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We generalize the classic problem of fairly allocating indivisible goods to the problem of fair public decision
making, in which a decision must be made on several social issues simultaneously, and, unlike the classic

se�ing, a decision can provide positive utility to multiple players. We extend the popular fairness notion of

proportionality (which is not guaranteeable) to our more general se�ing, and introduce three novel relaxations

— proportionality up to one issue, round robin share, and pessimistic proportional share — that are also interesting

in the classic goods allocation se�ing. We show that the Maximum Nash Welfare solution, which is known

to satisfy appealing fairness properties in the classic se�ing, satis�es or approximates all three relaxations

in our framework. We also provide polynomial time algorithms and hardness results for �nding allocations

satisfying these axioms, with or without insisting on Pareto optimality.

1 INTRODUCTION
�e literature on mathematically rigorous fair division dates back to the work of Steinhaus [33]. In

the �eld’s long history, most work focuses on the fair division of private goods, in which a set ofm
items must be divided among a set of n players. Agents express their preferences by specifying

their value for each good, and our goal is to �nd a division of the goods that is fair to all players.

One particularly appealing notion of fairness is envy-freeness [18], which says that no player

should want to switch her set of items with that of another player. �is is a natural and strong

notion of fairness that has long been the subject of fair division research [8, 9, 13, 21, 22, 32, 34].

It actually implies many other fairness notions such as proportionality [33] — each player should

get at least a 1/n fraction of her value for the entire set of goods — and envy-freeness up to one
good (EF1) [26] — no player should envy another player a�er removing at most one good from the

la�er player’s bundle. Unfortunately, envy-freeness cannot always be guaranteed, and therefore its

relaxations have been focused on [11, 14, 26, 30].

Division of private goods, however, is not the only application in which we may desire a fair

outcome. O�en, we may need to make decisions where every alternative gives positive utility to

many players, rather than to just one player as in the case of private goods. For instance, consider a

couple, Alice and Bob, deciding where to go to dinner. Alice likes Italian food the most, but does not

like Indian, whereas Bob prefers Indian food but does not like Italian. When there is only a single

decision to make, we are simply in a classic bargaining game where players must a�empt to arrive

at a mutually agreeable solution. Nash [28] proposed maximizing the product of players’ utilities

(the Nash welfare) as an elegant solution that uniquely satis�es several appealing properties. But

no ma�er how we arrive at a decision – and there is a myriad of work in computational social
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choice [10] discussing how exactly we should do so – some tradeo� must necessarily be made, and

we may not be able to make everyone happy.

However, if we have several public decisions to make, maybe we can reach a compromise by

making sure that all players are happy with at least some of the decisions. For example, if Alice

and Bob are to follow their dinner with a movie, then maybe Bob will be willing to eat Italian food

for dinner if he gets to pick his favorite movie, and maybe Alice will agree to this compromise.

Note that this se�ing generalizes the classic private goods se�ing, because in this special case we

can view each public decision as the allocation of a single good. While envy is a compelling notion

in the private goods se�ing, it makes less sense for public decisions. In our example, irrespective of

where Alice and Bob go for dinner, because they are eating the same food, it is not clear what it

would mean for Alice to envy Bob. If she could somehow trade places with Bob, she would still

be si�ing at the other end of the dinner table, eating the same food, and not be any be�er o�.

�ankfully, proportionality still has a sensible interpretation: Each player should get at least a 1/n
fraction of the utility she would get if her most desired alternative was chosen for each decision.

Unfortunately, as with envy-freeness, proportionality cannot always be guaranteed. �erefore in

this work we consider relaxations of proportionality in order to arrive at fairness notions that can

be guaranteed.

1.1 Our Results
Formally, a public decision making problem consists ofm issues, where each issue has several

associated alternatives. Each of n players has a utility for each alternative of each issue. Making a

decision on an issue amounts to choosing one of the alternatives associated with the issue, and

choosing an overall outcome requires making a decision on each issue simultaneously. �e utility

to a player for an outcome is the sum of her utilities for the alternatives chosen for di�erent issues.

�is is a very simple se�ing, but one in which the problem of fairness is already non-trivial.

We propose relaxations of proportionality in two directions. �e �rst, proportionality up to one
issue (Prop1), is similar in spirit to EF1, stating that a player should be able to get her proportional

share if she gets to change the outcome of a single issue in her favor. �e second direction is based

on the guarantees provided by the round robin mechanism. �is mechanism �rst orders the set of

players, and then repeatedly goes through the ordering, allowing each player to make her favorite

decision on any single issue, until decisions are made on all the issues. Our �rst relaxation in

this direction, the round robin share (RRS), guarantees each player the utility that she would have

received under the round robin mechanism if she were the last player in the ordering. Note that the

round robin mechanism lets each player make decisions on roughly the same number of issues. A

further relaxation in this direction, the pessimistic proportional share (PPS), guarantees each player

the utility that she would get if her favorite alternatives were chosen for (approximately) a 1/n
fraction of the issues, where these issues are chosen adversarially.

We examine the possibility and computational complexity of satisfying combinations of these

fairness desiderata. We �rst observe that the round robin mechanism satis�es both Prop1 and

RRS (and thus PPS). However, it fails to satisfy even the most basic e�ciency property, Pareto

optimality (PO), which requires that no other outcome should be able to make a player strictly

be�er o� without making at least one player strictly worse o�.

When insisting on Pareto optimality, we observe that the leximin mechanism — informally, it

chooses the outcome that maximizes the minimum utility to any player — satis�es RRS (therefore

PPS) and PO via a simple argument. However, this argument does not extend to establishing Prop1,

although we show that RRS implies a 1/2 approximation to Prop1. To that end, we prove that the

maximum Nash welfare (MNW) solution — informally, it chooses the outcome that maximizes
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PO PPS RRS Prop1

MNW, Private goods X X (�eorem 3.10)
1

2
(�eorem 3.10) X (�eorem 3.4)

MNW, Public decisions X (�eorem 3.4)
1

n (�eorem 3.8)
1

n (�eorem 3.8) X (�eorem 3.4)

Leximin Mechanism X X (�eorem 3.2) X (�eorem 3.2)
1

2
(�eorem 3.2)

Round Robin Method × X (�eorem 3.1) X (�eorem 3.1) X (�eorem 3.1)

Table 1. Axioms satisfied or approximated by the mechanisms we consider. The MNW solution is split into
private goods and general decisions because we obtain significantly stronger results for private goods. Results
for the leximin mechanism and the round robin method apply equally to private goods and public decisions.
The approximation results are lower bounds; we omit the upper bounds from the table for simplicity.

the product of utilities to players — that is known for its many desirable fairness properties in

dividing private goods [14] satis�es Prop1 and PO in our public decision making framework,

and simultaneously provides a 1/n approximation to both RRS and PPS. We also show that this

approximation is tight up to a factor ofO (logn). For division of private goods, these approximations

improve signi�cantly: the MNW solution completely satis�es PPS, and provides an n/(2n−1) > 1/2
approximation (but not be�er than 2/3 approximation in the worst case) to RRS. Table 1 provides a

summary of these results.

However, both the MNW outcome and the leximin outcome are NP-hard to compute. It is

therefore natural to consider whether our fairness properties can be achieved in conjunction with

PO in polynomial time. For public decision making, the answer turns out to be negative for PPS

and RRS, assuming P , NP. For division of private goods, however, we show that there exists a

polynomial time algorithm that satis�es PPS and PO.

1.2 Related Work
Two classic fair division mechanisms — the leximin mechanism and the maximum Nash welfare

(MNW) solution — play an important role in this paper. Both mechanisms have been extensively

studied in the literature on private goods division. In particular, Kurokawa et al. [23] (Section 3.2)

show that the leximin mechanism satis�es envy-freeness, proportionality, Pareto optimality, and

a strong game-theoretic notion called group strategyproofness, which prevents even groups of

players from manipulating the outcome to their bene�t by misrepresenting their preferences, in

a broad fair division domain with private goods and a speci�c form of non-additive utilities. On

the other hand, the MNW solution has been well studied in the realm of additive utilities [14, 31].

For divisible goods, the MNW solution coincides with another well-known solution concept called

competitive equilibrium from equal incomes (CEEI) [34], which also admits an approximate version

for indivisible goods [11]. For indivisible goods, the MNW solution satis�es envy-freeness up to

one good, Pareto optimality, and approximations to other fairness guarantees. One line of research

aims to approximate the optimum Nash welfare [16, 25], although it is unclear if this achieves any

of the appealing fairness guarantees of the MNW solution.

Our model is closely related to that of voting in combinatorial domains (see [24] for an overview).

However, this literature focuses on the case where there is dependency between decisions on

di�erent issues. In contrast, our model remains interesting even though the issues are independent,

and incorporating dependency is an interesting future direction. Although there is a range of

work in the voting literature that focuses on fairness [2, 6, 15, 27], especially in the context of

representation in multi-winner elections, it focuses on ordinal, rather than cardinal, preferences.
1

1
�at said, there is a recent line of work on implicit utilitarian voting that a�empts to maximize an objective with respect to

the cardinal utilities underlying the ordinal preferences [7, 29], and is therefore closer to our work.
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Another di�erence is that fairness concepts in voting apply most naturally when n >> m, whereas

our notions of fairness are most interesting whenm > n.
Our work is also reminiscent of the participatory budgeting problem [12], in which there are

multiple public projects with di�erent costs, and a set of projects need to be chosen based on

preferences of the participants over the projects, subject to a budget constraint. Recently, researchers

in computational social choice have addressed this problem from an axiomatic viewpoint [20],

including fairness considerations [17], and from the viewpoint of implicit utilitarian voting [5].

However, they assume access only to ordinal preferences (that may stem from underlying cardinal

utilities), while we assume a direct access to cardinal utilities, as is common in the fair division

literature. Also, we do not have a budget constraint that binds the outcomes on di�erent issues.

2 MODEL
For k ∈ N, de�ne [k] , {1, . . . ,k }. Before we introduce the problem we study in this paper, let us

review the standard fair division se�ing with private goods.

Private goods division. A private goods division problem consists of a set of players N = [n] and
a set ofm goods M . Each player i ∈ N is endowed with a utility function ui : M → R+ such that

ui (д) denotes the value player i derives from good д ∈ M . A standard assumption in the literature

is that of additive valuations, i.e., (slightly abusing the notation) ui (S ) =
∑
д∈S ui (д) for S ⊆ M . An

allocation A is a partition of the set of goods among the set of players, where Ai denotes the bundle

of goods received by player i . Importantly, players only derive utility from the goods they receive,

i.e., the goods private to them. �e utility of player i under allocation A is ui (A) = ui (Ai ).

Public decision making. A public decision making problem also has a set of players N = [n], but
instead of private goods, it has a set of issues T = [m]. Each issue t ∈ T has an associated set of

alternatives At = {at
1
, . . . ,atkt }, exactly one of which must be chosen. Each player i is endowed

with a utility function uti : A
t → R+ for each issue t , and derives utility uti (a

t
j ) if alternative a

t
j is

chosen for issue t . In contrast to private goods division, a single alternative can provide positive

utility to multiple players.

An outcome c = (c1, . . . , cm ) of a public decision making problem is a choice of an alternative

for every issue, i.e., it consists of an outcome ct ∈ A
t
for each issue t ∈ T . Let C denote the space

of possible outcomes. Slightly abusing the notation, let uti (c) = u
t
i (ct ) be the utility player i derives

from the outcome of issue t . We also assume additive valuations: let ui (c) =
∑

t ∈T u
t
i (c) be the

utility player i derives from outcome c.
In this work, we study deterministic outcomes, and in Section 5, discuss the implications when

randomized outcomes are allowed. Further, we study the o�ine problem in which we are presented

with the entire problem up front, and need to choose the outcomes on all issues simultaneously.

One can also de�ne an online version of the problem [19], in which we must commit to the outcome

of issue t before observing issues t ′ with t ′ > t for all t , but we do not consider that version here.

Private goods versus public decisions. To see why public decision making generalizes private

goods division, take an instance of private goods division, and create an instance of public decision

making as follows. Create an issue tд for each good д. Let there be n alternatives in Atд
, where

alternative a
tд
i gives player i utilityui (д) while giving zero utility to all other players. It is easy to see

that choosing alternative a
tд
i is equivalent to allocating good д to player i . Hence, the constructed

public decision making problem e�ectively mimics the underlying private goods division problem.
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2.1 E�iciency and Fairness
In this paper, we not only adapt classical notions of e�ciency and fairness de�ned for private

goods division to our public decision making problem, but also introduce three fairness axioms

that are novel for both public decision making and private goods division. First, we need additional

notation that we will use throughout the paper.

Let p , bm/nc. For issue t ∈ T and player i ∈ N , let atmax (i ) ∈ argmaxa∈At {u
t
i (a)} and

utmax (i ) = u
t
i (a

t
max (i )). �at is, atmax (i ) is an alternative that gives player i the most utility for issue

t , and utmax (i ) is the utility player i derives from atmax (i ). Let the sequence 〈u
(1)
max (i ), . . . ,u

(m)
max (i )〉

represent the maximum utilities player i can derive from di�erent issues, sorted in a non-ascending

order. Hence, {u (k )
max (i )}k ∈[m] = {u

t
max (i )}t ∈T and u (k )

max (i ) > u
(k+1)
max (i ) for k ∈ [m − 1].

E�ciency. In this paper, we focus on a popular notion of economic e�ciency. We say that an

outcome c is Pareto optimal (PO) if there does not exist another outcome c′ that can provide at least

as much utility as c to every player, i.e., ui (c′) > ui (c) for all i ∈ N , and strictly more utility than c
to some player, i.e., ui∗ (c′) > ui∗ (c) for some i∗ ∈ N .

Fairness. For private goods division, perhaps the most prominent notion of fairness is envy-

freeness [18]. An allocation A is called envy-free (EF) if every player values her bundle at least as

much as she values any other player’s bundle, i.e., ui (Ai ) > ui (Aj ) for all i, j ∈ N . Because envy-

freeness cannot in general be guaranteed, prior work also focuses on its relaxations. For instance, an

allocationA is called envy-free up to one good (EF1) if no player envies another player a�er removing

at most one good from the la�er player’s bundle, i.e., for all i, j ∈ N , either ui (Ai ) > ui (Aj ) or
∃дj ∈ Aj such that ui (Ai ) > ui (Aj \ {дj }).

Unfortunately, as argued in Section 1, the notion of envy is not well de�ned for public decisions.

Hence, for public decision making, we focus on another fairness axiom, Proportionality, and its

relaxations. For private goods division, proportionality is implied by envy-freeness.
2

Proportionality (Prop). At a high level, proportionality requires that each player must receive at

least her “proportional share”, which is a 1/n fraction of the utility she would derive if she could

act as the dictator. For a public decision making problem, the proportional share of player i (Propi )
is 1/n times the sum of the maximum utilities the player can derive across all issues, i.e.,

Propi =
1

n

∑
t ∈T

utmax (i ).

For α ∈ (0, 1], we say that an outcome c satis�es α-proportionality (α-Prop) if ui (c) > α · Propi for
all players i ∈ N . We refer to 1-Prop simply as Prop.

Proportionality up to one issue (Prop1). We introduce a novel relaxation of proportionality

(more generally, of α-proportionality) in the same spirit as envy-freeness up to one good, which is

a relaxation of envy-freeness. For α ∈ (0, 1], we say that an outcome c satis�es α-proportionality up
to one issue (α-Prop1) if for every player i ∈ N , there exists an issue t ∈ T such that, ceteris paribus,

changing the outcome of t from ct to a
t
max (i ) ensures that player i achieves an α fraction of her

proportional share, i.e., if

∀i ∈ N ∃t ∈ T s.t. ui (c) − uti (c) + u
t
max (i ) > α · Propi .

We refer to 1-Prop1 simply as Prop1.

Round robin share (RRS). Next, we introduce another novel fairness axiom that is motivated

from the classic round robin method that, for private goods, lets players take turns and in each

turn, pick a single most favorite item le� unclaimed. For public decision making, we instead let

2
�is assumes non-wastefulness, i.e., that all goods are allocated. We make this assumption throughout the paper.
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players make a decision on a single issue in each turn. �e utility guaranteed to the players by this

approach is captured by the following fairness axiom.

Recall that the sequence 〈u (1)
max (i ), . . . ,u

(m)
max (i )〉 represents the maximum utility player i can

derive from di�erent issues, sorted in a non-ascending order. �en, we de�ne the round robin share
of player i (RRSi ) as

RRSi =

p∑
k=1

u (k ·n)
max (i ).

�is is player i’s utility from the round robin method, if she is last in the ordering and all issues she

does not control give her utility 0. For α ∈ (0, 1], we say that an outcome c satis�es α-round robin
share (α-RRS) if ui (c) > α · RRSi for all players i ∈ N . Again, we refer to 1-RRS simply as RRS.

Pessimistic proportional share (PPS). We introduce another novel fairness axiom that is a

further relaxation of round robin share. Note that the round robin method, by le�ing players make

a decision on a single issue per turn, allows each player to make decisions on at least p = bm/nc
issues. �e following axiom captures the utility players would be guaranteed if each player still

made decisions on a “proportional share” of p issues, but if these issues were chosen pessimistically.

We de�ne the pessimistic proportional share of player i (PPSi ) to be the sum of the maximum

utilities the player can derive from a set of p issues, chosen adversarially to minimize this sum:

PPSi =

m∑
k=m−p+1

u (k )
max (i ).

For α ∈ (0, 1], we say that an outcome c satis�es α-pessimistic proportional share (α-PPS) if
ui (c) > α · PPSi for all players i ∈ N . Again, we refer to 1-PPS simply as PPS.

Connections among fairness properties. Trivially, proportionality (Prop) implies proportion-

ality up to one issue (Prop1). In addition, it can also be checked that the following sequence of

logical implications holds: Prop =⇒ MMS =⇒ RRS =⇒ PPS.

Here, MMS is the maximin share guarantee [11, 30]. Adapting the de�nition naturally from

private goods division to public decision making, the maximin share of a player is the utility the

player can guarantee herself by dividing the set of issues into n bundles, if she gets to make the

decisions best for her on the issues in an adversarially chosen bundle. �e maximin share (MMS)

guarantee requires that each player must receive utility that is at least her maximin share. We do

not focus on the maximin share guarantee in this paper.

2.2 Mechanisms
A mechanism for a public decision making problem (resp. a private goods division problem) maps

each input instance of the problem to an outcome (resp. an allocation). We say that a mechanism

satis�es a fairness or e�ciency property if it always returns an outcome satisfying the property.

�ere are three prominent mechanisms that play a key role in this paper.

Round robin method. As mentioned earlier, the round robin method �rst �xes an ordering of

the players. �en the players take turns choosing their most preferred alternative on a single issue

of their choice whose outcome has not yet been determined.

�e leximin mechanism. �e leximin mechanism chooses an outcome which maximizes the

utility of the worst o� player, i.e., mini ∈N ui (c). Subject to this constraint, it maximizes the utility

of the second least well o� player, and so on. Note that the leximin mechanism is trivially Pareto

optimal because if it were possible to improve some player’s utility without reducing that of any

other, it would improve the objective that the leximin mechanism optimizes.
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Maximum Nash welfare (MNW). �e Nash welfare of an outcome c is the product of utilities to
all players under c: NW (c) =

∏
i ∈N ui (c). When there exists an outcome c with NW (c) > 0, then

the MNW solution chooses an arbitrary outcome c that maximizes the Nash welfare. When all

outcomes have zero Nash welfare, it �nds a largest cardinality set S of players that can be given

non-zero utility, and selects an outcome maximizing the product of their utilities, i.e.,

∏
i ∈S ui (c).

2.3 Examples
We illustrate the fairness properties through two examples.

Example 2.1. Consider a public decision making problem with two players (N = [2]) and two

issues (T = [2]). Each issue has two alternatives (|A1 | = |A2 | = 2). �e utilities of the two players

for the two alternatives in both issues are as follows.

at
1

at
2

ut
1

1 0

ut
2

0 1

for t ∈ [2].

�e various fair shares of the two players are Prop
1
= RRS1 = PPS1 = Prop

2
= RRS2 = PPS2 = 1.

Now, outcome c = (a1
1
,a2

1
) gives utilities u1 (c) = 2 and u2 (c) = 0, and therefore violates Prop, RRS,

and PPS. It satis�es Prop1 because switching the decision on either issue in favor of player 2 makes

her achieve her proportional share. On the other hand, outcome c = (a1
1
,a2

2
) gives utility 1 to both

players, and thus satis�es Prop (as well as Prop1, RRS, and PPS, which are relaxations of Prop).

Example 2.2. Consider a public decision making problem with two players (N = [2]) and eight

issues (T = [8]). Once again, each issue has two alternatives, for which the utilities of the two

players are as follows.

at
1

at
2

ut
1

1 0

ut
2

0 1

for t ∈ {1, 2, 3, 4}, and

at
1

at
2

ut
1

1 0

ut
2

0 0

for t ∈ {5, 6, 7, 8}.

In this case, we have Prop
1
= RRS1 = PPS1 = 4, whereas Prop

2
= RRS2 = 2 and PPS2 = 0. Consider

outcome c = (a1
1
,a2

1
,a3

1
,a4

1
,a5

1
,a6

1
,a7

1
,a8

1
). �en, we have u1 (c) = 8 while u2 (c) = 0, which satis�es

PPS but violates RRS. Further, c also violates Prop1 because switching the outcome of any single

issue can only give player 2 utility at most 1, which is less than Prop
2
= 2. On the other hand,

outcome c = (a1
2
,a2

2
,a3

2
,a4

2
,a5

1
,a6

1
,a7

1
,a8

1
) achieves u1 (c) = u2 (c) = 4, and satis�es Prop (and thus its

relaxations Prop1, RRS, and PPS).

3 (APPROXIMATE) SATISFIABILITY OF AXIOMS
If we are willing to sacri�ce Pareto optimality, then we can easily achieve both RRS (and therefore

PPS) and Prop1 simultaneously with the round robin mechanism. �is is not a surprising result.

RRS is de�ned based on the guarantee provided by the round robin mechanism, and PPS is a

relaxation of RRS. �e round robin mechanism is also known to satisfy EF1 for private goods

division, which is similar in spirit to Prop1.

Theorem 3.1. �e round robin mechanism satis�es RRS (and therefore PPS) and Prop1, and runs in
polynomial time.

Proof. �e round robin mechanism clearly runs in polynomial time (note that it is easy for a

player to choose the next issue on which to determine the outcome). To see why it satis�es RRS,

note that the mechanism allows every player to make a decision on one issue once every n turns.

�us, for each k ∈ [p], every player gets to make decisions on at least k of her “top” k · n issues,
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when issues are sorted in the descending order of the utility her favorite alternative in the issue

gives her. It is easy to see that this implies every player i gets utility at least RRSi . Because RRS

implies PPS, the mechanism also satis�es PPS. It remains to show that it satis�es Prop1 as well.

Fix a player i and let c be the outcome produced by the round robin mechanism for some choosing

order of the players. Because the round robin mechanism satis�es RRS, player i gets utility at least

ui (c) >
p∑

k=1

u (k ·n)
max (i ).

For k ∈ [m], let the k th favorite issue of player i be the issue t for whichutmax (i ) is the k
th
highest.

Let ` ∈ N ∪ {0} be the largest index such that for every k ∈ [`], outcome c chooses player i’s most

preferred alternative on her k th favorite issue. Let t∗ be her (` + 1)th favorite issue. To show that

c satis�es Prop1, we construct outcome c′ from c by only changing the outcome of issue t∗ to
at
∗

max (i ), and show that ui (c′) > Propi . Note that if ` > p, then

ui (c′) >
`+1∑
k=1

u (k )
max (i ) >

p+1∑
k=1

u (k )
max (i ) >

1

n

m∑
k=1

u (k )
max (i ) = Propi .

Let ` < p. �en, using the fact that the round robin mechanism lets player i choose her most

preferred alternative for at least k of her favorite k · n issues for every k 6 p (and her (` + 1)th

favorite issue was not one of these), we have

ui (c′) >
`+1∑
k=1

u (k )
max (i ) +

p∑
k=`+1

u (k ·n)
max (i ) >

1

n

(`+1) ·n∑
k=1

u (k )
max (i ) +

1

n

m∑
k=(`+1)n+1

u (k )
max (i ) = Propi .

�erefore, the round robin mechanism satis�es Prop1. �

While this result seems to re�ect favorably upon the round robin mechanism, recall that it

violates Pareto optimality even for private goods division. For public decision making, a simple

reason for this is that the round robin mechanism, for each issue, chooses an alternative that

is some player’s favorite, while it could be unanimously be�er to choose compromise solutions

that make many players happy. Imagine there are two players and two issues, each with two

alternatives. �e “extreme” alternative in each issue i ∈ {1, 2} gives utility 1 to player i but 0 to the

other, while the “compromise” alternative in each issue i ∈ {1, 2} gives utility 2/3 to both players. It

is clear that both players prefer choosing the compromise alternative in both issues to choosing

the extreme alternative in both issues. Because such “Pareto improvements” which make some

players happier without making any player worse o� are unanimously preferred by the players,

the round robin outcome becomes highly undesirable. We therefore seek mechanisms that provide

fairness guarantees while satisfying Pareto optimality.

A natural question is whether there exists a mechanism that satis�es RRS, Prop1, and PO. An

obvious approach is to start from an outcome that already satis�es RRS and Prop1 (e.g., the round

robin outcome), and make Pareto improvements until no such improvements are possible. While

Pareto improvements preserve RRS as the utilities to the players do not decrease, Prop1 can be lost

as it depends on the exact alternatives chosen and not only on the utilities to the players. We leave it

as an important open question to determine if RRS, Prop1, and PO can be satis�ed simultaneously.

We therefore consider satisfying each fairness guarantee individually with PO. One can easily

�nd an outcome satisfying RRS and PO by following the aforementioned approach of starting

with an outcome satisfying RRS, and making Pareto improvements while possible. �ere is also a

more direct approach to satisfying RRS and PO. Recall that the leximin mechanism chooses the

outcome which maximizes the minimum utility to any player, subject to that maximizes the second
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minimum utility, and so on. It is easy to see that this mechanism is always Pareto optimal. Now, let

us normalize the utilities of all players such that RRSi = 1 for every player i ∈ N .
3
Because the

round robin mechanism gives every player i utility at least RRSi = 1, it must be the case that the

leximin mechanism operating on these normalized utilities must also give every player utility at

least 1, and thus produce an outcome that is both RRS and PO.

Theorem 3.2. �e leximin mechanism satis�es RRS, PO, and (1/2)-Prop1.

�at leximin satis�es (1/2)-Prop1 follows directly from the following lemma, and noting that

leximin satis�es RRS.

Lemma 3.3. RRS implies (1/2)-Prop1.

Proof. Note that RRSi =
∑p

k=1 u
(k ·n)
max (i ) >

1

n
∑m

t=n+1 u
(t )
max (i ) and u (1)

max (i ) >
1

n
∑n

t=1 u
(t )
max (i ).

Summing the two equations, we get

RRSi + u
(1)
max (i ) >

1

n

m∑
t=1

u (t )
max (i ) = Propi .

�erefore, max{RRSi ,u
(1)
max (i )} >

1

2
Propi .

Suppose that ui (c) > RRSi for some outcome c. �en either i already receives her most valued

item, in which case she receives utility at least max{RRSi ,u
(1)
max (i )} >

1

2
Propi , or she does not

receive her most valued item. If she does not, then a�er giving it to her, she receives utility at least

1

2
Propi . �erefore, c satis�es (1/2)-Prop1. �

Next, we study whether we can achieve Prop1 and PO simultaneously. Neither of the previous

approaches seems to work: we already argued that following Pareto improvements could lose

Prop1, and the normalization trick is di�cult to apply because Prop1 is not de�ned in terms of any

�xed share of utility.

One starting point to achieving Prop1 and PO is the maximum Nash welfare (MNW) solution,

which, for private goods division, is known to satisfy the similar guarantee of EF1 and PO [14]. It

turns out that the MNW solution is precisely what we need.

Theorem 3.4. �e MNW solution satis�es proportionality up to one issue (Prop1) and Pareto
optimality (PO).

Before we prove this, we need a folklore result, which essentially states that if the sum of n terms

is to be reduced by a �xed quantity δ that is less than each term, then their product reduces the

most when δ is taken out of the lowest term. �e following lemma proves this result when all

initial terms are 1, which is su�cient for our purpose. �e proof of the lemma appears in the full

version of the paper.
4

Lemma 3.5. Let {x1, . . . ,xn } be a set of n non-negative real numbers such that
∑n

i=1 max{0, 1−xi } 6
δ , where 0 < δ < 1. �en,

∏n
i=1 xi > 1 − δ .

Proof of Theorem 3.4. Fix an instance of the public decision making problem. Let S ⊆ N be

the set of players that the MNW outcome c gives positive utility to. �en, by the de�nition of the

MNW outcome, S must be a largest set of players that can simultaneously be given positive utility,

and c must maximize the product of utilities of players in S .
First, we show that c is PO. Note that a Pareto improvement over c must either give a positive

utility to a player in N \ S or give more utility to a player in S , without reducing the utility to any

3
Players with zero round robin share can be incorporated via a simple extension to the argument.

4
�e full version is available at the authors’ websites.
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player in S . �is is a contradiction because it violates either optimality of the size of S or optimality

of the product of utilities of players in S . Hence, MNW satis�es PO.

We now show that MNW also satis�es Prop1. Suppose for contradiction that Prop1 is violated

for player i under c. First, note that we must have Propi > 0. Further, it must be the case that

utmax (i ) > 0 for at least n + 1 issues. Were this not the case, Prop1 would be trivially satis�ed for

player i since we can give her utility

u (1)
max (i ) >

1

n

n∑
t=1

u (t )
max (i ) =

1

n

m∑
t=1

u (t )
max (i ) = Propi

by changing the outcome on a single issue.

We now show that ui (c) > 0 (i.e., i ∈ S). For contradiction, suppose otherwise. For each of the

(at least) n + 1 issues with utmax (i ) > 0, there must exist another player j , i that gets positive
utility only from that issue under c (otherwise we could use that issue to give positive utility to i
while not reducing any other agents’ utility to zero, contradicting the maximality of S). But this is
impossible, since there are at least n + 1 issues and only n − 1 agents (other than i).
Because MNW outcomes and the Prop1 property are invariant to individual scaling of utilities,

let us scale the utilities such that Propi = 1 and uj (c) = 1 for all j ∈ S \ {i}. Select issue t∗ ∈ T as

t∗ ∈ argmin

t ∈T

∑
j ∈N \{i } u

t
j (c)

utmax (i ) − u
t
i (c)
.

Note that t∗ is well de�ned because utmax (i ) > uti (c) for at least one t ∈ T , otherwise Prop1 would
not be violated for player i .
We now show that outcome c′ such that c ′t ∗ = at

∗

max (i ) and c
′
t = ct for all t ∈ T \ {t

∗} achieves

strictly greater product of utilities of players in S than outcome c does, which is a contradiction as

c is an MNW outcome. First, note that∑
j ∈N \{i } u

t ∗
j (c)

ut
∗

max (i ) − u
t ∗
i (c)

6

∑
t ∈T

∑
j ∈N \{i } u

t
j (c)∑

t ∈T (u
t
max (i ) − u

t
i (c))

=

∑
j ∈N \{i } uj (c)

nPropi − ui (c)
6

(n − 1)

(n − 1)Propi
= 1, (1)

where the penultimate transition follows because we normalized utilities to achieve uj (c) = 1 for

every j ∈ S \ {i}, every j ∈ N \ S satis�es uj (c) = 0, and player i does not receive her proportional
share. �e �nal transition holds due to our normalization Propi = 1.

Let δ =
∑

j ∈S\{i } u
t ∗
j (c). �en, Equation (1) implies ui (c′) − ui (c) = ut

∗

max (i ) − u
t ∗
i (c) > δ . �us,

ui (c) + δ 6 ui (c′) < 1, (2)

where the last inequality follows because the original outcome c violated Prop1 for player i . In
particular, this implies δ < 1. Our goal is to show that

∏
j ∈S uj (c′) > ui (c) =

∏
j ∈S uj (c), where

the last equality holds due to our normalization uj (c) = 1 for j ∈ S \ {i} and because i ∈ S . �is

would be a contradiction because c maximizes the product of utilities of players in S . Now,∑
j ∈S\{i }

max{0, 1 − uj (c′)} =
∑

j ∈S\{i }

max{0,ut
∗

j (c) − ut
∗

j (c′)} 6
∑

j ∈S\{i }

ut
∗

j (c) = δ ,

where the �rst transition follows from se�ing 1 = uj (c) (by our normalization) and noting that c
and c′ are identical for all issues except t∗, and the second because all utilities are non-negative.

Hence, Lemma 3.5 implies that

∏
j ∈S\{i } uj (c′) > 1 − δ . �us,∏

j ∈S

uj (c′) > (1 − δ ) · (ui (c) + δ ) = ui (c) + δ · (1 − ui (c)) − δ 2 > ui (c) + δ 2 − δ 2 = ui (c),

where the inequality holds because ui (c) + δ < 1 from Equation (2). �
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For private goods division, this result can be derived in a simpler fashion. Caragiannis et al. [14]

already show that MNW satis�es PO. In addition, they also show that MNW satis�es EF1, which

implies Prop1 due to our next result. To be consistent with the goods division literature, we use

proportionality up to one good (rather than one issue) in the private goods division context.

Lemma 3.6. For private goods division, envy-freeness up to one good (EF1) implies proportionality
up to one good (Prop1).

Proof. Take an instance of private goods division with a set of players N and a set of goodsM .

Let A be an allocation satisfying EF1. Fix a player i ∈ N .

Due to the de�nition of EF1, there must exist
5
a set of goods X = {дj }j ∈N \{i } such that ui (Ai ) >

ui (Aj ) − ui (дj ) for every j ∈ N \ {i}. Summing over all j ∈ N \ {i}, we get

(n − 1) · ui (Ai ) >
*.
,

∑
j ∈N \{i }

ui (Aj )
+/
-
− ui (X ) =⇒ n · ui (Ai ) > ui (M ) − ui (X )

=⇒ ui (Ai ) +
ui (X )

n
>

ui (M )

n
. (3)

Note that X has less than n goods. Suppose player i receives good д∗ ∈ argmaxд∈X ui (д). Note

that д∗ < Ai . �en, we have ui (Ai ∪ {д
∗}) > ui (M )/n = Propi , which implies that Prop1 is satis�ed

with respect to player i . Because player i was chosen arbitrarily, we have that EF1 implies Prop1. �

Equation 3 in the proof of Lemma 3.6 directly implies the following lemma because the set X in

the equation contains at most n − 1 goods.

Lemma 3.7. Let A be an allocation of private goods that satis�es EF1. �en, for every player i ,

ui (Ai ) > Propi −
1

n

n−1∑
t=1

u (t )
max (i ),

where u (t )
max (i ) is the utility player i derives from her t th most valued good.

Next, we turn our a�ention to RRS and PPS. While MNW does not satisfy either of them, it

approximates both.

Theorem 3.8. �e MNW solution satis�es 1/n-RRS (and therefore 1/n-PPS). �e approximation is
tight for both RRS and PPS up to a factor of O (logn).

Proof. We �rst show the lower bound. Fix an instance of public decision making, and let c
denote an MNW outcome. Let S ⊆ N denote the set of players that achieve positive utility under c.
Without loss of generality, let us normalize the utilities such that uj (c) = 1 for every j ∈ S .

Suppose for contradiction that for some player i , ui (c) < (1/n) · RRSi . First, this implies that

RRSi > 0, which in turn implies that player i must be able to derive a positive utility from at least

n di�erent issues. By an argument identical to that used to argue that ui (c) > 0 in the proof of

�eorem 3.4, it can be shown that we must also have ui (c) > 0 in this case (i.e., i ∈ S).

Now, recall that the sequence 〈u (1)
max (i ), . . . ,u

(m)
max (i )〉 contains the maximum utility player i can

derive from di�erent issues, sorted in a non-ascending order. For every q ∈ [p], let

tq = argmin

(q−1)n+16t6qn

∑
j ∈S\{i }

utj (c).

5
If Aj = ∅, we can add a dummy good дj that every player has utility 0 for, and make Aj = {дj }.
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�at is, we divide the public decision making into sets of n issues, grouped by player i’s maximum

utility for them, and for each set of issues, we let tq be the one that the remaining players derive

the lowest total utility from. Note that tq 6 qn for each q ∈ [p], and therefore u
(tq )
max (i ) > u

(qn)
max (i ).

We will show that outcome c′, where c ′tq = a
tq
max (i ) for all q ∈ [p] and c

′
t = ct for all other issues

t , achieves a higher product of utilities to players in S than c does, which is a contradiction because

c is an MNW outcome. First, note that

ui (c′) >
p∑

q=1

u
(tq )
max (i ) >

p∑
k=1

u (k ·n)
max (i ) = RRSi > n.

Further, we have∑
j ∈S\{i }

max{0, 1 − uj (c′)} =
∑

j ∈S\{i }

max{0,uj (c) − uj (c′)}

=
∑

j ∈S\{i }

p∑
q=1

max{0,u
tq
j (c) − utqj (c′)} 6

∑
j ∈S\{i }

p∑
q=1

u
tq
j (c),

where the �rst equality follows from our normalization, the second because c and c′ only di�er on

issues {tq }q∈[p], and the last because all utilities are non-negative.

Reversing the order of the summation and further manipulating the expression, we have

p∑
q=1

∑
j ∈S\{i }

u
tq
j (c) 6

p∑
q=1

1

n

qn∑
t=(q−1)n+1

∑
j ∈S\{i }

utj (c) =
1

n

pn∑
t=1

∑
j ∈S\{i }

utj (c) 6
n − 1

n
,

where the �rst transition follows from the de�nition of tq . By Lemma 3.5, we have∏
j ∈S

uj (c′) = ui (c′)
∏

j ∈S\{i }

uj (c′) > n ·
(
1 −

n − 1

n

)
= 1 =

n∏
j=1

uj (c),

where the inequality holds because ui (c′) > RRSi > n · ui (c) = n, as player i receives her round
robin share under c′ but did not even receive a 1/n fraction of it under c. Hence, outcome c′ achieves
a higher product of utilities to players in S than c does, which is a contradiction.

Due to space considerations, the proof of the upper bound appears in the full version. �

For private goods, we can show that the MNW solution provides much be�er approximations to

both RRS and PPS, as a result of its strong fairness guarantee of EF1.

Lemma 3.9. For private goods division, envy-freeness up to one good (EF1) implies PPS andn/(2n−1)-
RRS, but does not imply n/(2n − 2)-RRS.

Proof. Let A be an allocation of private goods that satis�es EF1. First, we show that A must

also satisfy PPS. Suppose for contradiction that it violates PPS. �en, there exists a player i such
that ui (Ai ) < PPSi , which in turn implies that |Ai | < p. Because the average number of goods per

player is
m
n > p, there must exist a player j such that |Aj | > p. Hence, for any good д ∈ Aj , player

j has at least p goods even a�er removing д from Aj , which implies ui (Aj\{д}) > PPSi > ui (Ai ).
However, this contradicts the fact that A is EF1.

We now show that A also satis�es 1/2-RRS. By Lemma 3.7, we have

ui (Ai ) >
1

n

m∑
t=n

u (t )
max (i ) >

1

n
u (n)
max (i ) +

p∑
k=2

u (k ·n)
max (i ). (4)
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Further, since A satis�es EF1, it must be the case that

ui (Ai ) > u
(n)
max (i ). (5)

To see this, suppose for contradiction that ui (Ai ) < u (n)
max (i ), which implies that player i is not

allocated any of her n most valued goods. �erefore, by the pigeonhole principle, there must exist

a player j ∈ N \ {i} that is allocated at least two of these goods. Hence, for any д ∈ Aj , we have

ui (Aj \ {д}) > u
(n)
max (i ) > ui (Ai ), which violates EF1. Finally, adding n times Equation (4) with n − 1

times Equation (5), we obtain

(2n − 1) · ui (Ai ) > n · u (n)
max (i ) + n ·

p∑
k=2

u (k ·n)
max (i ) = n · RRSi ,

which implies the desired n/(2n − 1)-RRS guarantee.
For the upper bound, consider an instance with n players and n2 goods, and de�ne player 1’s

utility function to be

u1 (дj ) =



1 1 6 j 6 n,
1

n−1 n + 1 6 j 6 n2.

Note that RRS1 = 1 + (n − 1) 1

n−1 = 2. Consider the allocation A with A1 = {дn+1, . . . ,д2n },
A2 = {д1,д2}, and Ai = {дi ,д(i−1)n+1, . . . ,дi ·n } for all players i > 2. Let the utilities of players 2

through n be positive for the goods they receive and zero for the remaining goods. Hence, they

clearly do not envy any players. For player 1, we have u1 (A1) =
n

n−1 , u1 (A2 \ {д2}) = 1, and

u1 (Ai \ {дi }) =
n

n−1 for all i > 2. �at is, player 1 does not envy any other player up to one good.

Hence, A satis�es EF1, and player 1 obtains a
n

2n−2 fraction of her RRS share, as required. �

As a corollary of Lemma 3.9, EF1 implies 1/2-RRS, and this approximation is asymptotically tight.

Further, because the MNW solution satis�es EF1, Lemma 3.9 immediately provides guarantees

(lower bounds) for the MNW solution. However, the upper bound in the proof of Lemma 3.9 does

not work for the MNW solution. Next, we establish a much weaker lower bound, leaving open the

possibility that the MNW solution may achieve a constant approximation be�er than 1/2 to RRS.

Theorem 3.10. For private goods division, the MNW solution satis�es PPS and n/(2n − 1)-RRS. For
every ε > 0, the MNW solution does not satisfy (2/3 + ε )-RRS.

Proof. �e lower bounds follow directly from Lemma 3.9 and the fact that the MNW solution

satis�es EF1. For the upper bound, consider an instance with two players and four goods. Player

1 has utilities (1 − δ , 1 − δ , 1/2, 1/2) and player 2 has utilities (1, 1, 0, 0) for goods (д1,д2,д3,д4),
respectively. Note that RRS1 = 3/2 − δ . �e MNW allocation A is given by A1 = {д3,д4} and

A2 = {д1,д2}. �us,
u1 (A1 )
RRS1

= 2

3−2δ . �e upper bound follows by se�ing δ su�ciently small. �

4 COMPUTATIONAL COMPLEXITY
In Section 3, we showed that without requiring Pareto optimality, we can achieve both RRS (thus

PPS) and Prop1 in polynomial time using the round robin method (�eorem 3.1). In contrast, when

we require PO, the leximin mechanism (with an appropriate normalization of utilities) provides

RRS (thus PPS) and PO, while the MNW solution provides Prop1 and PO. However, both these

solutions areNP-hard to compute [4, 31]. �is raises a natural question whether we can e�ciently

�nd outcomes satisfying our fairness guarantees along with PO. For PPS, the answer is negative.

Theorem 4.1. It is NP-hard to �nd an outcome satisfying PPS and PO.
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Note that it is the search problem of �nding an outcome (any outcome) satisfying PPS and PO for

which we prove computational hardness; the decision problem of testing the existence of such an

outcome is trivial as we know it always exists. Before we prove this result, we need to introduce a

new (to our knowledge) decision problem and show that it is NP-complete.

Exact Triple-Cover by 3-sets (X33C):. An instance (Y ,T ) of X33C is given by a set Y of r vertices
and a set T = {T1,T2, . . . ,Tm }, where each Ti is a set of three vertices. �e decision problem is to

determine whether it is possible to choose r sets, with repetition allowed, such that every vertex v
is contained in exactly three of the chosen sets (an exact triple-cover).

Let us contrast this with the de�nition of the popular NP-complete problem, Exact Cover by

3-sets (X3C): An instance (X ,S) of X3C is given by a set X of 3q vertices and a set S = {S1, . . . , Sn },
where each Si is a set of three vertices. �e decision problem is to determine if there exists a subset

of S of size q that covers every vertex x ∈ X exactly once (an exact cover).

Lemma 4.2. X3CC is NP-complete.

�e proof of Lemma 4.2 proceeds via a reduction from X3C, and is presented in the full version.

Using this lemma, we can now show that �nding an outcome satisfying PPS and PO is NP-hard

through a reduction from X33C.

Proof of Theorem 4.1. Let (Y ,T ) be an instance of X33C, with |Y | = r . Let ε ∈ (0, 1/(3r )). We

de�ne a public decision making problem as follows. �ere are r players, one corresponding to each

vertex v ∈ Y , and r issues. For each issue, there are |Y | + |T | alternatives. For each issue t and each
player i , there is an alternative at,i which is valued at 1 − ε by player i , and 0 by all other players.

�e remaining |T | alternatives correspond to the 3-sets from the X33C instance. For a set Tj ∈ T ,

the corresponding alternative is valued at
1

3
by players i ∈ Tj , and valued at 0 by all other players.

Note that PPSi = 1 − ε for each player i , because there are exactly as many issues as players, and

each player values its most preferred alternative for each issue at 1 − ε .
We now show that there exists an exact triple-cover by 3-sets if and only if all outcomes to the

public decision making problem that satisfy PPS and PO have ui (c) = 1 for all i . First, suppose that
there exists an exact triple-cover by 3-sets. We need to show that all outcomes satisfying PPS and

PO have ui (c) = 1 for all i . So suppose otherwise – that there exists an outcome satisfying PPS and

PO with ui (c) , 1 for some player i . In particular, some player must have ui (c) > 1, otherwise c is
not PO (because it is possible to choose an outcome corresponding exactly to an exact triple-cover,

which gives each player utility 1). But players only derive utility in discrete amounts of 1 − ε or
1

3
, which means that any player with ui (c) > 1 has ui (c) > 4

3
− ε . Since c satis�es PPS, the social

welfare must satisfy

r∑
i=1

ui (c) >
4

3

− ε +
r−1∑
i=1

(1 − ε ) =
1

3

+ r − rε > r ,

where the last inequality holds because ε < 1/(3r ). However, this is a contradiction because each

alternative in each of the r issues contributes at most 1 to the social welfare. �erefore, every

outcome satisfying PPS and PO has ui (c) = 1 for all i .
Next, suppose that there does not exist an exact triple-cover by 3-sets. So if we choose an

alternative corresponding to a 3-set for every issue, it is not possible for every player to derive

utility 1. �erefore, some player must derive utility
2

3
(or lower), which violates PPS. �us, every

outcome that satis�es PPS must include at least one issue where the chosen alternative is one that

corresponds to a player, not to a 3-set. Such an alternative only contributes 1 − ε to social welfare.

�erefore, the social welfare is strictly less than r , which means that some player gets utility strictly
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less than 1. �erefore, there is no outcome satisfying PPS (either with or without PO) such that

ui (c) = 1 for all i . Since the set of outcomes satisfying PPS is always non-empty, it is therefore not

the case that all outcomes satisfying PPS and PO have ui (c) = 1 for all i . �

Because every outcome satisfying RRS also satis�es PPS, we have the following corollary.

Corollary 4.3. It is NP-hard to �nd an outcome satisfying RRS and PO.

For private goods division, we show, in stark contrast to �eorem 4.1, that we can �nd an alloca-

tion satisfying PPS and PO in polynomial time. �is is achieved using Algorithm 1. Interestingly,

it produces not an arbitrary allocation satisfying PPS and PO, but an allocation that assigns at

least p = bm/nc goods to every player — implying PPS, and maximizes weighted (utilitarian) social

welfare according to some weight vector — implying PO.

ALGORITHM 1: Polynomial time algorithm to achieve PPS and PO for private goods

Input: �e set of players N , the set of private goodsM , and players’ utility functions {ui }i ∈N
Output: A deterministic allocation A satisfying PPS and PO

1 w← (1/n, . . . , 1/n) ∈ Rn ;

2 A← argmaxA′
∑
i ∈N wi · ui (A′);

3 while ∃i ∈ N , |Ai | < p do /* Until every player receives at least p = bm/nc goods */
4 GT ← {i ∈ N : |Ai | > p}; /* Partition players by the number of goods they receive */

5 EQ ← {i ∈ N : |Ai | = p};

6 LS ← {i ∈ N : |Ai | < p};

7 DEC = GT ; /* Players whose weights we will decrease */

8 while DEC ∩ LS = ∅ do
/* Minimally reduce weights of players in DEC so a player in DEC loses a good */

9 (i∗, j∗,д∗) ← argmini ∈DEC, j ∈N \DEC,д∈Ai (wi · vi,д )/(w j · vj,д );

10 r ← (wi∗ · vi∗,д∗ )/(w j∗ · vj∗,д∗ );

11 ∀i ∈ DEC, wi ← wi/r ;

12 DEC ← DEC ∪ {j∗};

13 D (j∗) ← (i∗,д∗); /* Bookkeeping: j∗ can receive д∗ from i∗ */

14 end
15 j∗ ← DEC ∩ LS ; /* Player from LS who receives a good */

16 while j∗ < GT do
17 (i∗,д∗) ← D (j∗);

18 Ai∗ ← Ai∗ \ {д
∗};

19 Aj∗ ← Aj∗ ∪ {д
∗};

20 j∗ ← i∗;

21 end
22 end
23 return A;

At a high level, the algorithm works as follows. It begins with an arbitrary weight vector w,

and an allocation A maximizing the corresponding weighted (utilitarian) social welfare. �en,

it executes a loop (Lines 3-22) while there exists a player receiving less than p goods, and each

iteration of the loop alters the allocation in a way that one of the players who received more than

p goods loses a good, one of the players who received less than p goods gains a good, and every

other player retains the same number of goods as before.
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Each iteration of the loop maintains a set DEC of players whose weight it reduces. Initially, DEC
consists of players who have more than p goods (Line 7). When the weights are reduced enough so

that a player in DEC is about to lose a good to a player, necessarily outside DEC (Lines 9-11), the

la�er player is added to DEC (Line 12) before proceeding further. When a player who has less than

p goods is added to DEC , this process stops and the algorithm leverages the set of ties it created

along the way to make the aforementioned alteration to the allocation (Lines 16-21).

We now formally state that this produces an allocation satisfying PPS and PO, and that it runs in

polynomial time; the proof appears in the full version.

Theorem 4.4. For private goods division, PPS and PO can be satis�ed in polynomial time.

�e complexity of �nding an allocation (of private goods) satisfying the stronger guarantee RRS

along with PO in polynomial time remains open, as does the complexity of �nding an allocation

satisfying Prop1 and PO.

We note that the convenient approach of weighted welfare maximization we use in �eorem 4.4

cannot be used for �nding an outcome satisfying RRS and PO, as the following example shows.

�is leads us to conjecture that it may be NP-hard to �nd such an outcome.

Example 4.5. Consider a private goods division problem with two players and four goods. Player

1 has utilities (4, 4, 1, 1) and player 2 has utilities (3, 3, 2, 2) for goods (д1,д2,д3,д4), respectively.
Note that RRS1 = RRS2 = 5. Consider assigning weightsw1 andw2 to players 1 and 2, respectively.

If 4w1 > 3w2, i.e., w1 > 3w2/4 then player 1 receives both д1 and д2, which means that player 2

receives utility less than her RRS share. On the other hand, if 3w2 > 4w1, i.e., w1 < 3w2/4 then
player 2 receives both д1 and д2, which means that player 1 receives utility less than her RRS share.

�e only remaining possibility is thatw1 = 3w2/4, but in that case, player 2 receives both д3 and
д4. Regardless of how we divide goods д1 and д2, one of the two players still receives utility less

than her RRS share.

In contrast, a simple modi�cation of Algorithm 1 seems to quickly �nd an allocation satisfying

Prop1 and PO in hundreds of thousands of randomized simulations. At each iteration of this version,

the set DEC initially consists of players who a�ain their proportional share (it is easy to show

using the Pigeonhole principle that this set is non-empty for any weighted welfare maximizing

allocation), and ends when a player is added to DEC that is not currently achieving Prop1. �us,

at every loop, a player that was receiving her proportional share may lose a good (but will still

achieve at least Prop1), the player added to DEC that was not achieving Prop1 gains a good, and

some players that were achieving Prop1 but not their proportional share may lose a good, but

only if they gain one too. �ese three classes of players are therefore analogous to players with

more than p goods, less than p goods, and exactly p goods in Algorithm 1. Unfortunately, we are

unable to prove termination of this algorithm because it is possible that a player who achieves

Prop1 but not her proportional share loses a high-valued good while gaining a low-valued good,

thus potentially sacri�cing Prop1. �us we do not get a property parallel to the key property of

Algorithm 1, that no player’s utility ever drops below her PPS share, a�er she a�ains it. However,

our algorithm always seems to terminate quickly and �nds an allocation satisfying Prop1 and PO

in our randomized simulations, which leads us to conjecture that it may be possible to �nd an

allocation satisfying Prop1 and PO in polynomial time, either from our algorithm directly or via

some other utilization of weighted welfare maximization.

5 DISCUSSION
We introduced several novel fairness notions for public decision making and considered their

relationships to existing mechanisms and fairness notions. �roughout the paper, we highlighted
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various open questions including the existence (and complexity) of a mechanism satisfying RRS,

Prop1, and PO, the complexity of �nding an outcome satisfying Prop1 and PO (for public decisions

and private goods), the complexity of �nding an outcome satisfying RRS and PO (for private goods),

and whether MNW provides a constant approximation to RRS be�er than 1/2.
So far we only considered deterministic outcomes. If randomized outcomes are allowed (an

alternative interpretation in the private goods case is that the goods are in�nitely divisible), then

the MNW solution satis�es Prop as a direct consequence of it satisfying Prop1 for deterministic

outcomes (�eorem 3.4).
6
To see this, consider replicating each issue K times and dividing utilities

by K . �e relative e�ect of granting a single player control of a single issue becomes negligible.

�us, as K approaches in�nity, the utility of each player i in an MNW outcome approaches a value

that is at least their proportional share Propi . �e fraction of copies of issue t in which outcome atj
is selected can be interpreted as the weight placed on atj in the randomized outcome. Because RRS,

PPS, and Prop1 are relaxations of Prop, the randomized MNW outcome also satis�es all of them.

For private goods division, this can be seen as a corollary of the fact that the randomized MNW

outcome satis�es envy-freeness, which is strictly stronger than proportionality. �is hints at a very

interesting question: Is there a stronger fairness notion than proportionality in the public decision

making framework that generalizes envy-freeness in private goods division? Although such a

notion would not be satis�able by deterministic mechanisms, it may be satis�ed by randomized

mechanisms, or it could have novel relaxations that may be of independent interest.

At a high level, our work provides a framework bringing together two long-studied branches of

social choice theory — fair division theory and voting theory. Both have at their heart the aim to

aggregate individual preferences into a collective outcome that is fair and agreeable, but approach

the problem in di�erent ways. Fair division theory typically deals with multiple private goods,

assumes access to cardinal utilities, and focuses on notions of fairness such as envy-freeness and

proportionality. Voting theory, in contrast, typically deals with a single public decision (with the

exception of combinatorial voting mentioned earlier), assumes access only to less expressive ordinal

preferences, has the “one voter, one vote” fairness built inherently into the voting rules, and focuses

on di�erent axiomatic desiderata such as Condorcet consistency and monotonicity.

Of course, one can use a voting approach to fair division, since we can have players express

preferences over complete outcomes, and this approach has been used successfully to import

mechanisms from voting to fair division and vice versa [1, 3]. However, not only does this approach

result in an exponential blowup in the number of alternatives, it also does not provide a convenient

way to express fair-division-like axioms. Continuing to explore connections between the two �elds

remains a compelling direction for future work.
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