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Abstract
Choosing balls that best approximate a 3D object is a non-trivial problem. To answer it, we first address the inner approximation
problem, which consists of approximating an object FO defined by a union of n balls with k < n balls defining a region
FS ⊂ FO. This solution is further used to construct an outer approximation enclosing the initial shape, and an interpolated
approximation sandwiched between the inner and outer approximations. The inner approximation problem is reduced to a
geometric generalization of weighted max k-cover, solved with the greedy strategy which achieves the classical 1 − 1/e lower
bound. The outer approximation is reduced to exploiting the partition of the boundary of FO by the Apollonius Voronoi diagram
of the balls defining the inner approximation. Implementation-wise, we present robust software incorporating the calculation
of the exact Delaunay triangulation of points with degree two algebraic coordinates, of the exact medial axis of a union of
balls, and of a certified estimate of the volume of a union of balls. Application-wise, we exhibit accurate coarse-grain molecular
models using a number of balls 20 times smaller than the number of atoms, a key requirement to simulate crowded cellular
environments.

Keywords: computational geometry, biological modelling, modelling

ACM CCS: [Theory of Computation]: Theory and algorithms for application domains; [Theory of Computation]: Design and
analysis of algorithms; [Theory of Computation]: Randomness, geometry and discrete structures—Computational Geometry

1. Introduction

1.1. Modelling with balls

1.1.1. Three approximation problems

Modelling complex 3D shapes is commonplace in science and engi-
neering, and simple primitives such as balls play a central role in this
process, for two reasons. On the one hand, the medial axis transform
(MAT) allows representing a shape as a collection of balls [Ser82],
usually infinite, so that sub-sampling such balls naturally yield ap-
proximations. On the other hand, (hierarchical) models represented
by balls are ubiquitous, for example in molecular modelling, but also
in robotics, computer graphics and computer aided geometric design

(CAGD), where bounding sphere hierarchies provide an elegant way
to perform fast and numerically reliable collision detection. In this
context, this paper addresses the following problems, which aim at
approximating a given input shape by default (problem 1) and by
excess (problem 2), and also finding an approximation sandwiched
in-between the first two with a volume constraint (problem 3):

Problem 1. Inner approximation Given a 3D modelFO consisting
of the union of n balls, find a domain FS ⊂ FO, defined by the union
of k < n balls, such that the volume of FO\FS is minimized.

Problem 2. (Concentric) Outer approximation Given a 3D model
FO consisting of the union of n balls, find a domain FS ⊃ FO,
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2 F. Cazals et al. / Greedy Geometric Algorithms for Collection of Balls

defined by the union of k < n balls, derived from an inner approxi-
mation. The approximation is termed concentric if the balls used to
define FS are concentric with those of an inner approximation.

Problem 3. (Concentric) Interpolated approximation Given a 3D
model FO consisting of the union of n balls, find a domain FS sand-
wiched between an inner approximation and the associated outer
approximation. The approximation is called volume preserving pro-
vided that V (FS ) = V (FO). It is termed concentric if the balls used
to define FS are concentric with those of an inner approximation.

While we provide a general (and optimal) solution to problem
1, we only address the design of concentric outer and interpolated
approximations. The reason for doing so is two-fold. First, defin-
ing an outer approximation by growing the balls of an inner ap-
proximation defines a so-called toleranced model (TOM), namely
a one-parameter family of shapes obtained by linearly interpolat-
ing the radii of the balls between the inner and outer radii. More-
over, a TOM is tantamount to a so-called additively multiplicatively
weighted Voronoi diagram, whose α-shape has also been character-
ized [CD10]. Thus, our algorithms allow studying a one-parameter
family of geometric approximations, rather than a single approx-
imation, which is of importance whenever the objects studied are
plagued with uncertainties, as in CAGD [LWC97] or structural bi-
ology [DDC12, DDC13]. Second and intuitively, growing the balls
of an optimal inner approximation is an appealing strategy to build
an outer approximation.

Since there is no ambiguity and for the sake of conciseness, the
adjective concentric is omitted in the sequel.

1.1.2. Previous work

The approximation problems are actually connected to a variety
of research veins, namely (i) geometric approximation algorithms
for 3D shapes, (ii) robust geometric software development, (iii)
approximation algorithms in general and weighted max k-cover in
particular and (iv) structural biology. We now briefly comment on
recent work in these directions.

Geometric approximation algorithms for 3D shapes. In a broad
perspective, the question of sandwiching a complex shape between
an inner and an outer one is a classical problem in computer
design where maximum and minimum material parts have been
used in metrology (quality check) and robotics (collision detection)
[LWC97]. While the particular class of shape used to define such
approximations depends on the objects modelled, the MAT plays a
fundamental role in defining a shape as a union of balls.

The particular case of a shape bounded by a smooth surface moti-
vated the introduction of the MAT approximation using medial balls
centred on specific Voronoi vertices called poles [AK00], an idea
later re-used to approximate a shape bounded by a triangulated sur-
face [AAK*09, SKS12]. This MAT approximation was also used for
the sphere-tree construction [BO04], a representation to perform hi-
erarchical object modelling and collision detection, and to improve
the grasping quality in robotics [PAD10]. For a shape with smooth
boundary, the previous MAT approximation typically comes with
a guarantee, namely the convergence of the Hausdorff distance be-

tween the input boundary and that of the approximation. Alternative
methods skipping MAT computations have also been proposed. Of
noticeable interest is [WZS*06], where an outer approximation for
a model bounded by a triangle mesh is built, by combining sphere
fitting and a greedy strategy to minimize the sphere outside triangle
volume—see also Section 5.

In a broader context, the problem of approximating a bounded
open set has also been investigated recently. In [GMPW09], the
authors introduce the scale-axis transform, which consists of scaling
forth and back medial balls, so as to simplify a shape representation.

Robust geometric software development. It is worth noticing many
of the works just mentioned rely on Voronoi diagrams, generally for
the Euclidean distance, but also for a multiplicative distance in
[GMPW09]. Consequently and from an implementation perspec-
tive, geometric algorithms from the Computational Geometry Al-
gorithms Library (CGAL) [cga], but also number types from the
LEDA [MN99] and CORE [KLPY99] libraries play a key role.

Approximation algorithms. The inner approximation problem is
also related to approximation algorithms in general, and greedy
strategies in particular. As we shall see, of particular interest is
weighted max k-cover, which cannot be approximated within a
ratio of 1 − 1/e + ε unless P=NP [Fei98], and the optimal bound
1 − 1/e is achieved by greedy strategies.

Structural biology. Last but not least, our incentive to address
approximation problems for balls comes from computational struc-
tural biology, whose ultimate goal is to unravel the relationship
between the structure and the function of macro-molecules. Origi-
nating with the work of Richards [LR71], molecular models repre-
sented as collections of van der Waals (vdW) balls and associated
affine Voronoi diagrams have been instrumental to describe atomic
packing properties [MJLC87, MLJ*87], to compute and decorate
molecular surfaces [Con83, AE96], to exhibit correlations between
structural and biological—bio-physical properties of protein inter-
faces [BCRJ03, MDBC12], to select diverse conformational ensem-
bles for mean field theory based docking algorithms [LSB*11], or
to find entrance/exit passages to active sites [YFW*08].

While the aforementioned works are concerned with atomic res-
olution models, coarse-grain models are getting increasingly impor-
tant to model isolated proteins or protein assemblies when partial or
no atomic information is available, or when atomic models are too
heavy to handle [Vak13].

More specifically, our incentive in developing accurate geo-
metric approximations of molecules are related to two problems.
The first one is the simulation of whole cellular environ-
ments [ME10, Goo09], using molecular dynamics or related
techniques. (See also the beautiful illustrations of D. Goodsell at
http://mgl.scripps.edu/people/goodsell/books/MoL2-preview.html.)
These simulations require coarse-grain models since atomic res-
olution models of the individual molecules result in overly large
models. However, because the dielectric coefficient of the water
bulk is circa 40 times higher than that of the interior of a protein,
these coarse-grain models must respect the atomic molecular
volume as much as possible [Toz05] to retain accurate electrostatic
interactions, a key component of the force field. (The dielectric
coefficient is the screening term in Coulomb’s equation.) More
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generally, the key features of a coarse-grain model, e.g. specified
from its energy landscape (local minima corresponding to stable
structures and transitions between them) should match those of
the associated atomic model [Cle07]. The second one deals with
the modelling of macro-molecular machines involving from tens
to hundreds of molecules. Modelling such machines relies on a
panoply of complementary experimental techniques [ADV*07],
resulting on noisy models due to a variety of uncertainties on
the input data. To handle such models, in a spirit analogous to
the maximum and minimum material parts used in mechanical
engineering [LWC97], we introduced TOM based on balls and
established their correspondence to compoundly weighted Voronoi
diagrams [CD10]. In a nutshell, a TOM consists of a collection of
pairs of concentric balls, where the inner balls cover a region of
high confidence while the outer balls cover a volume bounding the
model. We used TOM based on canonical proteins shapes (18 balls
arranged on a lattice) to sharpen statistical analysis carried out on
large assemblies [DDC12, DDC13]. Going beyond these results
requires designing TOM of arbitrary geometry and topology, which
in turn requires finding an inner and an outer approximation of a
domain, using a collection of pairs of concentric balls. These are
precisely the problems addressed in this paper.

1.2. Contributions

The key contributions of this work are to provide a provably cor-
rect optimal solution to the inner approximation problem, and
to elaborate on this solution to design outer and interpolated
approximations—although our outer approximation does not come
with any theoretical guarantee. We also use volume preserving in-
terpolated approximations to coarse-grain molecular models.

As we shall see, the design of an outer cover from an inner cover
is conceptually simple, and merely relies on the Apollonius Voronoi
diagram of the balls selected. Likewise, the design of an interpolated
approximation merely requires a binary search to find the radii of
balls interpolated between those of the inner and the outer approxi-
mations. However, the solution to the inner approximation problem
is more complex, and actually relies on three contributions. First, we
present a reduction of inner cover to a geometric generalization of
weighted max k-cover involving a collection of balls related to the
MAT of the domain FO. Second, we solve this geometric weighted
max k-cover with the usual greedy strategy, showing that the 1 − 1/e

classical bound known in combinatorial optimization applies, and
also provide a lower bound on the volume of the selection FS w.r.t.
the volume of FO. From a combinatorial standpoint, our proofs are
simplified versions of the classical ones for greedy algorithms and
weighted max k-cover [NWF78], propositions 4.1 and 4.3]. Yet, we
include them for two reasons: first, it helps understanding the condi-
tion on the weights used in weighted max k-cover (their positivity is
mandatory); second, in Section 3.3, we re-use the skeleton of these
proofs to characterize the result of the greedy strategy for inner cov-
ering, w.r.t the total volume of FO instead of the optimum. From a
geometric approximation perspective, our results depart from pre-
vious work since we focus on an approximation guarantee obtained
with a finite set of balls rather than asymptotically. Third, we present
a robust and effective implementation of the greedy algorithm, in-
corporating the calculation of the exact Delaunay triangulation of
points whose coordinates are degree two algebraic numbers, of the

exact medial axis of a union of balls, and of a certified estimate of
the volume of a union of balls.

Due to the lack of space, all proofs are presented in Appendix A.

1.3. Notations

A sphere and a ball are, respectively, denoted Si and Bi . If X refers
to a collection of balls, FX refers to the corresponding domain, i.e.
FX = ∪Bi∈XBi . Given a finite set E, the set of all subsets of E with
k elements is denoted

(
E

k

)
. The volume of a 3D domain is denoted

Vol(D).

In the sequel, we consider a domain FO defined as the union of
the n balls of a set O, and we wish to find a set of k balls S whose
union FS defines an inner approximation of FO. (As we shall see,
in general, S �⊂ O.)

2. Algorithms: Design

2.1. Inner approximation

2.1.1. Inner approximation and the MAT

The inner approximation problem is a natural geometric approxima-
tion problem, due to its connection to the medial axis of the domain
FO: the medial axis being the locci of centres of maximal balls
associated with the domain FO [Ser82, AK01, CG06], any ball in
S must be centred on the medial axis—any other ball is contained
in a maximal ball. In the following, we sketch the two main steps
of our solution to the inner covering problem.

2.1.2. Step 1: Defining a finite covering of FO based on its MAT

The boundary ∂FO of the domainFO consists of spherical polygons
(2-cells), delimited by circles or circle arcs (1-cells), the latter ones
being bounded by boundary points (0-cells). Generically, a bound-
ary point is defined by the intersection of three spheres from O. In
our case, as proved in [AK01] and illustrated on Figure 1, the medial
axis consists of so-called singular simplices of the α-complex of O
for α = 0, together with the subset of the Voronoi diagram of the
boundary points located within regular components of the α-shape.
In particular, one- and two-dimensional faces of the medial axis
define an infinite set of medial balls. Therefore, defining S from
the MAT of FO is not straightforward since there is an infinite col-
lection of balls to choose from. To resolve this difficulty, we prove
that there exists a finite set of balls C associated with the MAT and
defining a covering of FO. That is, we exhibit a collection of balls
C such that FO = FC (Lemma 2), so that S shall be a subset of C
(Figure 2).

2.1.3. Step 2: Solving the inner approximation using geometric
weighted max k-cover

Consider the volumetric decomposition of FO induced by the
spheres Si ∈ C. This decomposition is defined by the 3D arrange-
ment of the spheres in C: it consists of 3D cells A = {Ai}i=1,...,m

induced by the spheres in C, each cell Ai being contained in selected
balls from C. Also, assume that we are given a weight function w,
i.e. a real valued function defined over the cells of A. Consider now
the following maximization problem:

C© 2014 The Authors
Computer Graphics Forum C© 2014 The Eurographics Association and John Wiley & Sons Ltd.



4 F. Cazals et al. / Greedy Geometric Algorithms for Collection of Balls

c1
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Figure 1: The medial axis transform for a union of balls: 2D illus-
tration. The domain FO is defined by the union of seven balls. Its
boundary points are represented by red dots, while its medial axis
is presented by red line-segments. Two maximal balls centred at m1

and m2 on the medial axis are presented in dashed circles.

Figure 2: The finite covering of the domain FO of Figure 1 based
on its medial axis transform. The set C consists of 7 + 4 balls: the
seven blue balls are input balls—they contribute to the boundary
∂FO; the four red balls are not input balls.

Problem 4. Given a weight function w, find a subset Ŝ of C of size
k, called the selection, such that:

Ŝ = arg max
S∈
(

C
k

)w(S), with w(S) =
∑

Ai⊂FS

w(Ai). (1)

Solving this problem when the weight function is the plain Eu-
clidean volume of a cell of the arrangement A provides an inner ap-
proximation. In particular, we shall provide guarantees on the greedy
solution w.r.t. the optimum, based on the analysis of weighted max
k-cover (see below). We shall also extend these guarantees to com-

pare the volume of the greedy solution against the volume of the
input domain O.

2.1.4. Complexity issues and the greedy strategy

Given an alphabet A of m points, and a collection C of subsets of A,
max k-cover aims at selecting k subsets from C so as to maximize
the number of points from A which are covered [GJ79, Fei98]. (In
the literature, this problem is sometimes called set cover [FG89].
To avoid confusion, we consider that the set cover problem aims
at minimizing the number of sets in C to cover at least k elements
from A.) We note that the classical max k-cover is a special case of
problem 4 with function w assigning a unit weight to all cells. Since
weighted max k-cover is a NP complete problem, a polynomial
time solution both in |O| and k cannot be expected. However, the
problem is in P for a fixed k since all subsets of size k can be probed.
But this brute force method is doomed to fail even for moderate k,
which calls for alternate strategies, the greedy strategy being the
most natural one.

The greedy strategy consists of k iterations, the j th step consisting
of selecting the Bj maximizing the weight of the union of the
balls selected so far. Because the selection obtained upon halting
with k balls may not realize the optimum solution, the performance
assessment of greedy relies on the worst-case ratio between the
solution returned and the optimal one. For weighted max k-cover,
this ratio is known to be of 1 − 1/e, and is tight [CFN77, NWF78,
FG89, Fei98].

Practically, a priority queue of the non-selected balls is main-
tained along the iterative selection process. The priority of a ball
is the volume increment this ball would provide if selected, so that
computing this priority only requires a function returning the vol-
ume of a union of balls [CKL11].

2.2. Outer approximation

We derive our outer approximation from an inner one. To see how,
recall that the Apollonius diagram of a collection of balls {Bi(ci, ri)}
is the Voronoi diagram defined for the following generalized dis-
tance [BWY06]:

δi(p) =|| p − ci || −ri . (2)

Note that the Apollonius distance is merely the Euclidean distance
from point p to the sphere Si bounding Bi . For each ball Bi of
the selection S, consider the restriction of the boundary of the
input domain not covered yet by the domain FS , to its Voronoi
cell VorApo.(Bi) in the Apollonius diagram. If this restriction is non-
empty, we define the expansion radius r+

i of Si by the maximum
distance of a point of that region to Si , that is:

r+
i = max

p∈∂FO∩VorApo.(Bi ) and p �∈FS
δi(p). (3)

If this restriction is empty, the expansion radius is set to the orig-
inal radius, that is r+

i = ri . Expanding each ball of the selection
by its expansion radius yields an outer cover of the input domain
(Figure 3).
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S1

S4
S3

S2

r+
1

r+
4r+

3

r+
2 = r2

Figure 3: Computing an outer cover of the domain FO of Figure 1, from an inner cover. Solid circles: the selection S defining the inner cover.
Dashed circles: set C\S. Black curves: Apollonius Voronoi diagram of S. For each selected ball Si ∈ S, a point maximizing the Apollonius
distance to Si is shown in black, used to define the outer cover materialized by the arrows. Note that this point belongs to the Apollonius
Voronoi cell of Si .

Practically, the expansion radii are computed via a discretization
as a point cloud of the boundary ∂FS of the selected domainFS (and
likewise for the input domain FO), the Hausdorff distance between
this point cloud and the boundary surface being upper bounded by
a parameter εM ≥ 0. See Appendix B for details.

2.3. Interpolated approximation

Consider an inner approximation together with the associated outer
approximation as defined in Section 2.2, and denote ri and r+

i the
inner and outer radii of the ith ball. Given a parameter t ∈ [0, 1],
we define the interpolated radius of the ith ball as

ri(t) = (1 − t)ri + tr+
i . (4)

An interpolated approximation is the union of these interpolated
balls; it is called volume preserving if its volume matches that of the
input shape.

2.4. Heuristic: Connecting an approximation

If the input domain FO is connected, so should be the domain FS :
for example, the selection associated to a connected molecule should
also be connected. To meet this constraint, the following heuristic
may be used.

LetSk be the selection upon termination, and consider the exposed
balls, i.e. the balls contributing to the boundary ∂FSk

. Split these
balls into two groups L and Lc, namely the largest component
(in number of exposed balls), and the remaining ones. We aim at
connecting L to one of the connected components of Lc. Consider
the intersection graph with one vertex per ball Bi ∈ C and one edge
for every pair of intersecting balls. Using this graph, we compute
the shortest path joining any vertex representing a ball in L to any
vertex representing a ball in Lc. This shortest path uses vertices
representing balls in C\Sk , which are added to the selection. This
process is iterated until one connected component remains.

3. Inner Approximation: Guarantees

3.1. Defining the set C of step 1

As discussed when introducing problem 1, the inner approxima-
tion problem requires using balls centred on the medial axis of the
domain O. But the medial axis is a cell complex with two dimen-
sional faces, so that one has an infinite collection of balls to choose
from. To circumvent this difficulty, consider the following classical
lemma, related to pencils of spheres [Ber87]:

Lemma 1. Consider two intersecting spheres �1 and �2 in 3D, and
define their convex linear combination, namely �λ = λ�1 + (1 −

C© 2014 The Authors
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λ)�2, with λ ∈ [0, 1]. The ball bounded by �λ is contained in the
union of the balls bounded by �1 and �2.

Denote B∗
p a maximal ball centred on a vertex p of the medial

axis (MA), and let C be the set of all such balls. By the structure
theorem of the medial axis of a union of balls [AK01], this set is
finite. We shall use this set to run the greedy algorithm, since, as
established by the following lemma, the balls in C define a covering
of the input domain:

Lemma 2. The input domain FO satisfies

FO = FC, with C = {B∗
v }vvertex of the MA of FO . (5)

Proof. We shall prove that any maximal ball B∗
p is contained in the

union of at most three balls centred on vertices from C. Omitting
the trivial case of a singular vertex of the medial axis, we first note
that there are three cases to be analysed, namely when p belongs to
a singular edge of the medial axis, when it belongs to a (possibly
clipped) Voronoi face f or when it belongs to a singular triangle.

Case 1 This is exactly the case covered by Lemma 1. In this case,
the portion of the pencil contains the intersection circle
between the two spheres defining the singular edge.

Case 2. The second case contains two sub-cases, namely when p

lies in the interior of a Voronoi edge, and when p lies in
the interior of the Voronoi facet f . The first sub-case is
again the case of Lemma 1—all the spheres in the portion
of the pencil contain the three boundary points defining
the Delaunay triangle dual of the Voronoi edge in ques-
tion. For the second one: let c be any Voronoi vertex of
f belonging to C, let L be the ray emanating from c and
passing through p, and let d be the intersection point be-
tween L and the boundary ∂f of f . Point d belongs to
either a Voronoi edge or to an α-shape edge (if the Voronoi
facet is a clipped Voronoi facet in the medial axis). Call
e and f the endpoints of this 1-cell of the medial axis.
Now, by Lemma 1, one has B∗

d ⊂ B∗
e ∪ B∗

f and similarly
B∗

p ⊂ B∗
c ∪ B∗

d . Thus, B∗
p ⊂ B∗

c ∪ B∗
e ∪ B∗

f .
Case 3. Amenable to the analysis carried out for case 2.

Thus, since any maximal ball is contained in the union of at most
three balls centred at vertices from C, the claim holds. �

3.2. Greedy strategy: Worst-case bound w.r.t the optimum

We now consider problem 4 with the following setting: the cells {Ai}
are those of the 3D arrangement induced by the balls in C (Lemma
2); the weight function is some non-negative function. (Again, for
inner cover, the plain Euclidean volume.)

To solve this problem with the greedy strategy, we use the fol-
lowing notation. The ball selected at the kth step is denoted Ck , and
the weight of the optimum set of balls OPT . Also, let w∗(Ck) be
the sum of the weights of the new elements covered by Ck that have
not been covered in Cj , 1 ≤ j < k (i.e. the weight increment at step
k). We start with a lemma (proof in Appendix A) needed to prove
Theorem 1.

Lemma 3. For 1 ≤ i ≤ k, the following holds:

w∗(Ci) + 1

k

i−1∑
j=1

w∗(Cj ) ≥ OPT

k
. (6)

Using Lemma 3, one proves (proof in Appendix) :

Theorem 1. Consider the volumetric arrangement associated with
a collection of balls C, whose cells are equipped with non-negative
weights. For problem 4, the greedy approach has an approximation
ratio of 1 − (1 − 1/k)k > 1 − 1/e.

Moreover, the bound of Theorem 1 is tight: while this fact is a
consequence of the hardness results [Fei98], proposition 5.2], our
proof is accompanied by an example achieving the lower bound
(Figure A1) (proof in Appendix A):

Theorem 2. The greedy approach cannot perform better than 1 −
(1 − 1/k)k .

Remark 1. The proof of Lemma 3 uses union-bound so that
non-negativity assumption on the weights is mandatory. As a
counter-example, consider the sets C1 = {e1, e2}, C2 = {e2, e3}
with w(e1) = w(e3) = 1 and w(e2) = −1. The union-bound fails
for w(C1 ∪ C2). This remark is of particular interest in bio-physics,
where atoms are decorated with physical, chemical or biological
properties. For example, a weighting function that would take into
account the electrostatic properties, which may be negative, would
preclude the application of the previous lemma.

3.3. Greedy strategy: Worst-case bound w.r.t the total weight

3.3.1. Approximation bound

The previous result can be generalized with respect to the weight of
the whole input domain rather than that of OPT. We state the result
for the particular case of the volume: (proof in Appendix A):

Lemma 4. The volume of the selection Vol(FS ) and that of the input
domain Vol(FO) satisfy:

Vol(FS )

Vol(FO)
≥ 1 −

(
1 − 1

n

)k

. (7)

3.3.2. Tight example

Consider n disjoint balls of same radii. Then the greedy algorithm
would select any k balls out of it. This would contribute a volume
equal to k/n times the total volume. Also, note that

k

n
= 1 −

(
1 − k

n

)
≈ 1 −

(
1 − 1

n

)k

for large values of n. This is optimal since no algorithm can approx-
imate the union of n balls with approximation factor greater than
k/n in this example, and thus in the worst case.
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4. Algorithms: Implementation

We now provide an overview of the three approximation algorithms.
The main steps undertaken, see Algorithm 1, follow the work-flow
of Section 2, as one successively deals with the construction of:

� The geometric structures underlying the three approximations,
namely
– The Delaunay triangulation DTB of the input balls, and the

associated α-shape.
– The Delaunay triangulation DTV of the boundary points of

∂FO, and the dual Voronoi diagram DTV∗.
– The medial-axis of the union of input balls.
– The set C of candidate balls.

� The inner approximation.
� The outer approximation.
� The interpolated approximation.

The reader is also referred to the Appendix B for a detailed
description of the C++ classes involved in conjunction with the
CGAL library [cga], in particular regarding the numerics.

Algorithm 1. Computing the inner, outer and interpolated ap-
proximations of a domain FO defined as a union of balls:
overview

{Problem specification: parameters}
{Input balls O defining the domain FO}
{Selection size k}
{Boolean flag to enforce the connectivity of FS}
{Meshing precision εM for ∂FO and ∂FS}

{Pre-processing}
Compute:
– The Delaunay triangulation DT B of the input balls O, and the
associated 0-shape
– the vertices of the boundary ∂FO of FO
– the Delaunay triangulation DT V of these vertices, and the dual
Voronoi diagram DT V ∗

– the medial axis of ∂FO using DT B and DT V ∗, using the
algorithm described in [AK01]
– the balls in C defining the covering of FO, as specified by
Lemma 2

{Inner approximation}
– Select the set S consisting of k balls amidst C, using the greedy
algorithm from Section 2.1

{Optional: connectivity enforcement}
– Add balls from C\S to enforce the connectivity of FS , as
explained in Section 2.4

{Outer approximation}
– Mesh the domains ∂FO and ∂FS with precision εM , using the
Mesher_3 mesher from the CGAL library
– Compute the expansion radii of the balls in the selection S, as
specified in Section 2.2

{Interpolated approximation}
– Compute the interpolated radii of the balls defining the
interpolated approximation, as specified in Section 2.3

5. Results

5.1. Data set

5.1.1. Molecular models

As test set, we used the 96 protein–protein complexes from [LCJ99],
available from the Protein Data Bank http://www.rcsb.org/. The
complexes are of high-biological interest since all of them are cou-
pled to well identified biological processes. The number of atoms
lies in the range [1008, 13214], with a median of 3757. By default, a
molecular model is defined as a so-called vdW model, with atomic
radii in the range [1 o

A, 2 o
A]. The so-called solvent accessible (SAS)

model consists of expanding the atomic radii of the vdW model by
the quantity e = rw = 1.4 o

A. This process mimicks a continuous
layer of water molecules on the atoms, and allows recovering con-
nections between atoms nearby in 3D space, yet, not connected by
covalent bonds. We also explore more general models using a radius
expansion of e ≥ rw .

Molecular models are challenging both from the geometric and
topological standpoint. Geometrically, side-chains of amino-acids
sticking out of a protein are equivalent to the fingers of a character
or the tail of an animal—that is molecules exhibit thin parts. Topo-
logically, the Betti numbers (β0, β1, β2) of the models are usually
large, witnessing many tunnels and cavities. The typical number of
tunnels (β1) and cavities (β2) of a SAS model is of several tens,
the molecular model of PDB file 1dhk.pdb being extreme, with 11
tunnels and 78 cavities. Notice in particular that tunnels and cav-
ities are obstacles preventing using large balls to define an inner
approximation.

5.1.2. Performance enhancement via dilation

Intuitively, the ability of the greedy algorithm to provide a good
inner approximation relies on the possibility to choose large balls,
which depends on two factors. First, the topological complexity:
the closest to a topological ball the domain FO, the better—high
Betti numbers make the problem harder. Second, the geometric
complexity: the more convex the domain FO, the better. Along this
line, enlarging the input balls by the quantity e discussed above
results in the domain F e

O, whose topology can be simpler than
that of FO. That is, the dilation may trigger the destruction of
small cavities and tunnels, a statement which will be illustrated in
Section 5.4.

Table 1: Minimum, median and maximum running times. The following
parameters were used to process the database of 96 proteins complexes
εM = 0.2, k/n = 5% and e = rw = 1.4. The columns represent the entries
Equation (11).

Statistical tP tIn tC tM tOut tInt

Minimum 1.00 161.75 0.00 1499.17 6.21 2.89
Median 2.10 392.10 40.78 3062.61 96.55 5.51
Maximum 6.55 1151.75 917.57 9312.90 1513.78 15.82

C© 2014 The Authors
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Figure 4: Inner and outer approximations: volume ratio w.r.t. the input shape, as a function of the selection size. The molecular models are
the solvent accessible (SAS) ones.

Figure 5: Inner approximation: volume ratio Vol(F e
S )/Vol(F e

O) as a function of the expansion radius. (Left) Protein complex of 1690 balls
(PDB code 3sgb, see Figure 6). (Right) Protein complex of 9060 balls (PDB code 1fin, see Figure 7).

5.1.3. Selection size

In the tests, the selection size k is generally expressed in percents
with respect to the model size. For example, k/n = 5% means that
for a molecule of n atoms, a selection of size k = n/20 was used.
The typical values used are k/n ∈ {1%, 2%, 5%, 10%}.

5.2. Monitoring Hausdorff distances

Our strategy being volume based, to further assess it, we pro-
pose to compute the (signed) one-sided Hausdorff distances be-
tween the boundaries of the input domain and of the selection,
respectively.

C© 2014 The Authors
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5.2.1. Distances between boundaries: The Hausdorff signature

The inner approximation being driven by a volumetric criterion, we
further analyse the output in terms of one-sided Hausdorff distance
(denoted dH (·, ·)) between the boundaries ∂FO and ∂FS . More pre-
cisely, we code the position (interior versus exterior) of a point
p with respect to a compact domain F by signing the one-sided
Hausdorff distance, that is:

s(p, ∂F) =
{− minq∈∂F d(p, q) if p ∈ F,

+ minq∈∂F d(p, q) otherwise,
(8)

from which the relative position of ∂FO and ∂FS is defined by the
following Hausdorff signature:

SH (∂FO, ∂FS ) = [minp∈∂FS s(p, ∂FO), maxp∈∂FS s(p, ∂FO); (9)

minp∈∂FO s(p, ∂FS ), maxp∈∂FO s(p, ∂FS )]. (10)

Note that for the inner approximation, the first two terms must be
non-positive, while the last two terms must be non-negative. Note
also that the maximum of the absolute values of the four terms is
the Hausdorff distances between the two boundaries.

5.3. Timing statistics

The calculation of an interpolated approximation is summarized by
the following signature, whose entries are expressed in seconds:

(tP , tIn, tC, tM, tOut , tInt ), (11)

with tP : time devoted to all preliminary geometric constructions
(DT B, DT V , DT V ∗, medial axis , set C); tIn: time to run the in-
ner selection with algorithm Greedy; tC : time to connect the inner
selection; tM : time to mesh the boundary ∂FO; tOut : time to com-
pute the outer approximation; tInt : time to compute the interpolated
approximation.

Three facts emerge from Table 1. First, the time consumed by the
preliminary constructions (tP ) is negligible with respect to that of the
approximation algorithms. Second, building the inner cover (tIn) is
significantly more expensive than inferring the outer and the interpo-
lated approximations (tOut and tInt ) from the inner cover. Third, the
limiting step at this stage is the boundary meshing (tM ). This owes
to the precision imposed on the mesh (εM = 0.2; atomic radii in the
SAS model are in he range [2.4 o

A, 3.4 o
A]), and to the genericity of

the mesher. (The algorithm meshes implicit surfaces in general, and
is constrained to respect circle-arcs and vertices found on the bound-
ary of the union.) A meshing algorithm dedicated to the boundary of
the union would certainly yield an improvement of one or two orders
of magnitude, but the focus of this work being on approximation
guarantees, we leave this improvement for further work.

5.4. Approximations

5.4.1. Inner approximation

In a vdW model, only balls of covalently bonded atoms intersect.
Thus, for a vdW model, one expects the volume covered to vary
linearly as a function of the selection size, which is exactly observed

Figure 6: Inner/outer/interpolated approximations with a selec-
tion size k/n = 5%, for a small globular protein complex (PDB
id: 3sgb). The atomic model contains 1,690 atoms, coloured by
their polypeptide chain. Each inset shows the approximation, the
associated main figure displaying the superposition of the approx-
imation and the atomic SAS model. (NB: the visual effect of inner
balls sticking out from the model comes from the fact that some
balls are common. The same holds for balls shared by the outer
approximation and the model.)

(Figure 4, red curves). Consider now the SAS model of a given vdW
model. We discussed in Section 5.1 the expected benefits associated
to model dilation. This phenomenon is precisely observed, since the
larger r , the larger the candidate balls, and the better the volume
ratio curve (Figure 4 again).

To assess the efficacy of inner approximations for SAS models,
we observe that selections with k/n ≥ 5% are such that the volume
ratio between the inner cover and the input domain is always above
0.65, with a median equal to 0.77 (Figure 5, red error bars). Using
k/n = 5%, it is also observed that the connectedness of the inner
approximation is often verified by the output from Greedy, since
the minimum, median and maximum number of balls added by the
heuristic of Section 2.4 are, respectively, 0, 1 and 5. Two inner

C© 2014 The Authors
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Figure 7: Inner/outer/interpolated approximations with a selection size k/n = 5%, for a larger protein complex (PDB id: 1fin). The atomic
model contains 9060 atoms, coloured by their polypeptide chain. Each inset shows the approximation, the associated main figure displaying
the superposition of the approximation and the atomic SAS model.

approximations with a selection with k/n = 5% are illustrated on
Figures 6(B) and 7(B).

5.4.2. Outer approximation

The evolution of volume ratio upon increasing the selection size
shows that for k/n ≥ 5%, the ratio is always below 1.61 (Figure 5,
green error bars). Two outer approximations with a selection with
k/n = 5% are illustrated on Figures 3(B) and 6(B).

We also compared our outer approximation scheme against that
of [WZS*06]. To this end, we picked one small (PDB id: 3sgb) and
one large (PDB id: 1fin) protein complexes, dilated by e = 5.6 to
eliminate small tunnels and cavities—topological features are not
mentioned for the models used in [WZS*06]. To compare our results
against those of [WZS*06], figure 17], Table3 displays the relative
inside volumeE−

R , namely the percentage of missing volume (fourth
column of Table 3), and the relative outside volumeE+

R , namely
the percentage of excess volume (fifth column of Table 3). While
the models processed are quite different, our outer approximation
compares favourably against that from [WZS*06], figure 17], which
we illustrate with the extreme selection sizes used in [WZS*06]:
for 16 balls, the statistic E+

R is in the range [120%, 400%] for
[WZS*06], and less than 65% for us; for 128 balls, E+

R is in the
range [20%, 40%] for [WZS*06], and less than 27% in our case.
Furthermore, our running time is comparable to the ones reported
in [WZS*06], figure B1] (more than 400 s for 16 balls and more
than 1400 for 128 balls).

5.4.3. Interpolated approximation and coarse-grain molecular
models

Motivated by the structural biology applications discussed in intro-
duction, we computed interpolated approximations for the 96 pro-
tein complexes, with expansion radii e = rw = 1.4 o

A (SAS model),
and e = 5.6 o

A (a value meant to study the performances on models

Table 2: Interpolated approximations: monitoring the signed one-sided
Hausdorff distances as a function of the selection size k. Columns read
as: (1) expansion radius e, (2) selection size k versus number of atoms
n and (3)–(6) the four terms of SH (∂F r

O, ∂F r
S ) in Equation (9), denoted

d1, d2, d3, d4 for the sake of conciseness. Recall that d1, d2 characterize the
boundary of the interpolated approximation w.r.t that of the input domain,
and vice versa for d3, d4.

e k/n d1 d2 d3 d4

rw 0.01 −8.39 ± 1.76 7.26 ± 1.74 −6.12 ± 1.77 5.54 ± 1.38
rw 0.02 −7.64 ± 1.76 5.46 ± 1.11 −7.11 ± 2.41 4.89 ± 1.63
rw 0.05 −5.61 ± 1.63 2.94 ± 0.85 −7.43 ± 2.38 4.76 ± 2.44
rw 0.10 −4.05 ± 1.71 2.77 ± 1.52 −7.80 ± 1.80 5.25 ± 2.23
rw Mean −6.48 ± 2.42 4.66 ± 2.30 −7.10 ± 2.21 5.11 ± 1.98
5.6 0.01 −3.17 ± 0.88 3.49 ± 0.34 −4.36 ± 0.78 2.43 ± 0.24
5.6 0.02 −2.25 ± 1.54 2.58 ± 0.22 −3.55 ± 0.61 1.49 ± 0.15
5.6 0.05 −0.91 ± 0.35 1.68 ± 0.14 −2.77 ± 1.11 0.65 ± 0.91
5.6 0.10 −0.38 ± 0.12 1.08 ± 0.13 −1.68 ± 0.47 0.28 ± 0.07
5.6 Mean −1.92 ± 1.44 2.41 ± 0.89 −3.33 ± 1.20 1.38 ± 0.94

with fewer tunnels and cavities). Selection size of 1%, 2%, 5% and
10% were used. Since the volume of the input model is conserved,
our assessment is based on the four-tuple of Equation (9), denoted
(d1, d2, d3, d4) for the sake of conciseness.

Consider Table 2. For e = 1.4 and a selection size ≥ 2%, the
Hausdorff distances correspond to less than two atoms line-up in the
SAS model. The relatively large values of d1 (resp. d3) are accounted
for by topological features (tunnels, cavities) of the interpolated
approximation (resp. input model) inside yet not present in the input
model (resp. interpolated approximation). For e = 5.6, all Hausdorff
distances are less than the diameter of an atom in the SAS model,
illustrating the fact that for simpler topologies (no tunnel and no
cavity), the aforementioned difficulties do not arise.
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Table 3: Statistics on the inner/outer/interpolated approximations of 3sgb and 1fin with e = 5.6 and εM = 1. Columns read as: (1) PDB id of the protein, (2)
selection size k versus number of atoms n, (3) Betti numbers of the input model, (4) relative inside volume (percentage of missing volume), (5) relative outside
volume (percentage of excess volume) and (6) running time signature—Equation (11), and (7) total running time.

PDB k/n (β0.β1, β2) E−
R E+

R (tP , tIn, tC, tM, tOut , tInt ) Total time

3sgb 16/1690 (1, 0, 0) 20.06% 59.96% (0.43, 77.20, 0., 38.92, 0.02, 0.52) 117.09
3sgb 128/1690 (1, 0, 0) 1.76% 22.30% (0.40, 1739.54, 0., 42.17, 0.97, 2.78) 1785.86
1fin 16/9060 (1, 1, 0) 33.45% 64.46% (2.05, 106.03, 0., 190.42, 0.07, 1.58) 300.05
1fin 128/9060 (1, 1, 0) 9.47% 26.99% (2.05, 1142.67, 0., 193.58, 3.43, 4.10) 1345.83

We illustrate these results with the interpolated approximations
of two systems at selection size k/n = 5%. The first one is a glob-
ular protein of 1690 atoms (3sgb) whose SAS model contains three
tunnels and five cavities (Figure 6). Approximation-wise, the inter-
polated approximation made of 85 balls has no tunnel but one cavity.
Its Hausdorff signature is [−4.30, 2.31; −3.31, 1.63]. The second
one is a larger complex of 9060 atoms, whose SAS model contains
20 tunnels and 70 cavities (Figure 7). Approximation-wise, the in-
terpolated approximation consisting of 453 balls has 32 tunnels and
15 cavities. Its Hausdorff signature is [−5.65, 5.12; −9.01, 3.42].

6. Conclusion and Outlook

This paper studies three basic geometric approximation problems
for a collection of balls, namely inner and outer covering, as well as
the problem of designing a volume preserving geometric approxi-
mation. The inner approximation problem is shown to be a geometric
version of weighted max k-cover, defined on a collection of balls
associated with the MAT of the input domain, for which a greedy
strategy can be used. The outer approximation problem reduces to
computing the partition of the boundary of the original model by the
Apollonius Voronoi diagram of the balls of the inner approximation.
Finally, computing the volume preserving interpolated approxima-
tion reduces to finding an approximation sandwiched between the
inner and outer approximations.

It is also shown that the best possible approximation factor for
inner approximation (1 − 1/e) is retained by the greedy strategy,
a result which we extend for the output of greedy with respect to
the total volume of the input domain. Our implementations hinge
upon state-of-the-art software coupled to the CGAL library, as they
involve the exact calculation of a Delaunay triangulation for points
whose coordinates are degree two algebraic numbers, the intersec-
tion of the dual of this triangulation with the α-complex of the input
balls, and the certified calculation of the volume of a union of medial
balls. This implementation handles molecular models containing up
to O(105) atoms within minutes (inner approximation, and interpo-
lated approximation given the inner and outer approximations). For
these reasons, we believe that our algorithm should prove useful for
a broad class of geometric approximation problems dealing with
balls, in particular in the context of approximate MATs, where the
focus has been so far on asymptotic properties—upon increasing
the number of balls.

Yet, our work calls for further developments, both in the theoret-
ical and applied directions. On the theoretical side, two challenging
questions are of high interest. First, our greedy algorithm comes with

guarantees for the inner approximation problem, a property stem-
ming from the relationship between inner cover and the MAT of the
shape, which allows phrasing the problem as geometric weighted
max k-cover. But coming up with other guarantees, namely bound-
ing the excess volume of the outer cover, and controlling the volume
of the symmetric difference between the input domain and that the
selection (or controlling their Hausdorff distance) for the interpo-
lated cover are open problems.

Second, constraining the geometric selection by topological cri-
teria, e.g. prescribed Betti numbers, would also be of the high-
est interest. However, approximation problems aiming at accom-
modating both geometric and topological criteria are likely to be
challenging—it has been shown that the so-called homology local-
ization problem is NP-hard. In an applied vein and as mentioned
in introduction, we believe that a key application of our algorithms
will be the design of coarse-grain macro-molecular models, to in-
vestigate macro-molecular machines and simulate crowded environ-
ments within whole cells. But prior to undertaking these challenges,
one will have to decorate our purely geometric coarse-grain models
with bio-physical properties, while retaining the essential properties
of the corresponding atomic models.
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Appendix A: Appendix to Section 2: Inner Approximations:
Guarantees

Proof of Lemma 3

Proof. At the ith step, we select Ci that maximizes the weight of the
new cells Aj being covered. Because the balls selected up to step
i − 1 may cover cells which are not covered by the balls accounting
for OPT, the weight of the cells that are covered by the optimum
solution but not yet covered by the (i − 1) is at least

OPT −
i−1∑
l=1

w∗(Cl). (A.1)

Since w is non-negative, the union-bound property states that for
any collection of balls C1, . . . , Cp , one has w(C1 ∪ . . . ∪ Cp) ≤∑

l=1,...,p w(Cl). Since all the cells involved in Equation (A.1) are
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covered by the optimum set of balls, by the union-bound property,
there must exist one ball, not yet selected, that covers these new
cells with total weight at least

1

k

(
OPT −

i−1∑
l=1

w∗(Cl)

)
. (A.2)

Since Ci maximizes the weight of the new cells being covered, we
must have

w∗(Ci) ≥ 1

k

(
OPT −

i−1∑
l=1

w∗(Cl)

)
. (A.3)

Rearranging completes the claim. �

Proof of Theorem 1

Using Lemma 3, the proof of Theorem 1 goes as follows:

Proof. We show the following by induction:

i∑
j=1

w∗(Cj ) ≥
(

1 −
(

1 − 1

k

)i
)

OPT. (A.4)

The property holds for i = 1 thanks to Lemma 3.

Assuming that it holds at rank i, to see that it also holds at rank
i + 1, one multiplies Equation (A.4) by 1 − 1/k, and adds up the
inequality obtained to that of Lemma 3 for i + 1.

For i = k, Equation (A.4) yields∑k

j=1 w∗(Cj )

OPT
≥
(

1 −
(

k − 1

k

)k
)

. (A.5)

The left-hand side is the ratio of the weight of the subset of O
chosen by the greedy approach and the optimum solution, i.e. that
approximation factor and hence we have the above theorem. The
fact that the above ratio is greater than 1 − 1

e
for all k is a trivial

exercise. �

Proof of Theorem 2

Theorem 2 and the following proof are illustrated by Figure A1:

Proof. Fix a given k. We shall construct an example where the
greedy approach can achieve an approximation ratio arbitrarily close
to 1 − (1 − 1

k
)k .

Let

A = {Ai}i=1,...,(k2+k),

∀i, j s.t. 0 ≤ i < k, 1 ≤ j ≤ k, w(Ai.k+j ) = 1

k2

(
k − 1

k

)i

,

∀j s.t. 1 < j ≤ k, w(Ak2+j ) = 1

k

(
k − 1

k

)k

− ε.

The balls are defined as follows:

O = {Ci}i=1,...,2k,

∀i s.t. 1 ≤ i ≤ k, Ci =
i.k⋃

j=(i−1).k+1

Aj ,

∀i s.t. ≤ i ≤ k, Ck+i =
⋃

j≡i (modk)

Aj .

Simple calculations lead us the following total weights:

∀1 ≤ i ≤ k, w(Ci) = 1

k

(
k − 1

k

)i−1

,

∀1 ≤ i ≤ k, w(Ck+i) = 1

k
− ε.

The optimum choice of S with |S| = k is clearly {Ci}i=k+1,...,2k

with total weight 1 − kε, whereas the greedy method would choose
{Ci}i=1,...,k , with a maximum weight of 1 − (1 − 1

k
)k , giving an ap-

proximation factor is arbitrarily close to 1 − (1 − 1
k
)k . �

Proof of Lemma 4

Proof. In the proof of the approximation factor of the greedy
algorithm for the volumetric decomposition given in Lemma 3, note
that it is valid for any solution and not only the optimum solution, i.e.
no property of the optimum solution is required. Thus, we replace
the optimum solution by a solution selecting the given n balls. Thus,
we get the following equation:

w∗(Ci) ≥ 1

n

⎛
⎝V −

i−1∑
j=1

w∗(Cj )

⎞
⎠ ,

where Cj is the jth ball selected by the greedy algorithm, and w∗(Ci)
is the new volume of Ci not covered by any of Cj , 1 ≤ j < i. Solving
it in the manner similar to that used in the proof of Theorem 2 yields:

GREEDY =
k∑

i=1

w∗(Ci) ≥ V ·
(

1 −
(

1 − 1

n

)k
)

.

�

Appendix B: Appendix to Section 4: Algorithms:
Implementation

B.1 Inner approximation

Overview. The input consists of a collection of balls O defin-
ing a region FO, and of a selection size k or a target ratio τ

between the volume of FS and that of FO—that is one expects
Vol(FS )/Vol(FO) ≥ τ . The output consists of an ordered set of
balls S ⊂ C, together with the increment in volume associated to

C© 2014 The Authors
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Figure A1: A tight example for the greedy strategy.

each ball. (Recall that in general the set C is different from the set
of input balls O.)

The algorithm consists of iteratively selecting the ball providing
the best volume increment, selected from a priority queue containing
all candidates from the set C, as specified in Section 2.1. Upon
selecting ball say Bi , we recompute the volume increments of all
candidate balls intersecting Bi .

Note that as a preprocessing, we compute the intersection graph,
namely the graph with one vertex per ball Bi ∈ C, and one edge for
every pair of intersecting balls. Incidences in this graph are used to
identify the balls whose volume increments get recomputed upon
selecting a particular ball.

We now present the geometric objects used by the algorithms, fol-
lowing the flow presented in Section 2.1, and mentioning the CGAL
(http://www.cgal.org ) classes used and their template parameters
when appropriate.

The Delaunay triangulation DTB of the input balls, and the as-
sociated α-shape. Following classical usage, we call K the kernel
used to instantiate the CGAL classes Regular_triangulation_3 and
Alpha_shape_3. Two options for K are discussed below.

The Delaunay triangulation DTV of the boundary points of ∂FO.
We compute the medial axis of the input shape by restricting the

Voronoi diagram DTV∗ of the boundary points located within regular
components of the α-shape, as recalled in Section 2.1. The Voronoi
diagram DTV∗ is the dual of the Delaunay triangulation DTV of the
boundary points of ∂FO. Two difficulties are faced to construct DTV .
First, more than three co-planar points are generic in DTV [AK01].
Second, since a boundary point is found at the intersection of three
input spheres, its coordinates are degree two algebraic numbers. We
therefore store these points using the CGAL spherical kernel Spher-
ical_kernel_3 [CCLT09], instantiated with K . The two options for
K , referred to as the inexact and the exact kernels in the sequel, are:

� Exact_predicates_inexact_constructions_kernel, the underlying
number type (NT) to store the coordinates of the boundary points
being a double.

� Exact_predicates_exact_constructions_kernel_with_sqrt, the
underlying number type to store the coordinates being either
CORE::Expr or LEDA::real.

Additionally, a map is used to associate a singular or regular facet
from the α-shape of DTB to each boundary point.

To handle these difficulties, we implemented a dedicated kernel
denoted DTV_kernel, defining a new point type for the boundary
points. This kernel is actually templated by two parameters:

� First, a ball identifier, used to record the three input spheres
defining a boundary point. These identifiers are used to handle
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the aforementioned special cases, so as to avoid the numerical
calculation of a predicate whose sign can be inferred from the
fact that the input points lie on a set of known input spheres.
Practically and since an input ball corresponds to a vertex of the
α-shape of DTB, the vertex handle of the α-shape is taken as
identifier.

� Second, a number type used to represent the coordinates of the
boundary points, the two options being the NT associated to the
aforementioned inexact and exact kernels.

One comment is in order about the Voronoi diagram DTV∗, which
is the dual of DTV , since medial balls associated to selected Voronoi
vertices are used by greedy. With the inexact kernel, the input points
of DTV are approximations of the exact boundary points, since
the degree two algebraic number get converted to doubles. For
these points, the combinatorial structures of DTV and DTV∗ are
exact (exact predicates are used), but the embedding of the Voronoi
vertices of DTV∗ is inexact (inexact constructions are used). With
the exact kernel, the input points of DTV are exactly the boundary
points. Moreover, the embedding of the Voronoi vertices is exact
(exact constructions are used).

The medial-axis of the union of input balls. We store the medial
axis as a container of polygons, possibly degenerate for singular
vertices and edges of the α-shape [AK01]. Our polygon class inher-
its from the CGAL class Polygon_2 (embedded in 3D), instantiated
with the kernel K . It offers new features, in particular the compu-
tation of the maximal ball centred at a point of the polygon. Such a
ball has a centre which is a Point_3 from K , and a squared radius
whose type is NT.

The set C of candidate balls. Following the results of Section 3.1,
the candidate balls used are only centred on the vertices of the
medial axis. Such balls are associated with the medial axis, as just
discussed.

The volume of the selected balls. Computing the volume of a union
of balls is a difficult problem, from a combinatorial, but also nu-
merical standpoint—inverse trigonometric functions are involved.
We use our certified algorithm [CKL11] which returns an interval
certified to contain the exact volume. More precisely, due to the
impossibility to obtain a volume as an exact number type, what-
ever the kernel used (exact, inexact), the centres and radii of the
candidate balls are converted to doubles. These balls are input to
our algorithm, which requires two template parameters: the number
type of the output (double or interval), and the level of exactness
used to compute the constructions involved in the volume compu-
tation, namely the coordinates of Voronoi vertices, and boundary
points of the union of the selected balls. Following the discussion
in [CKL11], the three options are referred to as (faster, ck_pt_exact
and all_exact). Practically, we use the pair (double, faster) for the
inexact kernel, and (interval, all_exact) for the exact kernel.

B.2 Outer approximation

To compute the expansion radii of Equation (3) without comput-
ing the partition of the boundary of the input object with respect
to an Apollonius Voronoi diagram, we resort to discretization. As-
sume that ∂FO has been sampled, and denote P∂FO the correspond-

ing point cloud. We assume that for some εM > 0, the one-sided
Hausdorff distance between the boundary and the samples satisfies
dH (∂FO, P∂FO ) ≤ εM . (See also Appendix B.4.) Let Cp ⊂ P∂FO be
a point set initially consisting of the points from the sampled bound-
ary not covered by FS . Let CB be the set of balls to be expanded,
initialized as the subset of balls from the selection contributing to
∂FS . For a given ball Bi ∈ CB , we proceed in two stages. First,
the point in Cp ∩ VorApo.(Bi) maximizing δi(p) is computed. To
account for the discretization, the corresponding additive distance
is increased by εM . Second, the ball Bi is removed from CB , and
all points in Cp ∩ VorApo.(Bi) are removed from Cp . The process is
iterated until exhaustion of Cp .

Note that the previous algorithm does not require computing
VorApo.(Bi), since the assignment of a point to its Apollonius Voronoi
cell only requires computing its additive distances to all balls in CB .

B.3 Interpolated approximation

Increasing the value of t in Equation (4) yields nested balls, whence
nested interpolated approximations. Therefore, finding the volume
preserving interpolated approximation requires a binary search on
t ∈ [0, 1]. Practically, the binary search is stopped when the dis-
crepancy between the volumes is less than εV = 10−5.

B.4 Effective computation of the Hausdorff Distance and
expansion radii

Hausdorff distances. To compute the terms of Equation (9), assume
that ∂FO and ∂FS have been sampled, and denote P∂FO and P∂FS
the corresponding point clouds. We assume that for some εM > 0,
one has:

dH (∂FO, P∂FO ) ≤ εM and dH (∂FS , P∂FS ) ≤ εM. (B.1)

Under the assumptions, two applications of the triangle inequality
show that each term of the four-tuple of Equation (9) is approx-
imated in absolute value up to 2εM . Practically, having sampled
the boundaries using the CGAL mesher Mesher_3, computing an
approximation of the signature of Equation (9) requires two prim-
itives, that is finding the nearest sample of a sample p ∈ P∂FO in
P∂FS (and vice versa), and checking whether p belong to the in-
terior of a ball of the domain bounded by FS . These primitives
are easily implemented using the point location strategy of Delau-
nay_triangulation_3. Practically, the value εM = 0.2 was used.

B.5 Geometric kernels: Performances and robustness

Following the best practices in computational geometry, we de-
signed a generic CGAL-based implementation, and instantiated it
with the aforementioned exact and inexact kernels. We compared
the volume ratios obtained with these two kernels on a set of 10
protein complexes, and did not observe any difference before the
third digit.

For running times, we compared the execution time for the con-
struction of DTB, DTV and the medial axis. The selection itself was
excluded from the timing, as also noticed in Appendix B.1, since
our volume computation algorithm uses double as number type. On

C© 2014 The Authors
Computer Graphics Forum C© 2014 The Eurographics Association and John Wiley & Sons Ltd.



F. Cazals et al. / Greedy Geometric Algorithms for Collection of Balls 15

the aforementioned 10 models, we observed that the exact kernel
was on average about 150 times slower than the inexact one. For
these two reasons—absence of obvious degeneracies and much bet-
ter running time, the results reported in the sequel were computed
with the inexact kernel.

Using this inexact kernel, it is observed that the running
times for computing DTB and DTV are a mere order of magni-
tude slower than the CGAL ones (http://www.cgal.org/Manual/
latest/doc_html/cgal_manual/Triangulation_3/Chapter_main.html#
Subsection_39.6.1) for the regular triangulation case (Figure B1).
These running times are naturally consistent with the fact that the
geometric objects manipulated behave nicely for our molecular
models: both the number of boundary points (Figure B2) and the
primitives of the medial axis (Figure B3) are linear in the number
of input balls.
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