensure that algorithmically
generated allocations are fair with respect to arbitrary seg-
ments of the population. We consider a setting in which a
set of indivisible goods must be divided among players with
heterogeneous, additive preferences. As an example, con-
sider a manager in a corporate setting who needs to allocate
resources (interns, conference rooms, time slots for shared
machines, equipment, etc.) to employees. She may want to
simultaneously ensure that no business team envies another
team, that the women do not envy the men, that people in one
location do not envy those in another, that people in one role
do not envy those in another, and so on. Envy-freeness alone
is not enough in this setting, in the sense that an allocation
that is envy-free up to one good may still yield significant
levels of inequality and envy between groups of players.

To address this problem, we introduce a notion of group
fairness. Loosely speaking, an allocation is said to be group
fair if no group of players would prefer to receive and redis-
tribute among themselves the goods allocated to any other
group in place of the goods that they were originally allo-
cated, modulo some scaling to account for possibly different
group sizes. Group fairness is a stronger property than envy-
freeness, so it is not satisfiable in general. We therefore relax
group fairness by requiring that any unfairness can be elimi-
nated by removing a single good per player from the envied
allocation. We obtain two distinct relaxations by distinguish-
ing between removing one good per player in the more fa-
vored group before redistributing goods, and removing one
good per player in the less favored group after goods have
been redistributed among them.

Our main theoretical result is algorithmic. We first show
that certain local optima of the Nash welfare function (the
product of players’ utilities) satisfy both relaxations of group
fairness. In particular, we show this for locally Nash-optimal
allocations, in which transferring a single good from one
player to another does not increase the product of those
players’ utilities. Thus although local Nash optimality only
imposes a requirement on pairs of individuals, it is strong
enough to guarantee fairness to groups of arbitrary size.

We then show that a locally Nash-optimal allocation, and
therefore an allocation satisfying both group fairness relax-



ations, can be computed in pseudo-polynomial time via a lo-
cal search algorithm. In contrast, we show that the problem
of checking whether an arbitrary given allocation satisfies
either relaxation is coNP-hard. In experiments on real and
synthetic data, we show that the local search algorithm con-
verges quickly, and is likely to output an efficient allocation.

Related Work. Several definitions of fairness at a group
level have been considered in the resource allocation liter-
ature. Most closely related to ours is the work of Berliant,
Thomson, and Dunz (1992) (and the later work of Hus-
seinov (2011)), who defined group envy-freeness, an ex-
tension of envy-freeness to pairs of equal-sized groups, in
a setting with a single divisible good. Our notion of group
fairness extends group envy-freeness to cover groups of dif-
ferent sizes, but since we consider indivisible goods, our
results are technically not comparable to theirs even if we
restrict attention to groups of equal size. Aleksandrov and
Walsh (2018) defined an alternative notion of group envy-
freeness between groups of possibly unequal sizes. They ex-
tended individual preferences to group preferences by taking
the arithmetic mean of utilities of group members, which re-
quires interpersonal comparison of utilities. We avoid such
comparisons by working only with individual utilities. Todo
et al. (2011) also extended envy-freeness to groups, but con-
sidered mechanisms with monetary transfers.

Barman et al. (2018) defined a notion of groupwise max-
imin share, which strengthens the maximin share guaran-
tee (Budish 2011). Their definition is of a different flavor
than ours. In particular, they provide an individual-level fair-
ness guarantee relative to all subgroups of players, while
we provide guarantees between groups. Finally, several pa-
pers considered the problem of fair division among specific
groups that are fixed in advance (Segal-Halevi and Suksom-
pong 2018; Segal-Halevi and Nitzan 2015; Manurangsi and
Suksompong 2017; Suksompong 2018) considering differ-
ent notions of fairness, again of a different flavor than ours.

This line of work serves as a complement and point of
contrast to research on algorithmic fairness in other areas of
AI, including the burgeoning subfield of fairness in machine
learning. Our definition of group fairness is stronger than
individual fairness, as it requires fair treatment for groups
of all sizes, individuals included. In contrast, in machine
learning, individual fairness is too strong as decisions that
are unfavorable to some individuals are typically unavoid-
able. Thus, it is common to introduce group-level parity
metrics as weaker notions than individual fairness. These
metrics ensure that outcomes are fair on average across pre-
specified demographic categories, often defined by protected
attributes (Kleinberg, Mullainathan, and Raghavan 2017;
Calders and Verwer 2010; Hardt, Price, and Srebro 2016;
Kamiran and Calders 2012; Agarwal et al. 2018).

Kearns et al. (2018) argue that algorithms that are fair only
to pre-specified groups are at risk of “fairness gerrymander-
ing,” in which the algorithm appears to be fair to each group
while violating fairness constraints on particular structured
subgroups. They and others (Hebert-Johnson et al. 2018;
Zhang and Neill 2016) have proposed algorithms that pro-

vide or audit for fairness with respect to exponentially many
groups. In a similar spirit, our group fairness definition re-
quires fairness with respect to all possible groups at once.

2 Preliminaries
Throughout the paper, we use the notation [K] to denote the
set {1, . . . ,K}. For vectors x and y of length K, we say that
x Pareto dominates y if xk ≥ yk for all k ∈ [K], with at least
one inequality strict, and we say that x strictly dominates y
if xk > yk for all k ∈ [K]. For set X and element t, we use
X + t to denote X ∪ {t} and X − t to denote X \ {t}.

Let M be a set of m goods, and N a set of n players. Each
player i has a valuation vi : 2

M → R+∪{0} over subsets of
goods. For a single good g ∈M , we slightly abuse notation
and let vi(g) = vi({g}). We assume that players have addi-
tive valuations, so that vi(Z) =

∑
g∈Z vi(g) for all Z ⊆M

and vi(∅) = 0. Without loss of generality, we assume that
each good is positively valued by at least one player, and
each player positively values at least one good.

An allocation A is a partition of the goods in M into (pos-
sibly empty) bundles Ai for each player i. An allocation A
is non-wasteful if g ∈ Ai implies vi(g) > 0 for all g.

Much of the literature on fair division is concerned with
finding allocations that satisfy particular notions of fairness.
One basic notion, proportionality, requires that each player
receive a set of goods that she values at least 1/n as much
as she values the entire set of goods (Steinhaus 1948).

Definition 1 (Proportionality). An allocation A is propor-
tional if for all i ∈ N , vi(Ai) ≥ (1/n)vi(M).

Envy-freeness (Foley 1967), a stronger notion, says that
no player should prefer another’s allocation to her own.

Definition 2 (Envy-freeness). An allocation A is envy-free
if for all i, j ∈ N , vi(Ai) ≥ vi(Aj).

Since envy-freeness cannot always be satisfied, relax-
ations have been proposed. Envy-freeness up to one good al-
lows a player i to envy a player j, but only if the removal of a
single good from j’s bundle would remove the envy (Lipton
et al. 2004). Such an allocation is guaranteed to exist.

Definition 3 (Envy-freeness up to one good). An allocation
A is envy-free up to one good (EF1) if for all i, j ∈ N such
that Aj 6= ∅, there exists a good g ∈ Aj such that vi(Ai) ≥
vi(Aj − g).

Finally, envy-freeness up to the least valued good says that
if i envies j, the removal of any good that i values positively
from j’s bundle should eliminate the envy (Caragiannis et
al. 2016). It is an open question whether such an allocation
always exists.

Definition 4 (Envy-freeness up to the least valued good). An
allocation A is envy-free up to the least valued good (EFX)
if for all i, j ∈ N such that Aj 6= ∅, and all g ∈ Aj with
vi(g) > 0, vi(Ai) ≥ vi(Aj − g).

In addition to fairness, it is desirable to produce econom-
ically efficient allocations. The standard notion of efficiency
is Pareto optimality, which says that it should not be possible
to improve a player’s utility without harming someone else.



Definition 5 (Pareto optimality). An allocation A is Pareto
optimal if for all allocations A′ such that vi(A′i) > vi(Ai)
for some i ∈ N , vj(A′j) < vj(Aj) for some j ∈ N .

The final notion we require is local Nash optimality. An
allocation is locally Nash-optimal if it is non-wasteful and
transferring a single good from one player to another does
not increase the product of their utilities. Note that local
Nash optimality does not imply Pareto optimality.

Definition 6 (Locally Nash-optimal allocation). An alloca-
tion A is locally Nash-optimal if for all i, j ∈ N and g ∈ Aj ,
vj(g) > 0 and vi(Ai) · vj(Aj) ≥ vi(Ai + g) · vj(Aj − g).

3 Group Fair Allocations
In this section, we move beyond the standard fairness no-
tions that operate on individuals or pairs of players and in-
troduce a new definition of group fairness. Our definition is
modeled on envy-freeness. It requires that no group of play-
ers S envy another group T , where S envies T if the players
in S could redistribute the goods allocated to T among them-
selves in a way that yields a Pareto improvement, adjusting
appropriately for any difference in the group sizes. Note that
our definition does not require S and T to be disjoint.

Definition 7 (Group Fairness). An allocation A is group
fair if for every non-empty S, T ⊆ N and every partition
(Bi)i∈S of ∪j∈TAj , (|S|/|T |) · (vi(Bi))i∈S does not Pareto
dominate (vi(Ai))i∈S .

Group fairness is a strengthening of several prop-
erties from the fair division literature. Group envy-
freeness (Berliant, Thomson, and Dunz 1992) requires the
no-envy condition in the definition to hold when |S| = |T |,
while envy-freeness requires it to hold only when |S| =
|T | = 1. The core (Foley 1967; Fain, Goel, and Munagala
2016; Fain, Munagala, and Shah 2018) requires that it hold
when T = N , while proportionality requires that it hold
when |S| = 1 and T = N . Finally, Pareto optimality re-
quires the condition when S = T = N .

When goods are divisible, it is easy to check that the glob-
ally Nash-optimal allocation, which coincides with a strong
form of competitive equilibrium from equal incomes (Segal-
Halevi and Sziklai 2018), satisfies group fairness. However,
when goods are indivisible, it cannot be guaranteed; this is
easy to see from the simple example with a single good and
two competing players, one of whom necessarily gets noth-
ing. We therefore turn to relaxed notions.

3.1 Two Relaxations of Group Fairness
Before presenting the relaxations, let us step back to con-
sider what an “approximately group fair” allocation should
look like. Consider the example in Figure 1. Here there are
five players: one of type “circle” who values only circle
goods (with zero value for squares), two of type “square”
who value only square goods (with zero value for circles),
and two of type “flex” who are more flexible and value both
squares and circles equally. There are four goods: two circles
and two squares. Because it is impossible to give a good to
every player, there is no envy-free allocation, and therefore
no group fair allocation. However, the allocation A shown in

Figure 1: An arguably unfair allocation satisfying EF1/EFX.

the figure, which gives one circle and one square to each of
the flex players, satisfies EF1 and EFX. According to these
criteria, we would thus call this allocation fair.

However, we argue that allocation A is not fair to all
groups of players, in a way that we will soon make precise.
Suppose group S consists of the circle player and one square
player, and let T consist of both flex players. Collectively,
players in S have demand for all of the goods that have been
allocated to players in T . In fact, if T ’s goods were trans-
ferred to S and distributed to the players who value them
most, each player in S could be made significantly (that is,
more than “up to one good”) happier than they are under al-
location A. We argue that an (approximately) fair solution
should split the goods more evenly between sets S and T
to rectify this asymmetry, and we would like our “up to one
good” relaxation of group fairness to capture this idea.

As a first attempt, one might hope to require that no set
S envy another set T (modulo rescaling for size) once a sin-
gle good has been removed from T ’s allocation. However, it
is easy to see that any relaxation that removes only a single
good is still too strong to be satisfiable in general. Suppose
that there are n identical players (for any even n) and 3n/2
identical goods. Intuitively, the fairest allocation would give
half of the players one good each (call these players S), and
the other half two each (call these T ). Even if we remove a
single good from a player in T , the remaining n − 1 goods
allocated to T can still be distributed among S in a way
that yields a Pareto improvement. Indeed, the same problem
arises if we remove any fewer than n/2 = |T | = |S| goods.
Therefore, minimal relaxations of group fairness must re-
move one good per player.

There are two natural ways to do this: remove one good
from each player in T before the set of goods is handed over
to S (“before”), or remove one good from each player in
S after the goods have been redistributed among them (“af-
ter”). We consider both in turn.

Group Fairness up to One Good (After). We first present
the version of our relaxation in which goods are removed
from each player in S after redistribution occurs. To moti-
vate our specific choice of definition, consider the example
shown in Figure 2 (left) with two circle players, four square
players, one circle good, and three square goods. We would
argue that the allocation A that is pictured is the unique fair
allocation, up to permutations of identical players; all other
non-wasteful allocations involve one player receiving mul-
tiple goods while another player of the same type receives
none. Thus, if we want our relaxed notion of group fairness
to be satisfiable, it must be satisfied by this allocation.

Consider sets S1 and T . These sets are witness to a vi-



Figure 2: Examples illustrating the necessary technical conditions in the definitions of GF1A (left) and GF1B (right).

olation of group fairness, because T ’s goods can be reallo-
cated among S1 such that, even after scaling by a factor of
|S1|/|T | = 1/3, S1 has an allocation that Pareto improves
over the original. In fact, even if we remove a good from the
player in S1, she would receive two goods that she values,
still a Pareto improvement. Thus relaxing the group fairness
definition by removing a good from each player in S1 is not
sufficient to guarantee existence. To get around this techni-
cality, which is due to the way in which scaling occurs, we
consider a slight variant of the same idea: instead of remov-
ing a single good from the bundle Bi received by player i
in group S1 and then comparing the (scaled) value of the re-
maining bundle to the (unscaled) value of the original alloca-
tion, we add this good to the original allocation and compare
its (unscaled) value to the (scaled) value of the whole Bi.

There is one other technicality our definition must ac-
count for. Consider sets S2 and T . When we partition T ’s
goods among players in S2 as pictured, we have (|S|/|T |) ·
(vi(Bi))i∈S2 = (0, 4/3), which Pareto dominates the util-
ities under the original allocation to S2 even if each player
in S2 were given a single good from group T . This problem
arises from the fact that the circle player is essentially serv-
ing as a dummy player; she does not value T ’s goods at all,
yet still inflates the size of the set S2, changing the scaling
factor without meaningfully changing the fairness constraint
that we want to capture. We can avoid this issue by requiring
that the partition B must give positive value to all players in
the set S, which rules out sets with dummy players included.

We are now ready to formally define our first relaxation
of group fairness.
Definition 8 (GF1A). An allocation A satisfies GF1A if for
every non-empty S, T ⊆ N and every partition (Bi)i∈S
of ∪j∈TAj such that vi(Bi) > 0 for all i ∈ S, there ex-
ists a good gi ∈ Bi for each i ∈ S such that (|S|/|T |) ·
(vi(Bi))i∈S does not Pareto dominate (vi(Ai + gi))i∈S .

Returning to the example from Figure 1, we see that, as
desired, the pictured allocation fails to satisfy GF1A, as wit-
nessed by the set S consisting of the circle player and one
square player and the set T consisting of the two flex play-
ers. To provide more intuition for what this definition does
and does not allow, we point out that the set S′ consisting
of the two square players does not serve as a witness with
the same set T . Loosely speaking, this is because the set S′
collectively has no demand for circle goods, and so the allo-

cation of the circle goods to players in T does not preclude
these players from also receiving the square goods.

Group Fairness up to One Good (Before). In our second
relaxation of group fairness, we consider removing one good
from the bundle of each player in set T before T ’s goods are
redistributed among players in S, requiring that the (scaled)
values of the resulting bundles do not provide a Pareto im-
provement for S.

Once again, the most straightforward definition would be
susceptible to dummy players in S inflating the scale factor
without impacting the underlying fairness of the allocation,
as illustrated in Figure 2 (right). Here the allocation A is
the only intuitively fair and non-wasteful allocation, up to
permutations of identical players, so it must satisfy our re-
laxation if we want the relaxation to be satisfiable in general.
If we remove a single good from the one player in T and re-
allocate her remaining good to S as pictured, both players in
S would get the same value as they would under allocation
A, but since |S|/|T | = 2, their scaled values under partition
B would Pareto dominate their values under A. Like before,
we avoid this problem by considering only pairs S and T for
which it is possible to partition T ’s goods among S so that
all players in S receive positive value.

Definition 9 (GF1B). An allocation A satisfies GF1B if
for every non-empty S, T ⊆ N for which there exists
a partition (Ci)i∈S of ∪j∈TAj with vi(Ci) > 0 for all
i ∈ S, there exists a good gj ∈ Aj for every j ∈ T
with Aj 6= ∅ such that for every partition (Bi)i∈S of
∪j∈TAj \ ∪j∈T :Aj 6=∅{gj}, (|S|/|T |) · (vi(Bi))i∈S does not
Pareto dominate (vi(Ai))i∈S .

Once again it is easy to verify that the allocation pictured
in Figure 1 fails to satisfy GF1B, as witnessed by the same
sets S and T as before. And just as it was with GF1A, the
set S′ consisting of the two square players does not serve as
a witness with the same set T .

Notice that in the definition of group fairness, the no-envy
condition is agnostic about the exact allocation Aj for each
j ∈ T ; only ∪j∈TAj is relevant. While this is also true for
the GF1A relaxation, it is not true for GF1B since we re-
quire that only a single good be removed from each player
in T . An alternative, weaker definition of GF1B would be
to remove |T | goods in total from players in T , without the
requirement that one is removed from each player. (See the



full version of the paper1 for an example where the two def-
initions differ.) We present the stronger definition here, but
note that all of our results hold for the weaker version also.

3.2 A Comparison of GF1A and GF1B.
To gain further intuition, we briefly discuss examples of
cases in which GF1A and GF1B differ, as shown in Fig-
ure 3. The players in these examples are again of type circle,
square, or flex, but the goods in Figure 3 (left) are more gen-
eral. A circle (respectively, square) with a label v is valued
v by players who value circles (respectively, squares), and 0
by other players. A pentagon labeled v is valued v by all.

In Figure 3 (left), S and T are witness to a violation of
GF1B. After removing any good from the player in T , it is
still possible to give one of the players in S a value of at
least 4 and the other a value of 4.1. Since |S|/|T | = 2, this
violates GF1B. However, allocation A does satisfy GF1A.

In Figure 3 (right), groups S and T are witness to a vi-
olation of GF1A. When T ’s goods are redistributed to the
players in S who value them most, both players in S end up
better off even with a single good removed. However, it can
be verified that A satisfies GF1B.

GF1A and GF1B both imply “up to one good” style vari-
ants of the core and group envy-freeness. They addition-
ally both imply proportionality up to one good (Conitzer,
Freeman, and Shah 2017) and envy-freeness up to one
good (Budish 2011; Caragiannis et al. 2016).

In the special case in which all players have identical val-
uations, stronger implications hold. In this case, GF1A is
stronger than GF1B, in the sense that any GF1A allocation
satisfies GF1B but the converse does not hold. In fact, GF1B
becomes equivalent to EF1 in this special case. To further
complete the picture, the relationship between our group
fairness relaxations and local Nash optimality explored in
the next section allows us to show that all three properties
are implied by EFX. The proof appears in the full version.
Theorem 1. When all players have identical valuations,
EFX ⇒ GF1A ⇒ GF1B, and GF1B ⇔ EF1, where ⇒
is strict logical implication and⇔ is logical equivalence.

4 Local Nash Optimality Implies GF1A/B
Our desire to relax the notion of group fairness stemmed
from the fact that group fair allocations may not exist in gen-
eral when goods are indivisible. In this section, we show that
both GF1A and GF1B allocations are always guaranteed to
exist. In particular, every locally Nash-optimal allocation is
guaranteed to satisfy both GF1A and GF1B. This result is
surprising given that local Nash optimality is a local prop-
erty, involving only pairs of players, while GF1A and GF1B
are global properties involving arbitrary player groups.
Theorem 2. Every locally Nash-optimal allocation A satis-
fies GF1A and GF1B.

The proof follows a similar structure to the proof due to
Caragiannis et al. (2016) that Nash optimality implies EF1.2
We observe that instead of removing a good from player j

1The full version can be found on the authors’ websites.
2While Caragiannis et al. (2016) state their result for globally

that depends on the identity of the envying player i, the same
good gj ∈ Aj can be removed irrespective of i. This ob-
servation is what allows us to extend the proof to groups.
(It also implies some slightly stronger results for individual
fairness, which we discuss in Section 7.)

Proof of Theorem 2. Here we provide the proof for GF1A.
We refer the reader to the full version of the paper for the
GF1B proof, which follows a similar outline.

Let A be a locally Nash-optimal allocation. Assume for
contradiction that A does not satisfy GF1A, and let (S, T )
be groups with smallest |T | that are witness to the violation
of GF1A. Note that this implies |Aj | ≥ 1 for all j ∈ T ,
which in turn implies that vj(Aj) > 0 by non-wastefulness;
if |Aj | = 0 for some j ∈ T , (S, T−j) would also be witness
to the violation of GF1A.

Fix a partition (Bi)i∈S of ∪j∈TAj for which the GF1A
constraint is violated. For the constraint to be violated, it
must be the case that vi(Bi) > 0 for all i ∈ S, which
implies that Bi 6= ∅ for all i ∈ S. For all i ∈ S, let
g∗i ∈ argmaxg∈Bi

vi(g). Then, we have vi(g
∗
i ) > 0, and

hence, vi(Ai + g∗i ) > 0.
With a little algebraic simplification, we can rewrite the

final condition from Definition 6 as vi(Ai + g) · vj(g) ≥
vi(g) · vj(Aj). Then for all i ∈ S, j ∈ T , and g ∈ Bi ∩Aj ,
vi(g) · vj(Aj) ≤ vi(Ai + g) · vj(g) ≤ vi(Ai + g∗i ) · vj(g),
where the second transition follows from the definition of
g∗i . Rearranging, we have

vi(g)

vi(Ai + g∗i )
≤ vj(g)

vj(Aj)
.

Summing over i ∈ S, j ∈ T , and g ∈ Bi ∩Aj , we obtain∑
i∈S

vi(Bi)

vi(Ai + g∗i )
≤ |T |.

Since the partition B violates the constraint, (|S|/|T |) ·
(vi(Bi))i∈S Pareto dominates (vi(Ai + g∗i ))i∈S , and so
vi(Bi)/vi(Ai + g∗i ) ≥ |T |/|S| for each i ∈ S, with at least
one inequality strict. This implies that

∑
i∈S vi(Bi)/vi(Ai+

g∗i ) > |T |, a contradiction.

Since Nash-optimal allocations always exist, this imme-
diately implies the existence of allocations that satisfy both
GF1A and GF1B. In the next section, we provide an algo-
rithm for computing such an allocation.
Corollary 3. An allocation A satisfying both GF1A and
GF1B always exists.

5 Complexity Results
We have shown that any locally Nash-optimal allocation sat-
isfies GF1A and GF1B. We now show that such an allocation
can be computed in pseudo-polynomial time.

We consider a simple local search algorithm that works
as follows. Begin with an arbitrary allocation A. At every
step, check for a violation of local Nash optimality: that is,

Nash-optimal allocations, an identical proof holds for locally Nash-
optimal allocations too.



Figure 3: Allocations that satisfy GF1A but not GF1B (left) and GF1B but not GF1A (right).

find a pair of players i, j ∈ N and a good g ∈ Aj such that
either vj(g) = 0 and vi(g) > 0, or transferring the good
from Aj to Ai increases the product of utilities of i and j
(i.e., vi(Ai + g) · vj(Aj − g) > vi(Ai) · vj(Aj)). If such a
violation exists, transfer the good. Otherwise, terminate. We
show that this algorithm terminates at a locally Nash-optimal
allocation in a pseudo-polynomial number of steps.

Theorem 4. A locally Nash-optimal allocation can be com-
puted in pseudo-polynomial time.

The proof appears in the full version. It proceeds by upper
bounding the maximum possible Nash welfare, and lower
bounding the multiplicative Nash welfare increase in a sin-
gle step of the algorithm.

Corollary 5. An allocation satisfying both GF1A and GF1B
can be computed in pseudo-polynomial time.

Whether an allocation satisfying GF1A or GF1B can be
computed in polynomial time remains an interesting open
question. We are able to show that the problem of verify-
ing whether a given allocation satisfies GF1A or GF1B is
strongly coNP-hard. The proofs are in the full version.

Theorem 6. It is strongly coNP-hard to determine whether
an allocation A satisfies GF1A.

Theorem 7. It is strongly coNP-hard to determine whether
an allocation A satisfies GF1B.

6 Simulations
In this section, we investigate the performance of the local
search algorithm in practice, in terms of both its running
time and the quality of the allocation it returns. Specifically,
we measure the number of steps it takes to converge, how
frequently it returns a Pareto optimal allocation, and how
frequently it returns a globally Nash optimal, also known as
max Nash welfare allocation (Caragiannis et al. 2016); the
last number is guaranteed to be weakly lower than the former
since all max Nash welfare allocations are Pareto optimal.

We first experiment with a dataset of fair division in-
stances obtained from Spliddit.org, a not-for-profit website
that allows its users to employ fair division algorithms for
every-day problems, including allocation of (possibly indi-
visible) goods. The dataset contains 2754 division instances
in which all goods are indivisible. These instances contain
as many as 15 players (2.6 on average) and 93 goods (5.7
on average). The algorithm currently deployed on Spliddit

Figure 4: Running time (number of steps) and solution qual-
ity of local search varying K with n = 5 and m = 15.

computes a max Nash welfare (and thus also locally Nash-
optimal) allocation (Caragiannis et al. 2016).

On this dataset, local search takes only 6.0 steps on aver-
age, and the maximum on any instance is 91. In over 88%
of the instances, the algorithm returns a Pareto optimal allo-
cation, while in over 68% of the instances, it returns a max
Nash welfare allocation.

Since typical Spliddit instances are relatively small, we
next explore the algorithm’s performance on larger simu-
lated instances. We vary the number of players (n) from 3
to 10. For each n in this range, we vary the number of goods
(m) from n to 5n in increments of n. To explore the effect of
the magnitude of player valuations on the running time, we
additionally vary a parameter K controlling this magnitude
from 100 to 1000 in increments of 100. For each combina-
tion of n, m, and K, we generate 1000 instances in which
the valuation vi of each player i is sampled i.i.d. from the
uniform distribution over all integral valuations that sum to
K (i.e., uniformly at random subject to vi(M) = K).

In Figure 4, we examine the effect of varying K. We note
that it does not significantly affect the average number of
steps until convergence (left figure), or the percentage of in-
stances in which the algorithm finds a Pareto optimal or max
Nash welfare allocation (right figure). For the remainder of
this section, we report our findings for K = 500.

Figures 5a and 5b respectively show that the average num-
ber of steps until convergence appears to increase linearly
with m (fixing n = 5) and increase linearly with n (fixing
m = 3n). For the largest synthetic instances that we ex-
amined (n = 10,m = 50 and K = 1000), local search
terminated in 220 steps on average. Instances of this size are
close to the maximum size that the max Nash welfare algo-
rithm can reliably handle, while they remain trivial for the



(a) Number of steps for various
m with n = 5.

(b) Number of steps for various
n with m = 3n.

(c) % of max Nash welfare or
Pareto opt. allocations, n = 5.

(d) % of max Nash welfare or
Pareto opt. allocations, m = 3n.

Figure 5: Running time (number of steps) and solution quality of the local search algorithm on synthetic data.

local search algorithm.
Figures 5c and 5d show the percentage of instances in

which the local search algorithm produces a Pareto optimal
or max Nash welfare allocation, as a function of m (with
n = 5) and n (with m = 3n), respectively. In Figure 5c,
notice that when m = n = 5, only a very small percentage
of allocations returned by local search are max Nash wel-
fare allocations, or even Pareto optimal. This is because in
almost all cases when m = n, any allocation in which every
player receives a single good is locally Nash optimal, and
local search might terminate at an arbitrary allocation of this
form. However, with m = 2n = 10, local search returns a
max Nash welfare allocation in nearly 60% of the instances,
and almost always achieves Pareto optimality. Increasing m
further only slightly improves performance.

Examining Figure 5d reveals a different story for the per-
formance as a function of n. With n = 3, local search usu-
ally finds a Pareto optimal allocation and finds a max Nash
welfare allocation in nearly 80% of the instances. As n in-
creases, the allocation remains likely to be Pareto optimal,
but quickly becomes unlikely to be globally Nash optimal.

We remark that for every combination of n, m ≥ 2n, and
K in our simulations, local search returns a Pareto optimal
allocation in at least 85% of the instances.

7 Discussion
Our work opens up several avenues for future research on
fair allocation and takes steps towards addressing existing
open questions that go beyond group fairness.

Fairness with respect to fixed groups of players. We
consider fairness guarantees that hold simultaneously for ev-
ery pair of groups. In some applications, we may care only
about fixed partitions of players into groups, for example,
based on gender or race. An interesting open question is
whether it is possible to provide stronger guarantees if we
ask for fairness only with respect to fixed groups (poten-
tially in conjunction with an individual fairness notion such
as EF1). For instance, is it possible to provide “up to one
good” guarantees with the removal of a single good overall,
as opposed to a single good per player?

Strong envy-freeness up to one good. In the definition
of GF1B, sets S and T are chosen before the selection of

the good gj for each player j ∈ T . However, the proof of
Theorem 2 establishes that locally Nash optimal allocations
satisfy a slightly stronger version of the definition in which
a single good gj for each player j is chosen in advance (in-
dependent of sets S and T ). This property is formally de-
fined as strong GF1B in the full version. When restricting to
sets S and T with |S| = |T | = 1, the original GF1B defini-
tion yields envy-freeness up to one good, while strong GF1B
yields a slightly stronger property.
Definition 10 (Strong envy-freeness up to one good
(s-EF1)). An allocation A is s-EF1 if for each j ∈ N such
that Aj 6= ∅ there exists a good gj ∈ Aj such that for all
i ∈ N , vi(Ai) ≥ vi(Aj − gj).

It follows that every locally Nash optimal allocation sat-
isfies s-EF1. It is easy to check that the allocations produced
by the round robin algorithm and the algorithm of Barman,
Krishnamurthy, and Vaish (2018), which are both known to
satisfy EF1, also satisfy the stronger s-EF1.

Locally Nash-optimal allocations and approximate mar-
ket equilibria. When goods are divisible, it is known that
globally Nash optimal allocations coincide with strong com-
petitive equilibria with equal incomes (Segal-Halevi and
Sziklai 2018), where (informally) each good is assigned a
price, each player is given one unit of fake money (equal in-
comes), and each player purchasing her highest valued bun-
dle of goods that she can afford perfectly partitions the set
of goods (competitive equilibrium).

With indivisible goods, such an allocation may not exist.
A recent line of work (Budish 2011; Babaioff, Nisan, and
Talgam-Cohen 2017; Barman, Krishnamurthy, and Vaish
2018) proposes relaxations in which the competitive equi-
librium condition is retained, but the equal incomes condi-
tion is relaxed to almost equal incomes. The relaxation due
to Barman, Krishnamurthy, and Vaish (2018) is guaranteed
to be satisfiable, and leads to allocations that are envy-free
up to one good and Pareto optimal. However, Caragiannis
et al. (2016) posed the open question of whether such relax-
ations retain any connection to the Nash welfare function.

In the full version of the paper, we explore a relaxation
that is very different from the relaxation due to Barman, Kr-
ishnamurthy, and Vaish (2018). We retain exactly equal in-
comes, and instead relax the competitive equilibrium condi-
tion: each player now purchases an almost optimal bundle



of goods that she can afford. Our relaxation loses Pareto op-
timality while theirs guarantees it. However, our relaxation
satisfies both GF1A and GF1B, while theirs can be shown to
satisfy only GF1B and violate GF1A. Additionally, we re-
cover an equivalence between approximate market equilib-
ria and local Nash optimality, partially answering the open
question by Caragiannis et al. (2016).
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