
Partitioning Friends Fairly

Lily Li1 , Evi Micha1 , Aleksandar Nikolov1 and Nisarg Shah1

1University of Toronto
{xinyuan,emicha,anikolov,nisarg}@cs.toronto.edu

Abstract

We consider the problem of partitioning n agents
in an undirected social network into k almost equal
in size (differing by at most one) groups, where the
utility of an agent for a group is the number of her
neighbors in the group. The core and envy-freeness
are two compelling axiomatic fairness guarantees
in such settings. The former demands that there
be no coalition of agents such that each agent in
the coalition has more utility for that coalition than
for her own group, while the latter demands that
no agent envy another agent for the group they are
in. We provide (often tight) approximations to both
fairness guarantees, and many of our positive re-
sults are obtained via efficient algorithms.

1 Introduction
The computer science department at University X is organiz-
ing a visit day for its newly admitted students. One of the
most anticipated activity is the campus tour, during which the
admitted students get to see the department they might one
day join. Due to COVID-19 related capacity restrictions, the
admitted students are divided into k separate tours. But more
tours means the need for more volunteers. Luckily, n current
graduate students have volunteered to help lead the tours. We
want to partition them almost equally between the k tours so
that all the admitted students have equal opportunity to social-
ize with the current students. However, the current students
have developed friendships during their time at the university.
We would like to ensure that each volunteer is assigned to a
tour with as many of their friends as possible, so they have a
good experience and will want to volunteer again next year.

In this paper, we introduce and study a model that captures
such real-life applications. Specifically, we consider the prob-
lem of partitioning n agents into k almost equal-sized (ei-
ther bn/kc or dn/ke) groups, when the agents are connected
via an undirected social network indicating friendships. An
agent’s utility for being part of a group is the number of her
friends who are in that group.

Formally, this model sits within the hedonic games for-
malism in cooperative game theory with nontransferable util-
ities [Aziz and Savani, 2016]. Two compelling axiomatic

guarantees that have received significant attention in this lit-
erature are the core [Gillies, 1953], which informally re-
quires that there be no deviating coalition of agents such
that each agent in the coalition has strictly more utility for
the coalition than for her group in the given partition, and
envy-freeness [George and Marvin, 1958], which informally
requires that no agent receive strictly more utility when swap-
ping places with another agent in the given partition. How-
ever, this literature typically does not impose any restriction
on the partition (including on the number of groups it has).
This would make our problem trivial because the grand coali-
tion — a single group containing all agents — would triv-
ially satisfy both the core and envy-freeness requirements. To
study the core and envy-freeness meaningfully, this literature
allows agents to have negative utility for other agents.

We are interested in the case where the utilities are non-
negative. But we require there to be exactly k groups and
the groups to be of approximately equal sizes.1 This can
be viewed as a multi-dimensional generalization of the sta-
ble roommates problem [Irving, 1985], in which the goal
is to partition 2n agents between n rooms of capacity 2
each when agents have preferences over who they wish to
have as a roommate. The core becomes a notion of sta-
bility: if a pair of agents prefer each other to their as-
signed roommates, they may actually deviate and rent a room
by themselves. But the core is also applicable to contexts
where groups cannot really deviate; in such contexts, it is
often viewed as a group fairness notion [Fain et al., 2018;
Conitzer et al., 2019], demanding that each group be treated
at least as well as what it deserves, where deserve is defined
based on how happy it can be on its own.

1.1 Our Results
We consider general graphs, and also focus on the special
case where the social network forms a tree for both fairness
guarantees. For the core, we study bicriteria approximations
of the form (α, β)-core, where a deviating coalition must im-
prove the utility of each of its members by more than a mul-
tiplicative factor of α and an additive factor of β.2

1In appendix, we consider imposing only the former restriction,
allowing k arbitrarily-sized non-empty groups.

2That is, an agent with utility u must receive utility more than
αu+ β after deviating.

We show that a balanced k-partition in the (2k − 1, 0)-
core always exists when n > k2 + k, and a k-partition in the
(1, k)-core always exists when n < k2 + k. We achieve all
these upper bounds via efficient algorithms, and prove lower
bounds showing that these guarantees are asymptotically the
best possible. For trees, we show that we can find a balanced
2-partition in the core in polynomial time for k = 2, while
the best approximation guarantee for larger k is (1, 1)-core.

Similarly, we consider an additive approximation of envy-
freeness, EF-r, where an agent’s utility cannot increase by
more than r when swapping places with another agent. We
make a connection to discrepancy theory [Chen et al., 2014]
to show that a balanced EF-O(

√
n
k · log k) partition always

exists for any k, and it can be computed efficiently. We con-
jecture that even a balanced EF-2 partition always exists for
any k. For trees, we show that a balanced EF partition does
not always exist, and it is NP-complete to decide whether a
instance admits a balanced EF partition, while we can always
find a balanced EF-1 partition in polynomial time.

1.2 Related Work
Our work can be viewed as a hedonic game with symmetric,
binary, additively separable preferences and with the restric-
tion that the partition produced have exactly k almost equal-
sized parts. As noted in the introduction, this is a general-
ization of the stable roommates problem of partitioning 2n
agents into n pairs, where the widely studied notion of stabil-
ity coincides with the core. In this problem, with asymmetric
preferences a solution in the core does not always exist — un-
like in the bipartite version, referred to as the stable marriage
problem, in which it is guaranteed to exist [Gale and Shap-
ley, 1962] — but can be found in polynomial time when it
does [Irving, 1985]. When preferences are symmetric, how-
ever, a solution in the core always exists and can be found ef-
ficiently; for instance, one can repeatedly match and remove a
pair of agents with the highest utility. The three-dimensional
version of this problem — partitioning 3n agents into groups
of size 3 each — has also received significant attention. In
this case, even with symmetric additive preferences, a solu-
tion in the core may not exist [Arkin et al., 2009], and check-
ing whether it does is NP-hard [Chen and Roy, 2021]. How-
ever, if we further restrict the preferences to be binary, then
McKay and Manlove [2021] show that a solution in the core
always exists and can be found efficiently. Our problem can
be seen as a multidimensional generalization of the roommate
problem with symmetric binary additive preferences.

Envy-freeness has been studied recently in the hedonic
games literature [Peters, 2016; Barrot and Yokoo, 2019],
again with possibly negative utilities. Another concept simi-
lar to envy-freeness is Nash-stability [Bogomolnaia and Jack-
son, 2002; Olsen et al., 2012], which requires that no agent
be happier by joining another part (rather than by swapping
places with an agent in another part).3 In our graph theoretic
framework, this is equivalent to asking that each node have at
least as many neighbors in its own part as in any other part.
This has been studied extensively in graph theory using terms

3The two differ only when the other part consists entirely of the
agent’s friends.

such as satisfactory partitions [Bazgan et al., 2010], friendly
partitions [Aharoni et al., 1990], and internal partitions [Ban
and Linial, 2016], but under only the restriction that each part
is non-empty. This problem is also studied in the case, where
the parts are required to be of almost the same size [Bazgan
et al., 2010]. However, since such partitions do not always
exist, this literature primarily focuses on the computational
complexity of checking the existence of such partitions and
approximating the most satisfactory partitions.

Instead, our focus is on providing worst-case guarantees
on the necessary violation of envy-freeness, as is commonly
done in the literature on fair resource allocation [Lipton et
al., 2004; Caragiannis et al., 2019; Aziz et al., 2019]. We
make a connection to discrepancy theory [Chen et al., 2014]
to establish an O(

√
n) bound. In discrepancy theory, the goal

is to distribute each agent’s friends as evenly as possible be-
tween the parts, so that not only does an agent not have many
more friends in another part than her own part, she also does
not have many more friends in her own part than in any other
part. The latter restriction, a flipped version of the satisfactory
partition problem, has also been studied separately as the co-
satisfactory or unfriendly partition problem [Aharoni et al.,
1990]. Manurangsi and Suksompong [2021] use discrepancy
theory in a similar problem with n agents partitioned into k
groups, but with the agents having utilities over goods being
allocated to the groups, not over the other agents.

2 Preliminaries
For t ∈ N, let [t] = {0, . . . , t − 1}. We consider a set
V = [n] of agents who are members of a social network.
The network is represented by an undirected graph G(V,E),
where the agents are the nodes and an edge (i, i′) ∈ E in-
dicates friendship between agents i and i′. This induces the
utility function of agent i, denoted ui : V → {0, 1}, where
ui(i

′) = 1 if (i, i′) ∈ E and 0 otherwise. Let NG(i) denote
the set of neighbors of agent i in G, i.e., NG(i) = {i′ ∈ V :
(i, i′) ∈ E}. We refer to dG(i) = |NG(i)| as the degree of
agent i. We omit G when it is clear from the context.

A k-partition of V is given by X = (X0, . . . , Xk−1),
where Xj ∩ Xj′ = ∅ for all distinct j, j′ ∈ [k]; Xj 6= ∅
for all j ∈ [k]; and ∪j∈[k]Xj = V . We refer to an individual
group Xj as a part. With slight abuse of notation, we denote
by X(i) the part Xj to which agent i belongs (i.e., i ∈ Xj).
We assume that n > k, so a k-partition exists. A k-partition
is called balanced if bn/kc 6 |Xj | 6 dn/ke for all j ∈ [k].
The utility of agent i for S ⊆ V is denoted by, with slight
abuse of notation, ui(S). We assume that utilities are addi-
tive, i.e., ui(S) =

∑
i′∈S ui(i

′) = |S ∩N(i)|.
In this work, we focus on two fairness criteria. The first one

is the core which, informally, requires that there be no group
of agents (coalition) of size bn/kc 6 |S| 6 dn/ke such that
every agent in the coalition prefers to be in that coalition than
in her own part; such a coalition is called “blocking”.
Definition 1. Fix α > 1 and β > 0. A coalition S ⊆ V is
called (α, β)-blocking for a balanced k-partition X if

ui(S) > α · ui(X(i)) + β

for every i ∈ S. A balanced k-partition X is said to be in
the (α, β)-core if there is no (α, β)-blocking coalition S with

bn/kc 6 |S| 6 dn/ke. When α = 1 and β = 0, we simply
use the terms blocking coalition, and core.

Another fairness criterion we focus on is envy-freeness.
Because we will often be able to provide approximate envy-
freeness guarantee with a small additive error, we only focus
on additive approximations in this case.
Definition 2. For r > 0, a balanced k-partition X is called
envy-free up to r, denoted EFr or EF-r, if, for every pair of
agents i, i′ ∈ V , ui(X(i)) > ui(X(i′)∪{i}\{i′})−r. When
r = 0, we simply refer to this as envy-freeness (EF).

For the proof techniques we plan to use, we need the fol-
lowing additional terminology. The cut size of a k-partition
X , denoted cut(X), is the number of edges between its dif-
ferent parts, i.e., cut(X) = |{(i, i′) ∈ E : X(i) 6= X(i′)}|.
A balanced k-partition with the smallest cut size is called a
balanced min k-cut. Note that

cut(X) =
∑
i∈V

(|N(i)| − ui(X(i))) = 2|E| −
∑
i∈V

ui(X(i)).

Hence, balanced min k-cut also maximizes the social welfare
among all balanced k-partitions. Some of our results show
that such solutions also satisfy good approximations of the
core. Give disjoint sets of nodes A and B, E(A,B) denotes
the set of edges with one endpoint in A and the other in B.

Let us also introduce standard graph theory terminology.
We denote by Kn, Kn1,n2 and Kn1,n2,n3 the complete undi-
rected graph of n vertices; the complete bipartite graph with
n1 and n2 vertices on the two sides; and the complete tripar-
tite graph with n1, n2, and n3 vertices on the three sides, re-
spectively. We refer to K1,n−1 as a star. Finally, Pn denotes
a path graph with n vertices.

3 Core
In this section, we study balanced k-partitions in the (approx-
imate) core. While for k > 3 below we show that the core is
not always non-empty, we start by pointing it an interesting
open question for k = 2 :
Open Question 1. Does every graph admit a balanced 2-
partition in the core?

Now, we show that the core can be empty when k > 3.
Theorem 1. When k > 3, there exists an instance in which
no k-partition is in the (α, 0)-core for any α > 1, and there
also exists an instance in which no k-partition is in the (1, β)-
core for any β < k − 2.

Proof. Fix k > 2. For the first claim, consider a cycle with
n = k + 1 > 4 nodes. Fix an arbitrary k-partition X . Note
that X must consist of one part with two nodes and k − 1
parts with a single node each. Without loss of generality, let
X0 be the part with |X0| = 2. Note that in a cycle of length at
least 4, the size of the smallest maximal matching is at least 2.
Hence, there must exist agents i, i′ /∈ X0 that are connected
by an edge. Since the coalition {i, i′} is allowed to deviate,
they can both go from receiving utility 0 to receiving utility
1, implying that X is not in the (α, 0)-core for any α > 0.

For the second claim, consider the complete graph Kn

with n > k · (k − 1). Let X be any k-partition of this

graph. Due to the pigeonhole principle, there exists r∗ ∈ [k]
such that |Xr∗ | > n/k > k − 1. Hence, the coalition
S = ∪r∈[k]\{r∗}Xj is allowed to deviate as |S| 6 n− k+ 1.
Since each Xr part of this coalition is non-empty, we have
ui(S) > ui(X(i)) + k − 2 for each i ∈ S, implying that X
is not in the (1, β)-core for any β < k − 2.

While above we show that that when k > 3 core can be
empty, these examples are somewhat unsatisfactory as they
crucially rely on n not being divisible by k, which leads to
another interesting open question:
Open Question 2. Does every graph with n nodes admit a
balanced k-partition in the core, if k divides n?

Now, we provide algorithms for finding balanced k-
partitions which are in the approximate core. We begin with
the case of k = 2. We show that the (2, 0)-core is always non-
empty, and in particular, contains every balanced min 2-cut.
Theorem 2. For k = 2, a balanced min 2-cut is in the (2, 0)-
core.

Proof. Let X = (X0, X1) be a balanced min 2-cut. Suppose
for contradiction that there exists a (2, 0)-blocking coalition
S of size dn/2e or bn/2c. Let X∗0 = X0 ∩ S and X∗1 =
X1 ∩ S.

For each agent i ∈ X∗0 , i ∈ S implies ui(S) > 2 · ui(X0),
which in turn implies |N(i) ∩X∗1 | > 2 · |N(i) ∩X0 \X∗0 |.
Summing over all i ∈ X∗0 , we obtain

E(X∗0 , X
∗
1) > 2 · E(X∗0 , X0 \X∗0).

Similarly, for each agent i ∈ X∗1 , we have |N(i) ∩X∗0 | >
2 · |N(i) ∩X1 \X∗1 |. Summing over all i ∈ X∗1 , we get

E(X∗0 , X
∗
1) > 2 · E(X∗1 , X1 \X∗1).

Combining the two equations, we have
E(X∗0 , X

∗
1) > 2 ·max{E(X∗0 , X0 \X∗0),

E(X∗1 , X1 \X∗1)}
> E(X∗0 , X0 \X∗0) + E(X∗1 , X1 \X∗1). (1)

Now, consider the balanced 2-partition X ′ = (S, V \ S).
We will show that cut(X) > cut(X ′), which will contradict
X being a balanced min 2-cut. We have

cut(X) = E(X0, X1)

= E(X∗0 , X
∗
1) + E(X∗0 , X1 \X∗1)

+ E(X∗1 , X0 \X∗0) + E(X0 \X∗0 , X1 \X∗1)

> E(X∗0 , X
∗
1) + E(X∗0 , X1 \X∗1)

+ E(X∗1 , X0 \X∗0)

> E(X∗0 , X0 \X∗0) + E(X∗1 , X1 \X∗1)

+ E(X∗0 , X1 \X∗1) + E(X∗1 , X0 \X∗0)

= cut(X ′),

where the strict inequality uses Equation (1). This is the de-
sired contradiction.

While Theorem 2 is a strong existential result, it does not
come with an efficient algorithm as finding a balanced min
2-cut (also known as the minimum bisection problem) is NP-
hard [Garey and Johnson, 1979]. This leads to our next open
problem:

Algorithm 1 Local Min-Cut

1: X ← an arbitrary balanced k-partition
2: while true do
3: Build a directed graph G′ = (V ′, E′) with V ′ = V

and E′ = {(i, i′) : ui(X(i′)) > ui(X(i)) + 1}
4: if there is a cycle (i0, i1, . . . , is−1, i0) in G′ then

{Shift the nodes along the cycle}
5: for ` ∈ [s] do
6: X(i`)← X(i`) \ {i`}
7: X(i{`+1 mod s})← X(i{`+1 mod s}) ∪ {i`}
8: end for
9: else if ∃(i, i′) s.t. ui′(X(i′)) = 0 and ui(X(i′)) >
ui(X(i)) then

10: if (i, i′) /∈ E or ui(X(i′)) > ui(X(i)) + 1 then
11: X(i)← X(i) ∪ {i′} \ {i}
12: X(i′)← X(i′) ∪ {i} \ {i′}
13: end if
14: else
15: break
16: end if
17: end while
18: return X

Open Question 3. Can a balanced 2-partition in the (2, 0)-
core be computed in polynomial time?

If our goal is efficient computation, the next result shows
that we can find a balanced 2-partition in the (3, 0)-core (and
more generally, a balanced k-partition in the (2k−1, 0)-core)
in polynomial time, if n > k2 + k. In this case, we in fact
show that every balanced min k-cut is in the (2k− 1, 0)-core,
but we can also use an efficient local search, presented as
Algorithm 1, to obtain the same approximation guarantee.
Theorem 3. When n > k2 + k, every balanced min k-cut is
in the (2k − 1, 0)-core, and Algorithm 1 returns a balanced
k-partition in the (2k − 1, 0)-core in polynomial time.

Proof. First, we show that Algorithm 1 terminates in polyno-
mial time by arguing that cut(X) strictly decreases in every
iteration of the while loop. If we find a cycle on Line 4, then
during the cyclic shift of nodes along this cycle, each node
gains at least 1 utility. Since the social welfare strictly in-
creases, cut(X) strictly decreases. Similarly, if we find two
agents i and i′ such that i′ has no neighbors in X(i′) but i
has at least two more neighbors in X(i′) than in X(i), then
swapping i and i′ also strictly decreases the cut size. Further,
if i′ is not a neighbor of i, then we only need i to have at least
one more neighbor inX(i′) than inX(i). Hence, in any case,
cut(X) strictly reduces in every iteration of the while loop,
resulting in termination in polynomial time.

LetX be either a balanced min k-cut or the output of Algo-
rithm 1. Suppose for contradiction that there is a (2k− 1, 0)-
blocking coalition S of size dn/ke or bn/kc. We first show
the following lemma.

Lemma 1. For i ∈ S, if ui(S∩Xj) 6 ui(X(i))+1 for each
j ∈ [k], then ui(X(i)) = 0.

Suppose that there exists i ∈ S such that ui(S ∩ Xj) >
ui(X(i)) + 1 for some j ∈ [k]. Let G′ be the directed graph

constructed from X according to Line 3 of Algorithm 1.
Then, there must be an edge from i to every node in Xj in
G′, as ui(X(i)) + 1 < ui(S ∩Xj) 6 ui(Xj). Further, since
ui(S ∩ Xj) > 0, S ∩ Xj 6= ∅. Hence, i has an edge to
some node in S in G′. Note that there can be no cycle in G′:
if X is the output of Algorithm 1, this would contradict the
while loop terminating, and if X is a balanced min k-cut, a
cyclic shift of nodes like in Algorithm 1 would reduce the cut
size, which would be a contradiction. Since there is no cycle
in G′, consider the longest path in G′ starting at i and only
containing nodes in S. Suppose it is (i, i1, . . . , it, i

′). Then,
i′ must satisfy the condition of Lemma 1, otherwise by the
same reasoning as before, there would exist j′ ∈ [k] such that
S ∩Xj′ 6= ∅ and i′ has edges to all nodes in Xj′ in G′. This
would either lead to a cycle or a longer path in G′ starting
at i and only containing nodes in S, which is a contradic-
tion. Since i′ satisfies the condition of Lemma 1, we have
ui′(X(i′)) = 0. We also have uit(X(i′)) > uit(X(it)) + 1.
If X is returned by Algorithm 1, we get a contradiction be-
cause Algorithm 1 would have continued by swapping it and
i′ in Line 9. If X is a balanced min k-cut, then swapping
it and i′ would reduce the cut size, which would also be a
contradiction.

We have established that all i ∈ S satisfy the condition
from Lemma 1. Hence, ui(X(i)) = 0 for all i ∈ S. However,
since n > k2 + k, we have |S| > bn/kc > k + 1, which
implies that there exist i1, i2 ∈ S withX(i1) = X(i2), which
contradicts ui1(X(i1)) = ui2(X(i2)) = 0. Hence, there is
no such (2k − 1, 0)-blocking coalition S.

In the proof of Lemma 1, note that if we assumed the
deviating coalition S to be a (k, k − 1)-blocking coalition,
then we would obtain a contradiction regardless of whether
ui(X(i)) = 0 or ui(X(i)) > 1. Since the next part of the
proof, which establishes that all i ∈ S must satisfy the condi-
tion of Lemma 1, does not assume n > k2 + k, we have that
Algorithm 1 always finds a solution in the (k, k− 1)-core. In
particular, for k = 2, we can efficiently guarantee (2, 1)-core.
Recall that Theorem 2 provides a slightly better guarantee of
(2, 0)-core, but not in polynomial time.
Corollary 1. For k = 2, Algorithm 1 returns a balanced 2-
partition in the (2, 1)-core in polynomial time.

Next, we show that the guarantee in Theorem 3 is almost
tight, at least for balanced min k-cuts, when k > 3.
Theorem 4. For k > 3, there exists an instance with n >
k2 + k in which some balanced min k-cut is not in the (α, 0)-
core for α < 2k − 2.

Finally, we turn to the case of n < k2 + k. Here, we first
notice that one cannot obtain a purely multiplicative guaran-
tee of the form (α, 0)-core for any α > 1. This again follows
from Theorem 1. In these examples, we showed that one can
always find a deviating coalition whose members go from re-
ceiving utility 0 to utility 1, preventing us from guaranteeing
(α, 0)-core for any α > 1. Thus, we turn to additive approx-
imations. We show that any balanced k-partition is in the
(1, k)-core, while (1, β)-core may be empty for β < k/2−2.
Theorem 5. Assume n 6 k2 +k. Every balanced k-partition
is in the (1, k)-core, and there exists an instance in which

no balanced k-partition is in the (1, β)-core for β < k/2 −
2. Further, if k > 3, there exists an instance in which no
balanced k-partition is in the (α, 0)-core for any α > 1.

Proof. To see the positive result, note that any deviating
coalition has size at most dn/ke 6 k + 1. Hence, no agent
can improve her utility by an additive factor of more than k
when deviating. Hence, every balanced k-partition is trivially
in the (1, k)-core.

Next, consider the graphG formed by k+1 disjoint cliques
of size k − 1 each, denoted C0, . . . , Ck. Hence, n = k2 − 1.
Let X be any balanced k-partition of G. First, we claim that
there exists `∗ ∈ [k + 1] such that |C`∗ ∩ Xj | 6 (k + 1)/2
for all j ∈ [k]. If this is not true, then for every ` ∈ [k + 1],
there exists at least one j` ∈ [k] with |C`∩Xj` | > (k+ 1)/2.
Note that such j` must be unique. Further, because |Xj | 6
dn/ke 6 k + 1 for all j ∈ [k], we must have j` 6= j`′ for
distinct `, `′ ∈ [k + 1]. However, this is not possible as there
are k + 1 cliques but only k parts.

Now, for every agent i ∈ C`∗ , we have ui(X(i)) 6 (k −
1)/2. On the other hand, C`∗ is a feasible deviating coalition
as |C`∗ | = k − 1 = bn/kc. Further, for every i ∈ C`∗ , we
have ui(C`∗) = k − 2 > ui(X(i)) + (k − 3)/2. Hence,
C`∗ is a (1, k/2− 2)-blocking coalition, as desired. We have
already argued the impossibility of deriving a multiplicative
approximation.

3.1 Trees
Next, we turn our attention to the special case when the net-
work is a tree. Let us begin with k = 2. Recall that for
general graphs, we left non-emptiness of the core as an open
question, and proved that every balanced min 2-cut is in the
(2, 0)-core. For trees, we can in fact show that every balanced
min 2-cut is in the core. Moreover, the NP-hard problem of
finding a balanced min 2-cut in general graphs is known to be
polynomial-time solvable for trees [Jansen et al., 2005].

Theorem 6. When k = 2 and the network is a tree, every
balanced min 2-cut is in the core, and one such solution can
be computed in polynomial time.

For k > 4, we show that the core can be empty. In fact, we
cannot hope for a multiplicative approximation guarantee of
the form (α, 0)-core for any α > 1. On the other hand, if we
turn to additive approximations, we show that any balanced
k-partition of a tree is naturally in the (1, 1)-core, which is
the best we can hope for. We leave the case of k = 3 as an
open question.

Theorem 7. Every balanced k-partition of a tree is in the
(1, 1)-core. For k > 4, there exists a tree for which no bal-
anced k-partition is in the (α, 0)-core for any α > 1.

4 Envy-Freeness
We now turn our attention to finding balanced k-partitions
that are (approximate) envy-free. We start by showing that
EF-1 cannot always be guaranteed.

Theorem 8. Even when k = 2, a balanced 2-partition that is
EF-1 does not always exist.

To obtain non-trivial approximations to envy-freeness for
higher values of k, that too via balanced partitions, we turn
to the literature on discrepancy theory. Intuitively, we want
to color the elements of a set using k colors such that each
pre-determined subset has an approximately equal number of
elements of each color. Formally, we are given a universe
Ω = [n] and a set system S = {S0, . . . , Sm−1}, where Si ⊆
[n] for each i ∈ [m]. The k-color discrepancy of a coloring
χ : Ω→ [k] on the set system S is defined as

disck(S, χ) = max
j∈[k],i∈[m]

∣∣∣∣χ−1(j) ∩ Si
∣∣− |Si|/k∣∣ .

The k-discrepancy of S is then the minimum k-color dis-
crepancy over all χ: disck(S) = minχ:Ω→[k] disck(S, χ).
A celebrated result from this literature is that disck(S) =
O(
√

n
k ln(km/n)) for any set system S and a k-coloring

achieving this bound can be computed in polynomial
time [Chen et al., 2014, Corollary 44].

In our setting, with Ω = V = [n], a k-coloring χ : Ω→ [k]
induces a k-partition X given by Xj = χ−1(j) for all
j ∈ [k].4 Further, if we consider the set system S where
Si = NG(i) for each i ∈ [n] (i.e., with m = n), then we
are guaranteed that agent i can have at most 2disck(S, χ)
more neighbors in any other part than in her own part, im-
plying EF-2disck(S, χ). The above discrepancy bound then
immediately yields the existence of a k-partition that is EF-
O(
√

n
k ln k). However, this may not be balanced.

To fix this, we add another set Sn = V to our set sys-
tem; we now have m = n + 1, which does not asymp-
totically change the discrepancy bound. Now, we obtain a
k-partition X that is also approximately balanced: ||Xj | −
|Xj′ || = O(

√
n
k ln k) for all j, j′ ∈ [k]. By arbitrarily mov-

ing O(
√

n
k ln k) agents between parts, we can make it per-

fectly balanced, while only increasing the EF approximation
by O(

√
n
k ln k). Thus, we get the following.

Theorem 9. For any k > 2, a balanced k-partition that is
EF-O(

√
n
k ln k) is guaranteed to exist and can be computed

in polynomial time.
For discrepancy, the aforementioned upper bound is known

to be almost tight: there is a lower bound of Ω(
√
n/k) [Chen

et al., 2014, Theorem 61]. However, for our “one-sided”
envy-freeness guarantee, achieving a constant approximation
remains an open question.
Open Question 4. Does every graph admit a balanced k-
partition that is EF-2, for all k > 2?

4.1 Trees
While we proved that EF-1 cannot be achieved for general
graphs (Theorem 8), for trees we show that for any instance
there exists a balanced EF-1 partition. Let d denote the depth
of the tree. Without loss of generality, suppose the tree is
labelled as following. Agent 0 is at level 1, agent 1 is the left
most node of level 2, agent 2 is the second leftmost node of
level 1, and so on, while agent n − 1 is the rightmost node
of level d. Algorithm 2 first colors the nodes of the tree in a

4Technically, we also need to ensure Xj 6= ∅, but this is guaran-
teed due to the discrepancy bound.

Algorithm 2 EF1 Trees

1: ∀j ∈ [k], Xj ← ∅;
Phase 1:

2: for i ∈ N do
3: Xi mod k = Xi mod k ∪ i
4: end for

Phase 2:
5: for ` = 2 to d do
6: for every i ∈ N with level(i) = ` that is envious for

more than one agents do
7: i′ ← an arbitrary child of i such that X(i′) =
X(p(i))

8: X(i′) = X(i′) ∪ {i} \ {i′}
9: X(i) = X(i) ∪ {i′} \ {i}

10: end for
11: end for
12: return X = (X0, ..., Xk−1)

simple round-robin fashion to obtain EF-2 (in fact, it achieves
a discrepancy bound of 2, whereby there are at most 2 more
nodes of any color than of any other color), and then makes
small edits to improve its guarantee to EF-1.

Theorem 10. For any k > 2, Algorithm 2 returns a balanced
EF-1 k-partition for every tree, in polynomial time.

Proof. Suppose that at Line 6 of the algorithm, when ` =
level(i), i is not envious for more than one agents. Then,
when ` = level(i)+1, a child of imay be moved to the same
part with i, but no child of i that is assigned to the the same
part with i is removed from it, while afterwards no neighbour
of i is never moved to a different part. Hence, clearly, the
partition remains EF-1 with respect to i.

Now, suppose i is envious for more than one agents. This
means that before Line 5, |X(i) ∩ c(i)| = b|c(i)|/kc <
|c(i, T)|/k, and for some i′ 6∈ N(i), |X(i′) ∩ c(i, T)| =
d|c(i, T)|/ke and X(i′) = X(p(i)). Then, i and one of
her children that is assigned to X(i′) are swapped. Hence,
i is currently assigned to the same group with at least
b|c(i, T)|/kc + 1 of her neighbours while any other part
still contains at most d|c(i, T)|/ke neighbours of i. Thus,
at Line 6 of the algorithm, when ` = level(i) + 1, i is not
envious for more than one agents, and by the same reasoning
as above, we have that partition remains EF-1 with respect to
i until the end of the algorithm.

While the above algorithm efficiently computes a balanced
EF-1 k-partition, this partition is not too desirable because it
unnecessarily divides the friends of each agent between the
different parts during the round-robin coloring; note that this
coloring actually achieves a discrepancy bound of 2 . More
concretely, in the appendix, we provide an instance in which a
different balanced k-partition can provide strictly more utility
to every agent. A more desirable partition with the same EF-
1 guarantee is achieved via balanced min k-cut. While this
is NP-hard to compute in general graphs even for k = 2, for
trees, it is efficiently computable when k = 2, but NP-hard
when k is part of the input [Fernandes et al., 2015]. Recall

r∗

r0

. . .

2a1 − 1

. . . r3k−1

. . .

2a3k − 1

. . .

2A− 1

Figure 1: An example of T = (r∗, GI) given an instance I of 3-
Partition problem

that this partition minimizes the cut size and, hence, maxi-
mizes the social welfare.

Theorem 11. For any k > 2 and when the network is a tree,
every balanced min k-cut is EF-1.

Finally, we consider the complexity of checking if a bal-
anced EF k-partition exists in a given tree. We show that this
is NP-hard when k is part of the input5.

Theorem 12. Checking if a given tree admits a balanced EF
k-partition is NP-complete when k is part of the input.

5 Discussion

In this paper, we considered the problem of partitioning n
agents into k almost equal-sized groups, when the agents have
binary preferences, induced by a social network. We designed
algorithms which approximately satisfy two axiomatic fair-
ness guarantees: the core and envy-freeness.

Our work offers a number of exciting open questions. For
example, is the core always non-empty when k = 2 or when k
divides n? Does a balanced EF-2 partition always exist? We
pay special attention to the case of trees in this paper; one can
also consider other prominent graph families, such as planar
graphs or graphs with bounded maximum degree.

There are two natural ways to extend our model. First, in
our model, agents have symmetric binary preferences. One
can consider preferences which are asymmetric and/or non-
binary. Second, in our model, agents only have preferences
over other agents; the groups they are assigned to are apriori
identical. A complementary model in the fair division litera-
ture considers assigning resources to groups of agents [Segal-
Halevi and Suksompong, 2019; Kyropoulou et al., 2020;
Manurangsi and Suksompong, 2021], where agents have
preferences over the resources, but not over the other agents
in their group. An extension of both models would require
partitioning n agents into k groups and then allocating re-
sources to these groups, when agents have preferences over
both the resources being allocated and the other agents in
their group. Such a model would better reflect many real-
world scenarios, such as teachers partitioning students into
groups and then assigning project ideas to the groups.

5When k is a constant, the problem can be solved efficiently via
dynamic programming.

References
[Aharoni et al., 1990] Ron Aharoni, Eric C Milner, and Karel

Prikry. Unfriendly partitions of a graph. Journal of Combina-
torial Theory, Series B, 50(1):1–10, 1990.

[Arkin et al., 2009] Esther M Arkin, Sang Won Bae, Alon Efrat,
Kazuya Okamoto, Joseph SB Mitchell, and Valentin Polishchuk.
Geometric stable roommates. Information Processing Letters,
109(4):219–224, 2009.

[Aziz and Savani, 2016] H. Aziz and R. Savani. Hedonic games. In
F. Brandt, V. Conitzer, U. Endress, J. Lang, and A. D. Procaccia,
editors, Handbook of Computational Social Choice, chapter 15.
Cambridge University Press, 2016.

[Aziz et al., 2019] Haris Aziz, Ioannis Caragiannis, Ayumi
Igarashi, and Toby Walsh. Fair allocation of indivisible goods
and chores. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence (IJCAI), pages 53–59,
2019.

[Ban and Linial, 2016] Amir Ban and Nati Linial. Internal parti-
tions of regular graphs. Journal of Graph Theory, 83(1):5–18,
2016.

[Barrot and Yokoo, 2019] Nathanaël Barrot and Makoto Yokoo.
Stable and envy-free partitions in hedonic games. In Proceed-
ings of the 28th International Joint Conference on Artificial In-
telligence (IJCAI), pages 67–73, 2019.

[Bazgan et al., 2007] Cristina Bazgan, Zsolt Tuza, and Daniel Van-
derpooten. Efficient algorithms for decomposing graphs under
degree constraints. Discrete Applied Mathematics, 155(8):979–
988, 2007.

[Bazgan et al., 2010] C. Bazgan, Z. Tuza, and D. Vanderpooten.
Satisfactory graph partition, variants, and generalizations. Eu-
ropean Journal of Operational Research, 206(2):271–280, 2010.

[Bogomolnaia and Jackson, 2002] A. Bogomolnaia and M.O. Jack-
son. Stability of hedonic coalition structures. Games and Eco-
nomic Behavior, 38(2):201–230, 2002.

[Caragiannis et al., 2019] I. Caragiannis, D. Kurokawa, H. Moulin,
A. D. Procaccia, N. Shah, and J. Wang. The unreasonable fairness
of maximum Nash welfare. ACM Transactions on Economics and
Computation (TEAC), 7(3):1–32, 2019.

[Chen and Roy, 2021] Jiehua Chen and Sanjukta Roy. Euclidean 3d
stable roommates is np-hard. arXiv:2108.03868, 2021.

[Chen et al., 2014] William Chen, Anand Srivastav, Giancarlo
Travaglini, et al. A panorama of discrepancy theory. Springer,
2014.

[Conitzer et al., 2019] V. Conitzer, R. Freeman, N. Shah, and
J. Wortman-Vaughan. Group fairness for the allocation of in-
divisible goods. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI), pages 1853–1860, 2019.

[Fain et al., 2018] B. Fain, K. Munagala, and N. Shah. Fair allo-
cation of indivisible public goods. In Proceedings of the 19th
ACM Conference on Economics and Computation (EC), pages
575–592, 2018.

[Fernandes et al., 2015] Cristina G Fernandes, Tina Janne Schmidt,
and Anusch Taraz. Approximating minimum k-section in trees
with linear diameter. Electronic Notes in Discrete Mathematics,
50:71–76, 2015.

[Gale and Shapley, 1962] D. Gale and L. S. Shapley. College ad-
missions and the stability of marriage. Americal Mathematical
Monthly, 69(1):9–15, 1962.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson. Com-
puters and Intractability: a Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.

[George and Marvin, 1958] Gamow George and Stern Marvin.
Puzzle-math, 1958.

[Gillies, 1953] Donald Bruce Gillies. Some theorems on n-person
games. Princeton University, 1953.

[Irving, 1985] Robert W Irving. An efficient algorithm for the “sta-
ble roommates” problem. Journal of Algorithms, 6(4):577–595,
1985.

[Jansen et al., 2005] Klaus Jansen, Marek Karpinski, Andrzej Lin-
gas, and Eike Seidel. Polynomial time approximation schemes
for max-bisection on planar and geometric graphs. SIAM Jour-
nal on Computing, 35(1):110–119, 2005.

[Kyropoulou et al., 2020] Maria Kyropoulou, Warut Suksompong,
and Alexandros A Voudouris. Almost envy-freeness in group re-
source allocation. Theoretical Computer Science, 841:110–123,
2020.

[Lipton et al., 2004] R. J. Lipton, E. Markakis, E. Mossel, and
A. Saberi. On approximately fair allocations of indivisible goods.
In Proceedings of the 6th ACM Conference on Economics and
Computation (EC), pages 125–131, 2004.

[Manurangsi and Suksompong, 2021] Pasin Manurangsi and Warut
Suksompong. Almost envy-freeness for groups: Improved
bounds via discrepancy theory. In Proceedings of the 30th In-
ternational Joint Conference on Artificial Intelligence (IJCAI),
pages 335–341, 2021.

[McKay and Manlove, 2021] M. McKay and D. Manlove. The
three-dimensional stable roommates problem with additively sep-
arable preferences. In Proceedings of the 14th International Sym-
posium on Algorithmic Game Theory (SAGT), 2021. Forthcom-
ing.

[Olsen et al., 2012] Martin Olsen, Lars Bækgaard, and Torben
Tambo. On non-trivial nash stable partitions in additive hedo-
nic games with symmetric 0/1-utilities. Information Processing
Letters, 112(23):903–907, 2012.

[Peters, 2016] Dominik Peters. Graphical hedonic games of
bounded treewidth. In Proceedings of the Thirtieth AAAI Con-
ference on Artificial Intelligence, pages 586–593, 2016.

[Segal-Halevi and Suksompong, 2019] Erel Segal-Halevi and
Warut Suksompong. Democratic fair allocation of indivisible
goods. Artificial Intelligence, 277:103167, 2019.

[Steinhaus, 1948] H. Steinhaus. The problem of fair division.
Econometrica, 16:101–104, 1948.

[Stiebitz, 1996] Michael Stiebitz. Decomposing graphs under de-
gree constraints. Journal of Graph Theory, 23(3):321–324, 1996.

Appendix

A Proof of Lemma 1
Proof. Suppose there exists i ∈ S with ui(S ∩Xj) 6 ui(X(i)) + 1 for each j ∈ [k] but ui(X(i)) > 1. Then,

ui(S) =
∑

j∈[k] ui(S ∩Xj)

6 (k − 1)(ui(X(i)) + 1) + ui(X(i))

6 2(k − 1) · ui(X(i)) + ui(X(i))

= (2k − 1) · ui(X(i)),

which contradicts S being a (2k − 1, 0)-blocking coalition.

B Proof of Theorem 4
Proof. Consider a graphG which consists of two disjoint cliques of size 2k−3 each, denoted byA1 andA2; k−1 further disjoint cliques of
size 2k−4 each, denote byB1, . . . , Bk−1; and another disjoint clique of size 2, denoted byC. Note that n = 2(2k−3)+(k−1)(2k−4)+2 =
2k2 − 2k > k2 + k for k > 3. We start with the following lemma.

Lemma 2. If X is a balanced min k-cut of G such that for some j∗ ∈ [k], there exist V ⊆ Xj∗ and a clique V ′ ⊆ ∪j∈[k]Xj \ Xj∗ with
E(V ′, Xj \ V ′) = 0 for every j ∈ [k] \ j∗, E(V ′, V) = 0, E(Xj∗ \ V, V ′) > E(Xj∗ \ V, V), and |V | = |V ′|, then swapping the nodes
between V and V ′, using an arbitrary bijection, does not increase the cut size.

Proof. Since V ′ is a clique, we easily see that the edges with two endpoints in different parts, except for part Xj∗ are not increased. On the
other hand, as E(V ′, Xj \ V ′) = 0 for any j ∈ [k] \ j∗, E(V ′, V) = 0 and E(Xj∗ \ V, V ′) > E(Xj∗ \ V, V), we see that all the edges
with one endpoint to Xj∗ and the other endpoint to another part are not increased. Hence, cut is not increased.

Let X = (X0, ..., Xk−1) be an arbitrary balanced min k-cut of G. Suppose that the nodes of A1 are spread among different parts. Then,
there exists a part Xj1 that contains at least two nodes of A1, as 2k − 3 > k when k > 3. Let S1 = Xj1 ∩ A1 and V = Xj1 \ (S1 ∪ {i1})
where i1 is an arbitrary node inXj1 \S1 (such a node always exists as n/k > |A1|−1 = 2k−4). Notice that S1 = A1 \S1 is a clique such
that E(S1, Xj \ S1) = 0 for any j ∈ [k] \ j1 and E(S1, V) = 0. Moreover, notice that |S1| = |V | as |A1| = 2k − 3 and |Xj1 | = 2k − 2.
We also see that

E(S1 ∪ {i1}, Xj1 \ (S1 ∪ {i1})) =
E(S1, Xj1 \ (S1 ∪ {i1})) + E(i1, Xj1 \ (S1 ∪ {i1})) 6 0 + |V |

while

E(S1 ∪ {i1}, S1) > 2 · |S1|

as |S1| > 2 and all the agents in S1 are connected with all the agents in S1. From Lemma 2, we get that if we swap the nodes among V
and S1, using an arbitrary mapping, the cut of the partition is not increased. Hence, there exists a balanced min k-cut in which all the nodes
in A1 are assigned to the same part Xj1 . Given this partition, suppose that the nodes of A2 are spread among different parts. Then, there
exists a part Xj2 different than Xj1 that contains at least two nodes of A2, and by a similar argument as above we conclude in a balanced
min k-cut in which all the nodes in A1 are assigned to Xj1 and all the nodes in A2 are assigned to Xj2 . Now, starting from this partition,
suppose that the nodes of B1 are spread among different parts. Then, as |B1| = 2k − 4, there exists a part Xj′1

different that Xj1 and Xj2

which contains at least two nodes from B1, when k > 2. Hence, by the same arguments as above we can conclude in a balanced min k-cut,
in which all the nodes in A1 are assigned to Xj1 , all the nodes in A2 are assigned to Xj2 , and all the nodes in B1 are assigned to Xj′1

. By
continuing this way and as |B`| = 2k − 4 for any ` ∈ {1, ..., k − 1}, we conclude that there exists a balanced min k-cut, in which all the
nodes in A1 are assigned to Xj1 , all the nodes in A2 are assigned to Xj2 , and all the nodes in B`, for ` ∈ {1, ..., k − 3}, are assigned to
Xj′

`
. Now, the last part different that Xj1 , Xj2 and Xj′

`
for ` ∈ {1, ..., k − 3}, denoted by Xj′

k−2
, contains at least two nodes from Bk−2

or Bk−1. Without loss of generality, we assume that |Xj′
k−2
∩ Bk−2| > 2. By doing the same arguments as before, we find a balanced

min k-cut partition X ′ = (X ′0, ..., X
′
k−1) in which all the nodes of each clique A1, A2, B1,...,Bk−2 are assigned to the same group. Let

Q = A1 ∪A2 ∪B1 ∪ ...∪Bk−2. Then notice that for each j ∈ [k], |X ′j ∩Q| > 2k− 4. Hence, the nodes of Bk−1 and C are spread across
different parts and each part contains at most two nodes of Bk−2.

Now, we can see that if C = {c1, c2} and Bk−1 = {b1, . . . , b2k−4}, then X ′′ given by X ′′0 = A1 ∪ {c1}, X ′′1 = A2 ∪ {c2}, and
X ′′j+1 = Bj ∪ {b2j−1, b2j} for j ∈ {1, . . . , k− 2} is a balanced min k-cut. But then, the coalition S = C ∪Bk−1 is a (2k− 3, 0)-blocking
coalition, as the utility of each agent in C increases by an infinite multiplicative factor when deviating with S, while that of each agent in
Bk−1 increases by a multiplicative factor of 2k − 3 when deviating with S.

C Proof of Theorem 6
Proof. Let X = (X0, X1) be a balanced min 2-cut. For the sake of contradiction, assume that there exists a blocking coalition S; we do not
even need S to be of size dn/2e or bn/2c to derive a contradiction.

Let X∗0 = X0 ∩ S and X∗1 = X1 ∩ S. Notice that for each agent i ∈ X∗0 , we have ui(S) > ui(X0) + 1, which implies that
ui(X

∗
1) > ui(X0 \ S) + 1. Summing over all i ∈ X∗0 , we have that |E(X∗0 , X

∗
1)| > |E(X∗0 , X0 \ S) + |X∗0 |.

Similarly, for each agent i ∈ X∗1 , we have ui(X
∗
0) > ui(X1 \ S) + 1. Summing over all i ∈ X∗1 , we have |E(X∗0 , X

∗
1)| > |E(X∗1 , X1 \

S)|+ |X∗1 |.
Adding the two equations together, and noting that |X∗0 |+ |X∗1 | = |S|, we obtain

2 · |E(X∗0 , X
∗
1)| > E(X∗0 , X0 \ S)

+ E(X∗1 , X1 \ S) + |S|.
(2)

Notice that X ′ = (S, V \ S) = (X∗0 ∪X∗1 , (X0 \ S) ∪ (X1 \ S)) is also a balanced 2-partition. Since X = (X0, X1) is a balanced min
2-cut, we have

0 6 cut(X ′)− cut(X)

= E(X∗0 , X0 \ S) + E(X∗1 , X1 \ S)
− E(X∗0 , X

∗
1)− E(X0 \ S,X1 \ S)

6 E(X∗0 , X0 \ S) + E(X∗1 , X1 \ S)− E(X∗0 , X
∗
1)

6 |E(X∗0 , X
∗
1)| − |S|,

where the final step uses Equation (2).
Hence, we have that |E(X0 ∩ S,X1 ∩ S)| > |S|. But since S is a forest, it can have at most |S| − 1 edges, which is the desired

contradiction.

D Proof of Theorem 7
Proof. Let X be any k-partition of a tree. Suppose for contradiction that there exists a (1, 1)-blocking coalition S. Note that S is a subgraph
of a tree, so it must be a forest. Hence, there exists a leaf i ∈ S with ui(S) 6 1, which contradicts S being a (1, 1)-blocking coalition.

Now, consider G = (V,E) with V = {r, a1, a2, b1, b2, . . . , bk−2} and E = {(r, a1), (r, a2), (a1, b1),∪`∈{2,...,k−2}(a2, b`)} as shown
in Figure 3 for the lower bound. Note that n = k + 1. Let X be any k-partition. Note that it must consist of k − 1 parts with a single
node each and one part with two nodes. Without loss of generality, assume that |X0| = 2. Like in the proof of Theorem 1, we notice that
the smallest maximal matching in this graph has two edges. Hence, there must exist agents i, i′ /∈ X0 that are connected by an edge. Since
the coalition {i, i′} is allowed to deviate, agents i and i′ can go from receiving utility 0 to utility 1, implying that the partition cannot be in
(α, β)-core for any α > 1 and β < 1.

E Proof of Theorem 8
Proof. Consider the K3,3,3 graph which consists of three set of three nodes each, denoted by C1 = {c11, c12, c13}, C2 = {c21, c22, c23}
and C3 = {c31, c32, c33}, respectively, and every node of each set is adjacent to every node in the other two sets.

For the sake of contradiction, assume that X = (X0, X1) is a partition of the graph that is EF-1. Since the graph is 6-regular, we can
see that |X0| > 4 and |X1| > 4, as if an agent i is assigned to a part with only at most two of its neighbours, then the other four of its
neighbours are assigned to the other part along with an agent i′ which is not neighbour of i, and then i envies i′ for more than one agent.
Without loss of generality, we assume that |X0| = 4. If X0 contains three nodes of the same set, then we can easily see that this partition
is not EF-1, as each of them is assigned to the same group with at most one of its neighbours. As there are three sets and X0 contains four
agents, we see that two agents of the same set, say c11 and c12, are assigned to X0. Then these two agents are in the same part along with at
most two of its neighbours, while all the remaining nodes are assigned to X1. Then, c11 and c12 envy c13 for more than one agents, which is
a contradiction.

F Algorithm 2 is not weak PO
There are cases that while Algorithm 2 returns an EF-1 balanced k-partition X = (X1, X2), there exists an EF-1 balanced k-partition
X ′ = (X ′1, X

′
2) under which all the agents receive higher utility. In other words, the algorithm fails to provide weak Pareto Optimality. For

k > 3, simply consider the path graph P2k, while for k = 2, consider the instance shown in Figure 2. The numbers in the nodes illustrate the
part that each of them is assigned to according to Algorithm 2, and the red and blue nodes illustrate a balanced EF1 partition in which all the
agents receive higher utility.

G Proof of Theorem 11
Proof. Let X = (X0, ..., Xk−1) be a balanced min-k cut. Suppose for contradiction that there exists an agent i that is envious for more than
one agents. This means that there exists Xj 6= X(i) such that Xj ∩ N(i) > X(i) ∩ N(i) + 1. Let i′ = argmaxt∈Xj

level(t), i.e. there
is no other agent in Xj that is located in a higher level than i′. Hence, there is no child of i′ in Xj . If we swap i and i′, the movement of i′

increases the number of edges that cross different parts by at most one, while the movement of agent i decreases the number of these edges
by at least two. But, then X = (X0, ..., Xk−1) would not be a balanced min-k cut which is a contradiction.

H Proof of Theorem 12
Proof. We reduce from the 3-Partition problem defined as follows. Given 3k positive integers a1,...,a3k and a valueA such thatA/4 < ai <
A/2 for each i ∈ [3k] and

∑
i∈[3k] ai = k · A. A 3-Partition instance admits a solution if the numbers can be partitioned into triples such

that each triple adds up to A. Notice that as all the integers are positive, A > 3.
Given an instance I of 3-Partition problem, we construct a tree GI = (VI , EI) as follows. For each ai, we construct a star with root ri

and 2ai − 1 leaves. Notice, that as ai-s are positive integers 2ai − 1 > 1, and thus each ri has at least one leaf adjacent to it. Moreover, we
add a star with root r∗ and 2A − 1 leaves, and each ri is connected with r∗. Thus, |Vi| = 2(k + 1)A. If T = (GI , r

∗), Figure 1 shows T
given an instance I of 3-Partition problem.

We show that GI admits an EF k + 1-partition if and only if I admits a solution. If I admits a solution, then each ri along all of
its children are assigned to the same part with some ri′ , if ai and ai′ are assigned to the same triple under the solution of I , and X0 =
{{r∗} ∪ (c(r∗, T) \∪i∈[3k] {ri})}. Each Xj for j ∈ {1, ..., 3k− 1} contains exactly three ri-s. We claim that X = (X0, ...Xk−1) is an EF
k-partition. Indeed, each node that has as parent some rj or r∗ is assigned to the same group with its unique neighbour, each rj is assigned
to the same group with all of its children, and as each of them has at least one child, they cannot envy any node that is assigned to the same
group with r∗, and since A > 3, r∗ does not envy any node that is assigned to the same group with three rj-s.

Now, assume that X = (X0, ..., Xk−1) is an EF k-partition. We see that there exists j ∈ [k] such that Xj = {{r∗} ∪ (c(r∗, T) \∪i∈[3k]
{ri})}, as otherwise some node in c(r∗, T) \∪i∈[3k] ri is not assigned to the same group with r∗, and then the only way for the partition
to be EF is if no other agent is assigned to the same part with r∗, which is not possible. Similarly, each rj should be assigned to the same
group with each of its children. Thus, for each ri and ri′ that are assigned to the same part if we assign ai and a′i to the same triple, we find
a solution for I .

I Imbalanced k-Partitions
In this section, we consider the case where the groups are required to only be non-empty rather than almost equal in size. Hence, we ask for
k-partitions that provide good guarantees with respect to our two notions of fairness without the balancedness requirement.

I.1 Core
Recall that core requires that there be no group of agents (coalition) such that every agent in the coalition prefers to be in that coalition than
in her own part. In general, there is no direct correlation between the size of a coalition and the ease with which it can be blocking.6 Hence,
in the imbalanced case, we impose the same restriction on the size of a deviating coalition as we have on the size of a part in a k-partition.
Note that all parts in a k-partition X are required to be non-empty, which implies 1 6 |Xj | 6 n− k + 1 for all j ∈ [k]; hence, we require a
deviating coalition S to also satisfy 1 6 |S| 6 n− k + 1. This gives rise to the following variant of the core.

Definition 3. Fix α > 1 and β > 0. A coalition S ⊆ V is called (α, β)-blocking for a k-partition X if

ui(S) > α · ui(X(i)) + β

for every i ∈ S. A k-partitionX is said to be in the (α, β)-imbalanced core if there is no (α, β)-blocking coalition S with 1 6 |S| 6 n−k+1.
When α = 1 and β = 0, we simply use the terms blocking coalition, and imbalanced core.

Note that the differing size restrictions on the deviating coalitions technically makes our results for the core under imbalanced k-partitions
incomparable to our results for the core under balanced k-partitions.

In this section, we study k-partitions in the (approximate) imbalanced core. First, we show that when k = 2, a 2-partition in the imbalanced
core always exists and Algorithm 3 finds one such partition in polynomial time. When k > 2, the same algorithm finds a partition in the
(1, k − 2)-imbalanced core.

Theorem 13. When k > 2, Algorithm 3 finds k-partition in the (1, k − 2)-imbalanced core in polynomial time. In particular, when k = 2,
it efficiently finds a 2-partition in the imbalanced core.

Proof. For contradiction, assume that there is a blocking coalition S for the k-partitionX computed by Algorithm 3 with 1 6 |S| 6 n−k+1
each of whose agents increased their utility by at least an additive factor of k − 1.

First, we suppose that G is connected. Notice that every connected graph admits a spanning tree, and that the graph stays connected when
deleting a leaf from this tree. Hence, Algorithm 3 is well-defined in this case, and we obtain the guarantee that Xk−1 is a connected subgraph
of G.

We claim that S∩Xk−1 6= ∅ andXk−1\S 6= ∅. To see the former claim, note that if |S| 6 k−1, then ui(S) 6 k−2 6 ui(X(i))+k−2
for any i ∈ S, which would be a contradiction. Hence, we must have |S| > k, which implies S∩Xk−1 6= ∅. To see the latter claim, note that
|S| 6 n − k + 1. Also, |Xk−1| = n − k + 1. Thus, if S ⊇ Xk−1, then we would have S = Xk−1. This would imply ui(S) = ui(X(i))
for all i ∈ S, which would again be a contradiction. Hence, we must have Xk−1 \ S 6= ∅.

Fix i∗1 ∈ S ∩ Xk−1 and i∗2 ∈ Xk−1 \ S. Because Xk−1 is a connected subgraph of G, there exists a path from i∗1 to i∗2 using only the
nodes in Xk−1. Consider the first edge of this path to travel out of S; say this edge is (i′, i′′) with i′ ∈ S ∩Xk−1 and i′′ ∈ Xk−1 \S. When
deviating from Xk−1 to S, agent i′ loses at least one neighbor (namely i′′) from Xk−1 and may gain up to k − 1 neighbors (the nodes in
∪r∈[k−1]Xr). This implies ui′(S) 6 ui′(Xk−1) + k − 2, which is a contradiction.

Next, suppose G is not connected. Since no connected component can contain all nodes of G, the algorithm must have moved at most
k − 2 nodes from X0 to ∪t∈{1,...,k−1}Xt. Hence, none of the agents who are in X0 in the final solution can join coalition S as their
utility cannot improve by more than an additive factor of k − 2 when doing so. Further, if there exists i ∈ S ∩ Xk−1, then ui(S) 6

6Smaller coalitions have the advantage of only having to improve the utility of fewer agents, whereas larger coalitions can include more
friends of their members.

Algorithm 3 (Approximate) Imbalanced Core

1: if G is connected then
2: for r = 0, . . . , k − 2 do
3: ir ← a leaf node in a spanning tree of G \ ∪t∈[r]Xt

4: Xr ← {ir}
5: end for
6: else
7: X0 ← any connected component of G
8: for r = 1, . . . , k − 2 do
9: if V \ ∪t∈[r]Xt 6= ∅ then

10: Xr ← {i}, for an arbitrary i ∈ V \ ∪t∈[r]Xt

11: else
12: Xr ← {i}, for an arbitrary i ∈ X0

13: X0 ← X0 \ {i}
14: end if
15: end for
16: end if
17: if V \ ∪t∈[k−1]Xt 6= ∅ then
18: Xk−1 = V \ ∪t∈[k−2]Xt

19: else
20: Xk−1 = {i}, for an arbitrary i ∈ X0

21: X0 ← X0 \ {i}
22: end if
23: return X = (X0, . . . , Xk−1)

1

2

2

1

1

1

21

21

2

2

1

2

1

2

2

2

12

1

2

1

2

1

2

12

1

2

1

1

Figure 2: Instance that Algorithm 2 fails to provide weak Pareto Optimality, when k=2. Numbers illustrate the partition of Algorithm 2 and
colors illustrate an EF-1 2-partition under which all agents improve their utility.

ui(Xk−1) +
∑k−2

r=1 ui(Xr) 6 ui(Xk−1) + k − 2 (as we have already established S ∩X0 = ∅), which is again a contradiction. Hence, we
must have S ⊆ ∪r∈{1,...,k−2}Xr , implying that |S| 6 k − 2. But then, ui(S) 6 k − 3 < ui(X(i)) + k − 2 for all i ∈ S, which is again a
contradiction.

For k > 3, notice that in the examples used in the proof of Theorem 1 to show the possible emptiness of the core, we had n = k + 1. In
this case, all k-partitions are balanced, and the imbalanced core becomes equivalent to the core. Hence, the imbalanced core can be empty
when k > 3. This means that the approximation guarantee provided in Theorem 13 is tight in two ways. First, one cannot hope to achieve a
multiplicative approximation guarantee of the form (α, 0)-imbalanced core, for any α > 1. Second, one also cannot hope to achieve a better
additive approximation guarantee of the form (1, β)-imbalanced core for β < k − 2.

Trees
In this subsection, we consider the special case where the social network G is a tree. We show that this substantially improves how well we
can approximate the imbalanced core. In particular, now a k-partition in the imbalanced core exists for k ∈ {2, 3} (as opposed to just for
k = 2 in the general case), and for k > 3, the best possible guarantee is the (1, 1)-imbalanced core (as opposed to the (1, k− 2)-imbalanced
core in the general case).

We remark that all our techniques extend to the case of forests; we consider trees for ease of exposition.

Theorem 14. When k 6 3 and the network is a tree, a k-partition in the imbalanced core always exists and can be found in polynomial time.

Proof. For k = 2, this follows from Theorem 13.
Let k = 3. Let (i0, i1) be a pair of nodes that are the farthest apart; note that both must be leaves. Let p0 and p1 be the unique neighbors of

i0 and i1, respectively. Let X0 = {i0}, X1 = {i1}, and X2 = V \ {i0, i1}. Clearly, this can be computed in polynomial time. Suppose for

contradiction that this is not in the imbalanced core and S is a blocking coalition. Note that if i ∈ S \ {i0, i1}, then i ∈ {p0, p1}, otherwise
ui(X(i)) = |N(i)|, preventing i from gaining by deviating with S.

Let L be the path between i0 and i1, and |L| denote the number of edges in this path. Note that n > 3 implies |L| > 2. If |L| = 2, then
the graph is a star. It is easy to check that the center of the star (equal to both p0 and p1) cannot gain from joining any coalition S of size at
most n− 2, so there is no blocking coalition.

Next, suppose |L| > 3, so p0 and p1 are distinct. In particular, note that for each t ∈ {0, 1}, we have upt(X2) = |N(pt)| − 1, so for pt
to deviate with S, we need N(pt) ⊆ S.

When |L| > 4, each pt has an adjacent node on L other than it and p1−t. Since this node is adjacent to neither i0 nor i1, it is not in S.
Hence, p0, p1 /∈ S, which implies i0, i1 /∈ S, which is a contradiction.

When |L| = 3, we have L = (i0, p0, p1, i1). If p0 and p1 have no neighbors other than each other, i0, or i1, then the tree consists of only
these four nodes; in this case, it is easy to see that the claimed partition is in the imbalanced core. Otherwise, without loss of generality, assume
that p0 has a neighbour j /∈ {i0, p1}. From the previous argument, since j is not adjacent to i0 or i1, j /∈ S. Since upt(X2) = |N(pt)| − 1
for each t ∈ {0, 1}, this implies that p0 would not join S, which in turn implies that p1 would not join S. Then, i0, i1 /∈ S as well, which is
a contradiction. Hence, the partition is in the imbalanced core.

Finally, for k > 4, we show that the best approximation we can guarantee is the (1, 1)-imbalanced core.

r

a1 a2

b1 b2 . . . bk−2

Figure 3: A tree in which no k-partition is in the (α, 0)-imbalanced core for any α > 1 and k > 4.

Theorem 15. Every k-partition of a tree is in the (1, 1)-imbalanced core. When k > 4, there exists a tree in which no k-partition is in the
(α, β)-imbalanced core with any α > 1 and β < 1.

Proof. The proof for the positive result follows the same reasoning that we used in the proof of Theorem 7 to argue that every balanced
k-partition of a tree is in the (1, 1)-core. Since any deviating coalition S is a subgraph of the tree, there must be i ∈ S with ui(S) 6 1.
Hence S cannot be a (1, 1)-blocking coalition.

Let us turn to the negative result for k > 4. Recall that in the proof of Theorem 7, we provided an example tree in which any balanced
k-partition admits a deviating coalition of size 2 whose members go from receiving utility 0 to utility 1. Since this example used n = k + 1,
a deviating coalition of size 2 is also allowed under the imbalanced core. Hence, this example shows the impossibility of achieving (α, 0)-
imbalanced core for any α > 1.

I.2 Envy-Freeness
Finally, we turn our attention to envy-freeness. Luckily, the definition of envy-freeness does not require any modification to make it mean-
ingful for imbalanced k-partitions.

First, we use the following result from the literature on satisfactory partition, stated in our framework, to establish the existence of an EF-2
partition when k = 2.

Theorem 16 (Stiebitz 1996, Bazgan et al. 2007). Given a graph G = (V,E) and functions a, b : V → N such that d(i) > a(i) + b(i) + 1
for every i ∈ V , there exists a 2-partition X = (X0, X1) of V such that ui(X0) > a(i) for each i ∈ X0 and ui(X1) > b(i) for all i ∈ X1,
and it can be computed in polynomial time.

In our case, we use functions a(i) = b(i) = b(d(i)− 1)/2c for all i ∈ V . Note that these satisfy the condition d(i) > a(i) + b(i) + 1.
Hence, the above result allows us to efficiently compute a 2-partition X satisfying ui(X(i)) > b(d(i)− 1)/2c for all i ∈ V . Since there are
only two parts, this also implies that for all i, i′ ∈ V ,

ui(X(i′))− ui(X(i)) 6 d(i)− 2 · b(d(i)− 1)/2c
6 d(i)− 2 · (d(i)− 2)/2 = 2,

which implies that X is EF-2.

Theorem 17. A 2-partition that is EF-2 always exists and can be computed in polynomial time.

Theorem 16 admits an extension to k > 2 parts, but in our case, this only guarantees that ui(X(i)) > b(d(i)− k + 1)/kc for all
i ∈ V [Bazgan et al., 2007]. This does not meaningfully limit the number of neighbors that agent i has in another part and, therefore, fails to
provide a non-trivial approximation to envy-freeness. That said, if one is interested in the slightly weaker guarantee of proportionality [Stein-
haus, 1948], which, in our setting, would require ui(X(i)) > d(i)/k, then this would provide an additive 1-approximation.

For the satisfactory partition problem, where the goal is to indeed minimize ui(X(i′))− ui(X(i)), as in the equation above, it is easy to
see that an additive error of 2 is the best possible. Consider dividing any clique with an odd number of nodes into two parts. An agent i in
the smaller part will have at least two more neighbors in the larger part than in her own part. However, this does not hold for envy-freeness:
if i envisions swapping places with an agent i′ from the other part, then X(i′) ∪ {i} \ {i′} will only contain one more neighbor of i than

X(i) does. Nonetheless, notice that the example that is used in the proof of Theorem 8 can also be used to show that EF-1 cannot always be
guaranteed even in the imbalanced case when k = 2.

However, if we restrict our attention to trees, we can achieve EF-1 even with balanced k-partitions for all k > 2 (see Theorem 10).

	Introduction
	Our Results
	Related Work

	Preliminaries
	Core
	Trees

	Envy-Freeness
	Trees

	Discussion
	Proof of Lemma 1
	Proof of Theorem 4
	Proof of Theorem 6
	Proof of Theorem 7
	Proof of Theorem 8
	Algorithm 2 is not weak PO
	Proof of Theorem 11
	Proof of Theorem 12
	Imbalanced bold0mu mumu kkappendixkkkk-Partitions
	Core
	Trees

	Envy-Freeness

