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Mean proximity rules provide a simple geometric framework to achieve consensus among a collection of
rankings (votes) over a set of alternatives. They embed all rankings into a Euclidean space, take the mean of
the embeddings of the input votes, and return the ranking whose embedding is closest to the mean. Previous
work on mean proximity rules has not integrated an important axiom—neutrality—into the framework.
By drawing on ideas from the representation theory of finite groups, we show that integrating neutrality
actually helps achieve a succinct representation for every mean proximity rule. Various connections are
drawn between mean proximity rules and other prominent approaches to social choice.
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1. INTRODUCTION
Modern social choice literature has seen rising interest in studying families of vot-
ing rules for aspects like manipulability [Gibbard 1973; Satterthwaite 1975] and
learnability [Procaccia et al. 2008]. Particularly, the framework of generalized scoring
rules (GSRs) [Xia and Conitzer 2008] has been a great success in this direction. Two
other well-studied approaches—distance rationalizability [Meskanen and Nurmi 2008;
Elkind et al. 2010a; 2010b] and maximum likelihood estimation (MLE) [de Condorcet
1785; Young 1988; Conitzer and Sandholm 2005]—have given rise to many families of
voting rules as well. More recently, Caragiannis et al. [2013] introduced the families
of PM-c and PD-c rules as generalizations of Condorcet consistent rules and positional
scoring rules, respectively. Their goal was to design rules that perform well in predict-
ing an underlying ground truth from noisy data.

These families of voting rules are extremely general in that generalized scoring
rules, distance rationalizable rules, MLE rules, as well as the union of PM-c and PD-
c rules contain almost all voting rules. Consequently, interesting restrictions of such
families have been studied in the literature [Caragiannis et al. 2014; Elkind et al.
2010a; 2010b; Conitzer and Sandholm 2005].

The family of mean proximity rules introduced by Zwicker [2008b] is one such restric-
tion; it is a proper subset of each of generalized scoring rules, distance rationalizable
rules, and maximum likelihood estimators (see Section 6). Additionally, each rule in
the family does what a voting rule should intuitively do: aggregate the input votes into
a mean consensus. A plethora of voting rules have emerged due to the fact that there is
no natural notion of the mean of a set of rankings. Mean proximity rules embed rank-
ings into a Euclidean space, and use the standard mean (in Euclidean space) of the
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(a) The Borda count for
3 alternatives

(b) The Kemeny rule
for 3 alternatives

Fig. 1: Geometric visualizations of mean proximity rules

embeddings of the input votes to guide the consensus. When this mean does not repre-
sent embedding of any ranking, the ranking whose embedding is closest to the mean
is chosen as the consensus. Different ways to embed the rankings into the Euclidean
space give rise to different mean proximity rules. In this sense, mean proximity rules
use Euclidean spaces to achieve the mean representative of the input votes. Examples
of mean proximity rules include the Kemeny rule and all positional scoring rules.

Consider the embedding given in Figure 1(a) that generates the Borda count for
3 alternatives. The 6 rankings are embedded into the vertices of a regular hexagon.
Each voter adds a unit weight to the vertex corresponding to his vote, and the ranking
whose region contains the mean (the center of gravity) of all the votes is chosen as
the output. Similarly, Figure 1(b) shows the embedding generating the Kemeny rule
for 3 alternatives. Mean proximity rules provide an easy understanding and in some
cases simple visualizations of voting rules (even of the Kemeny rule that is usually
considered a black-box algebraic problem). Saari [1995] argues that such a clear un-
derstanding is crucial for a voting rule to be accepted in the real-world, even more so
for positional rules1 that are arguably more complex than simple rules such as plural-
ity or k-approval. He then makes a compelling case of using geometry in order to clarify
and visualize voting rules. However, the geometric intuitions behind mean proximity
rules are fundamentally different from those in Saari’s work.

Despite the attractive outlook, mean proximity rules have received less attention in
the literature. We tap the potential and uncover significant structures in mean proxim-
ity rules. When introducing mean proximity rules, Zwicker [2008b] was motivated to
remove neutrality primarily due to the characterization by Myerson [1995] that all so-
cial choice functions (voting rules that output a single winning alternative) satisfying
neutrality, consistency, and another mild axiom are scoring rules. However, we study
mean proximity rules in the context of social welfare functions (voting rules that out-
put a ranking of the alternatives), for which consistency is significantly weaker. Hence,
neutrality can be integrated without much loss; e.g., the Kemeny rule is retained along
with positional scoring rules. On the other hand, we show that integrating neutrality
substantial structural implications leading to benefits in terms of representation.
Our contributions. Mean proximity rules have two alternative representations, one
geometric and one algebraic. We study mean proximity rules in a slightly limited con-
text of social welfare functions (SWFs), and characterize the constraints the limited
context imposes on both representations (Theorem 4.9). Next, we study the important
axiom of neutrality in the framework of mean proximity rules.

1By positional rules, we mean rules that pay attention to alternatives in all positions of the input votes.



We give a characterization of the constraints imposed by neutrality on both rep-
resentations of mean proximity rules (Theorem 5.9). In this context, we introduce
neutral embeddings, and show that every neutral mean proximity rule admits a neu-
tral embedding. By drawing on ideas from the representation theory of finite groups,
we further introduce linear embeddings, and show that every neutral mean proxim-
ity rule also admits a linear embedding. Linear embeddings are more constructive in
nature, and thus have additional benefits over neutral embeddings. While storing a
k-dimensional embedding for each of m! rankings typically requires O(k · m!) space,
linear embeddings leverage group theoretic structure to reduce the space requirement
to O(k2). This provides a succint representation for every neutral mean proximity rule,
which distinguishes the family of low-dimensional neutral mean proximity rules from
the other families of voting rules mentioned in the introduction where storing a rule
requires exponential space in the worst case.

Using a fairly technical but constructive proof, in Theorem 5.15 we establish that
(almost) every neutral embedding is also a linear embedding, and its succinct repre-
sentation can also be computed. This leads to a new characterization of neutral mean
proximity rules that yields further side results such as a characterization of mean
proximity rules that admit low-dimensional embeddings. We conclude by drawing con-
nections between mean proximity rules and various lines of research in social choice
literature, showing that mean proximity rules connect well with each line of research.

2. RELATED WORK
We build upon the work of Zwicker [2008b; 2008a] who introduced and studied mean
proximity rules and their generalization called mean neat rules, and gave an axiomatic
characterization of (rational) mean neat rules. The work of Cervone et al. [2012] builds
upon mean proximity rules and utilizes another notion of geometric consensus known
as the mediancenter or the Fermat-Weber point. They use the intuition of a rubber
band and each voter exerting force to bring the consensus close to himself which is
similar to the intuition behind mean proximity rules.

The work of Saari [1995] uses a different geometric visualization where a profile is
viewed in the space of m! dimensions, each dimension encoding the number of times a
particular ranking appears in a given profile. Daugherty et al. [2009] extend his work
by using intricate results from group representation theory. Related lines of research
also include the work of Brams and Fishburn [2007] that argue in favor of approval
voting for its simplicity and clarity, and the work of Crisman [2009] that connects the
Borda count and the Kemeny rule using the geometry of permutahedron — the mean
proximity embedding of the Borda count that is similar to Figure 1(a) but for 4 alterna-
tives. Note that in these lines of research (as well as in this paper), the Euclidean space
is merely a tool to understand voting rules, and does not bear any intrinsic meaning.

3. PRELIMINARIES
Let A be the set of alternatives, with cardinality |A| = m, and let n be the number
of voters. Let L(A) denote the set of rankings over the alternatives in A. A profile
π ∈ L(A)n is a collection of votes (rankings). A voting rule, or more technically a social
welfare function (SWF), is a function that maps every profile to a ranking or a set of
tied rankings.2 Formally, we denote a voting rule by r : L(A)n → P(L(A)) \ {∅}, where
P(·) denotes the power set. Note that a voting rule must output at least one ranking
so ∅ is disallowed.

2Another common definition of a voting rule is a social choice function (SCF), which maps every profile to a
winning alternative or set of tied alternatives.



Axiomatic Properties
Voting rules are often studied (and sometimes designed) from the viewpoint of ax-
iomatic properties. Such properties prescribe the behavior of a voting rule in certain
special cases. Some widely studied properties related to our work are defined below.

Anonymity. A voting rule r is called anonymous if its output only depends on the
collection of rankings in the profile (equivalently, the number of times each rank-
ing appears), and not on the identities of the voters providing the different rankings.

Consistency. A voting rule r is called consistent if for profiles π1 and π2 such that
r(π1) ∩ r(π2) 6= ∅, we have r(π1 + π2) = r(π1) ∩ r(π2).3 Here, profile π1 + π2 denotes
the union of the profiles π1 and π2.

Unanimity. A voting rule r is said to satisfy unanimity if on every profile π that
consists of copies of a single ranking σ, the rule uniquely outputs that ranking, so
that r(π) = {σ}.

Rank-distinguishability. A voting rule r satisfies rank-distinguishability if for every
two distinct rankings σ, σ′ ∈ L(A), there exists a profile π such that exactly one of σ
and σ′ belongs to r(π).

In the classical definition of social welfare functions that output a single ranking, non-
imposition (also known as citizen sovereignty) of a voting rule dictates that every rank-
ing of the alternatives should be achievable as the output of the voting rule on some
profile. The rank-distinguishability axiom is a mild generalization of non-imposition to
social welfare functions that output a set of rankings. It follows from unanimity which
is itself considered unrestrictive and almost always desirable.

The next axiom will be central to our study. Let us choose the labels of the alter-
natives to be 1, 2, . . . ,m. Throughout we denote {1, . . . , k} by [k]. A relabeling of the
alternatives is equivalent to a permutation of [m], namely an element of the sym-
metric group Sm. For a permutation τ ∈ Sm and a ranking σ ∈ L(A), the rank-
ing τσ is obtained by relabeling the alternatives according to τ in σ. Given a profile
π = (σ1, . . . , σn) and a permutation τ of the alternatives, let τπ = (τσ1, . . . , τσn) be the
profile where each vote is permuted according to τ . Similarly, given any set of rankings
T , let τT = {τσ : σ ∈ T}.

Neutrality. A voting rule r is neutral if for every profile π and permutation τ of the
alternatives, we have r(τπ) = τr(π).

In words, a voting rule is called neutral if the labels of the alternatives do not matter,
i.e., relabeling the alternatives would relabel the output of the rule accordingly.

Voting Rules
Next, we define two prominent voting rules that play a key role in this paper.

Kemeny rule. Given a profile π, define the weighted pairwise majority (PM) graph
of π as the graph where the alternatives are the vertices and, for every pair of
alternatives a and b, there is a directed edge from a to b with weight equal to the
number of voters that prefer a to b. The Kemeny score of a ranking σ is the total

3Consistency for social welfare functions that output a set of tied rankings is more general than consistency
for social welfare functions that output a single ranking (i.e., a singleton set). It is also significantly different
from consistency of the winning alternative for social choice functions.



weight of the edges in the PM graph of π whose direction agrees with σ. The Kemeny
rule selects the ranking or set of tied rankings with the highest Kemeny score.
Positional scoring rules. A positional scoring rule is given by a scoring vector α =
(α1, . . . , αm) ∈ Rm where αi ≥ αi+1 for all i ∈ [m− 1] and α1 > αm. Under this rule,
for each vote σ in π and i ∈ [m], αi points are awarded to the ith most preferred
alternative in σ. The rule returns the set of all rankings where the alternatives are
sorted in descending order of total points. Some examples of positional scoring rules
include plurality, Borda count, veto, and k-approval.

4. MEAN PROXIMITY RULES
We begin by presenting important background on mean proximity rules that will be
relevant for the rest of the paper. Mean proximity rules were originally defined in a
scope greater than that of the voting rules considered in this paper: While voting rules
map every profile to a set of tied rankings, mean proximity rules in general map every
profile to a set of tied outcomes, where the outcomes are chosen from a generic outcome
space O. In Section 4.1, we will fix O = L(A) to analyze mean proximity rules in the
context of voting rules. Here and throughout, ‖ · ‖ refers to the Euclidean norm.

Definition 4.1 (Mean Proximity Rules [Zwicker 2008b]). A mean proximity rule is
given by an input embedding φ : L(A) → Rk mapping input rankings to a k-
dimensional Euclidean space and an output embedding ψ : O → Rk mapping possible
outcomes to the same Euclidean space. The outcome of the rule on a profile π is given
by the set argmino∈O ‖ψ(o) − µ(π)‖, where µ(π) = (1/n) ·

∑
σ∈π φ(σ) is the mean of

embeddings of the input votes.4

Zwicker [2008b] also defined another family of rules, which he referred to as general-
ized scoring rules. However, this name has since been used primarily to represent a
different family of voting rules that was introduced by Xia and Conitzer [2008] during
the same time period. We therefore refer to the family of Zwicker [2008b] as matrix
scoring rules. In Section 6, we observe that the family of matrix scoring rules is actu-
ally a subset of the family of generalized scoring rules.

Definition 4.2 (Matrix Scoring Rules [Zwicker 2008b]). A voting rule is called a ma-
trix scoring rule if there exists a scoring function s : L(A) × O → R such that for any
profile π, we have r(π) = argmaxo∈O

∑
σ∈π s(σ, o).

In words, a matrix scoring rule assigns a score to each outcome for each input vote,
and the outcome or outcomes with the highest aggregate score are chosen. Our choice
of terminology stems from the fact that the scoring function can be represented as a
|L(A)|×|O|matrix with real entries. Zwicker [2008b] also showed equivalence between
mean proximity rules and matrix scoring rules using the following technical result.

PROPOSITION 4.3 ([ZWICKER 2008B]). For embeddings φ : L(A) → Rk and ψ :
O → Rk, and a profile π, we have

argmin
o∈O

‖ψ(o)− µ(π)‖ = argmin
o∈O

∑
σ∈π
‖ψ(o)− φ(σ)‖2. (1)

From Proposition 4.3, it is clear that the scoring function s(σ, o) = −‖ψ(o) − φ(σ)‖2
represents the same mean proximity rule that has the embeddings (ψ, φ). Extending
this to a two-way correspondence, Zwicker [2008b] showed the following.

4In this paper, every summation of the form
∑
σ∈π iterates over rankings in profile π; in particular, if a

ranking appears multiple times in π, the summation contains one term for each appearance.



PROPOSITION 4.4 ([ZWICKER 2008B, THEOREM 4.2.1]). The families of mean
proximity rules and matrix scoring rules coincide.

According to this result, a mean proximity rule has two equivalent representations:
geometric — a pair of embeddings (ψ, φ), and algebraic — a scoring function s; it may
be the case that neither of the two is unique. We conclude the background on mean
proximity rules by mentioning a result of Zwicker [2008a] that further motivates the
study of mean proximity rules.

PROPOSITION 4.5 ([ZWICKER 2008A]). All positional scoring rules and the Kemeny
rule are mean proximity rules, with the outcome space being the set of rankings over the
alternatives. Mean proximity rules are consistent, connected, continuous, and anony-
mous.

Consistency of mean proximity rules is evident from Equation (1) because if two pro-
files lead to overlapping outputs according to the rule, then this overlap minimizes
the sum on the right-hand side of Equation (1) for each profile, and hence for their
union. Connectedness and continuity are two natural properties of voting rules de-
fined in [Zwicker 2008b]. For an alternative, but related, definition of continuity, the
reader may refer to [Conitzer et al. 2009]. Conitzer and Sandholm [2005] showed that
Bucklin’s rule, Copeland’s method, the maximin rule, and the ranked pairs method are
not consistent as social welfare functions. Hence, these are not mean proximity rules.

4.1. Symmetric Mean Proximity Rules
We now begin our investigation of mean proximity rules in the context of social welfare
functions that output rankings over the alternatives. Thus, from here onward, we fix
O = L(A), and by voting rules we mean social welfare functions. This has the following
effect on the various equivalent representations of mean proximity rules.

(1) The embeddings φ, ψ : L(A)→ Rk both map rankings to a Euclidean space.
(2) The scoring function s : L(A) × L(A) → R describes similarity between two rank-

ings. This special case was also defined and studied independently by Conitzer et
al. [2009], who referred to such rules as simple ranking scoring functions (SRSFs).

(3) Under a fixed enumeration σ1, . . . , σm! of L(A), we can represent a scoring function
by an m!×m! score matrix S such that Sij = s(σi, σj) for i, j ∈ [m!].

Mean proximity rules constitute a broad family of voting rules, some of which violate
natural desiderata. For example, a mean proximity rule given by a scoring function
s that satisfies s(σ, σ′) > s(σ, σ) for distinct σ, σ′ ∈ L(A) would not output σ even on
the profile where all the votes are σ, violating unanimity. To solve this problem, we
propose a simple adjustment.

Definition 4.6 (Symmetric Mean Proximity Rules). We say that a voting rule is a
symmetric mean proximity rule (SMPR) if there exists a mean proximity representa-
tion of the rule with identical input and output embeddings (ψ = φ).

Since the outcome space for SWFs is identical to the space of input votes (the set
of rankings over the alternatives), ψ = φ is a natural restriction. Note that not all
embeddings representing an SMPR may satisfy ψ = φ. We call the embeddings that
satisfy this restriction symmetric embeddings. From here onward, we always represent
an SMPR using a symmetric embedding (φ, φ), written simply φ.

In what follows, we assume that the SMPRs additionally satisfy rank-
distinguishability. For SMPRs, rank-distinguishability is equivalent to the intuitive
restriction that φ must map all rankings to different points of the Euclidean space.
To see this, note that if φ mapped all rankings to distinct points, then the rule would



output {σ} on a profile with a single vote σ. Thus, such a rule would achieve rank-
distinguishability. Conversely, if φ mapped two distinct rankings σ and σ′ to the same
point in the Euclidean space, then it is easy to see that on every profile either both
rankings would belong to the output of the rule or neither.

OBSERVATION 4.7. An SMPR satisfies rank-distinguishability if and only if every
symmetric embedding φ representing the rule maps all rankings to distinct points of
the Euclidean space.

Under this assumption, it is easy to check that in a profile π where all the votes are
σ, we have µ(π) = φ(σ). As a result, the output of every symmetric mean proximity
rule on π would be the singleton set {σ}. Therefore, not only does symmetry impose
intuitive structure on mean proximity rules, it also helps achieve natural desiderata
such as unanimity. Furthermore, the embeddings constructed in [Zwicker 2008b] for
positional scoring rules and the Kemeny rule in fact satisfy the restriction ψ = φ,
showing that these canonical mean proximity rules are symmetric.

4.2. Algebraic Characterization of Symmetry
Recall that mean proximity rules are equivalent to matrix scoring rules (Proposi-
tion 4.4). In the previous section we imposed symmetry on the embeddings of the mean
proximity rules. It is therefore natural to ask: What restriction does symmetry place on
other equivalent representations of mean proximity rules? For an embedding φ, define
the scoring function sφ such that sφ(σ, σ′) = −‖φ(σ)− φ(σ′)‖2 for all σ, σ′ ∈ L(A). Then
Equation (1) implies that sφ and φ are equivalent, meaning they both represent the
same SMPR. Further, the score matrix generated by sφ has a well-known structure.

Definition 4.8 (Euclidean Distance Matrix). A q × q matrix A = (aij) is called a
Euclidean distance matrix (EDM) if there exist v1, . . . , vq ∈ Rp (p ≤ q) such that
aij = ‖vi − vj‖2 for all i, j ∈ [q].

By construction, the score matrix sφ is a negated EDM and represents the given SMPR.
Conversely, given any score matrix that is a negated EDM, by definition we can find a
symmetric embedding φ such that the score matrix is generated by the scoring function
sφ. Hence, the rule represented by the score matrix must be an SMPR.

Further, a matrix A is conditionally positive semidefinite if xTAx ≥ 0 for all vectors
x such that

∑
i xi = 0. It is known that a matrix is a negated EDM if and only if it

is symmetric and conditionally positive semidefinite, and has non-positive entries and
zero diagonal entries; see [Ikramov and Savel’eva 2000, Theorem 3.10]. This yields the
following characterization.

THEOREM 4.9. A voting rule is a symmetric mean proximity rule if and only if it is
a matrix scoring rule whose score matrix is a negated Euclidean Distance Matrix, or
equivalently, a non-positive, symmetric, conditionally positive semidefinite matrix with
zero diagonal entries.

Note that while mean proximity SWFs coincide with the family of matrix scoring rules
(i.e. simple ranking scoring functions) due to Conitzer et al. [2009], our focus on sym-
metric mean proximity rules gives a fairly non-trivial algebraic condition on the score
matrix that translates to a rather intuitive geometric condition in the alternative mean
proximity representation.

To summarize, we provided two motivations for adding symmetry to mean proxim-
ity rules: (1) taking identical input and output embeddings reflects the fact that the
outcome space coincides with the space of input votes in the case of voting rules, and
(2) symmetric mean proximity rules achieve the additional requirement of unanimity



while still capturing all well-known mean proximity rules. We then characterized sym-
metric mean proximity rules in three equivalent representations: embeddings in the
Euclidean space, scoring functions, and score matrices. In the next section, we provide
characterizations under the addition of another desirable property, neutrality. While
neutrality is also a mild requirement (all voting rules of interest are neutral), we show
that it adds significant structure to mean proximity rules.

5. NEUTRALITY AND SYMMETRIC MEAN PROXIMITY RULES
Recall that neutrality of a voting rule states that the labels of the alternatives should
not matter, i.e., relabeling the alternatives should relabel the output in the same fash-
ion. We remark that our analysis of mean proximity rules focuses on understanding the
way voting rules work before they break ties. Therefore, mean proximity rules output
a set of tied results (in our case, rankings over the alternatives), and do not explicitly
break ties. Note that most rules do not remain neutral after lexicographic tie-breaking
is imposed, but are neutral (as per the definition in this paper) before ties are broken.
Further, uniformly random tie-breaking (where each tied result is returned with equal
probability) can always be used to retain neutrality even after tie-breaking. In this
sense, neutrality is an extremely mild axiom for voting rules that do not break ties.

In Section 5.1, we study the restrictions imposed by neutrality on the various equiv-
alent representations of symmetric mean proximity rules. We connect neutrality of
SMPRs with a notion of neutrality in the embedding, a similar notion of neutrality
in the scoring function due to Conitzer et al. [2009], and positive semidefiniteness of
the score matrix. In Section 5.2, we give a constructive characterization by drawing on
ideas from group representation theory.

5.1. Characterizations of Neutrality
We begin by describing neutrality of scoring functions.

Definition 5.1 (Neutral Scoring Functions [Conitzer et al. 2009]). A scoring func-
tion s : L(A) × L(A) → R is called neutral if s(τσ, τσ′) = s(σ, σ′) for all rankings
σ, σ′ ∈ L(A) and permutations τ ∈ Sm. A score matrix is neutral if its scoring function
is neutral.

In words, a scoring function is neutral if the similarity between two rankings given
by the function does not change when alternatives in both rankings are relabeled
similarly. Conitzer et al. [2009] showed that any scoring function of a neutral mean
proximity rule can be converted to an equivalent neutral scoring function.

PROPOSITION 5.2 ([CONITZER ET AL. 2009]). Let s be a scoring function represent-
ing a mean proximity rule r that is neutral. Then, the scoring function sNT defined as

sNT (σ, σ′) =
∑
τ∈Sm

s(τσ, τσ′) (2)

for all rankings σ, σ′ ∈ L(A) and permutations τ ∈ Sm is neutral and represents the
same rule r.

Additionally, it is easy to check that by definition every neutral scoring function repre-
sents a neutral mean proximity rule. We immediately obtain the following.

PROPOSITION 5.3 ([CONITZER ET AL. 2009, LEMMA 2]). A mean proximity rule is
neutral if and only if it is represented by a neutral scoring function.

This proposition characterizes the conditions on the scoring function (and thus on the
score matrix) that neutrality imposes on mean proximity rules. However, we are inter-



ested in the addition of neutrality to symmetric mean proximity rules. Together with
Theorem 4.9, Proposition 5.3 implies that a voting rule is a neutral symmetric mean
proximity rule if and only if it has a neutral score matrix and a score matrix that is
a negated EDM. But is there a score matrix satisfying both conditions simultaneously?
What conditions does neutrality impose on the embeddings of an SMPR? To answer
these questions, we first introduce a notion of neutrality for an embedding.

Definition 5.4 (Neutral Embeddings). We say that an embedding φ : L(A) → Rk is
neutral if ‖φ(σ)− φ(σ′)‖ = ‖φ(τσ)− φ(τσ′)‖ for all rankings σ, σ′ ∈ L(A) and permuta-
tions τ ∈ Sm.

It can be checked that if an embedding φ is neutral, its scoring function sφ is also
neutral. Further, similarly to scoring functions, embeddings can also be neutralized.

LEMMA 5.5. Let φ : L(A) → Rk be an embedding of an SMPR r. Then, φNT defined
as follows is an equivalent neutral embedding of the same SMPR r:

φNT (σ) = [φ(τ1σ)
Tφ(τ2σ)

T . . . φ(τm!σ)
T ]T (3)

for all rankings σ ∈ L(A), where τ1, . . . , τm! is an arbitrary but fixed enumeration of the
permutations in Sm. Further, the neutralization of φ and of its scoring function sφ are
connected via sφNT = sNTφ , where the neutral scoring function sNTφ also represents r.

PROOF. First, we show that φNT is neutral. For all rankings σ, σ′ ∈ L(A) and per-
mutations τ ∈ Sm, we have

‖φNT (τσ)− φNT (τσ′)‖2 =
∑
τ ′∈Sm

‖φ(τ ′τσ)− φ(τ ′τσ)‖2

=
∑
τ ′∈Sm

‖φ(τ ′σ)− φ(τ ′σ)‖2 = ‖φNT (σ)− φNT (σ)‖2,

where the second equality holds because for τ ∈ Sm, {τ ′τ : τ ′ ∈ Sm} = Sm, which is a
property of any group. Thus, φNT is neutral. Next, for all rankings σ, σ′ ∈ L(A),

sφNT (σ, σ
′) = −‖φNT (σ)− φNT (σ′)‖2 = −

∑
τ∈Sm

‖φ(τσ)− φ(τσ′)‖2

=
∑
τ∈Sm

sφ(τσ, τσ
′) = sNTφ (σ, σ′).

Thus, we have sφNT = sNTφ . The scoring function sφ is equivalent to the embedding φ,
and thus represents r. From Proposition 5.2, the neutral scoring function sNTφ = sφNT

represents the same rule r, and thus the embedding φNT represents r as well.

We remark that the neutralized embedding φNT is not very satisfactory because it
maps rankings to a Euclidean space with dimension m! times the dimension used by
φ. (Of course, as there are only m! rankings, the embeddings lie on a subspace of di-
mension at most m!.) However, it has significant structure. For example, in addition
to neutrality we also have ‖φNT (σ)‖2 =

∑
τ∈Sm ‖φ(τσ)‖

2 =
∑
σ′∈L(A) ‖φ(σ′)‖2. Hence,

‖φNT (σ)‖ is independent of σ. That is, φNT is an equal norm embedding.

Definition 5.6 (Equal Norm Embeddings). We say that an embedding φ : L(A) →
Rk has equal norm if ‖φ(σ)‖ = ‖φ(σ′)‖ for all rankings σ, σ′ ∈ L(A).
For equal norm embeddings, squares of Euclidean distances in Proposition 4.3 can be
replaced by inner products as follows.



LEMMA 5.7. For an equal norm embedding φ of an SMPR r, the scoring function s
given by s(σ, σ′) = 〈φ(σ), φ(σ′)〉 for all rankings σ, σ′ ∈ L(A) represents r.

PROOF. Let the equal norm embedding φ have ‖φ(σ)‖ = c for all σ ∈ L(A). From
Proposition 4.3, we know that on a profile π,

r(π) = argmin
σ∈L(A)

∑
σ′∈π
‖φ(σ)− φ(σ′)‖2

= argmin
σ∈L(A)

∑
σ′∈π

(
c2 + c2 − 2〈φ(σ), φ(σ′)〉

)
= argmin

σ∈L(A)

2c2 ·m!− 2
∑
σ′∈π
〈φ(σ), φ(σ′)〉 = argmax

σ∈L(A)

∑
σ′∈π
〈φ(σ), φ(σ′)〉.

Hence, by definition s is a scoring function representing r.

The score matrix generated by the inner product scoring function from Lemma 5.7 has
a well-known structure.

Definition 5.8 (Gram Matrices). A q × q matrix A = (aij) is called a Gram matrix if
there exist vectors v1, . . . , vq ∈ Rp (p ≤ q) such that aij = 〈vi, vj〉 for all i, j ∈ [q]. It is
well-known that a matrix A is Gramian if and only if it is positive semidefinite, that
is, if xTAx ≥ 0 for all vectors x.

With this machinery at hand, we are ready to answer the questions we posed regarding
conditions on various representations of an SMPR imposed by neutrality.

THEOREM 5.9. For a mean proximity rule r, the following are equivalent.

(1) r is neutral and symmetric.
(2) There exists a neutral and symmetric embedding representing r.
(3) There exists a non-negative score matrix representing r which is neutral, symmetric,

non-positive, conditionally positive semidefinite, and has zero diagonal entries.
(4) There exists a score matrix representing r which is neutral, positive semidefinite,

and has equal diagonal entries.

PROOF. It is easy to show that the second and the third conditions imply the first
condition. If a score matrix of r satisfies the third condition, it is a negated EDM. Then,
by Proposition 5.3 and Theorem 4.9, r is a neutral SMPR. Similarly, if r is a symmetric
mean proximity rule with a neutral embedding φ, then for a profile π, we have

r(τπ) = argmin
σ∈L(A)

∑
σ′∈π
‖φ(σ)− φ(τσ′)‖2

= τ argmin
σ∈L(A)

∑
σ′∈π
‖φ(τσ)− φ(τσ′)‖2

= τ argmin
σ∈L(A)

∑
σ′∈π
‖φ(σ)− φ(σ′)‖2 = τr(π),

where the first transition follows from Proposition 4.3, and the third transition follows
from neutrality of φ. Thus, r is a neutral SMPR.

Conversely, let r be a neutral SMPR and φ be its embedding. We proved in Lemma 5.5
that sNTφ = sφNT = s (say). Then, s = sNTφ implies that the score matrix corresponding
to the scoring function s is neutral. Further, s = sφNT implies that the score matrix is
also a negated EDM. Hence, the score matrix corresponding to the scoring function s is
both neutral and a negated EDM, implying the third condition. Further, the equivalent



embedding φNT is neutral and represents r, implying the second condition. Thus, we
have shown that the first three conditions are equivalent.

For equivalence with the fourth condition, take a neutral SMPR r and its embed-
ding φ. We saw that the embedding φNT has equal norm. Hence, the score matrix S
corresponding to the scoring function s given by s(σ, σ′) = 〈φNT (σ), φNT (σ′)〉 is a Gram
score matrix representing r (Lemma 5.7). Since S is a Gram matrix, it is also posi-
tive semidefinite. The equal norm property of φNT implies that S has equal diagonal
entries. Finally, neutrality of φNT implies neutrality of S. Hence, S satisfies the re-
quirements of the fourth condition.

Conversely, take a mean proximity rule r with a score matrix S that is neutral,
positive semidefinite, and has equal diagonal entries. Then, we can find an embedding
φ such that S is its Gram matrix. Neutrality and equal diagonal entries of S imply
neutrality and the equal norm property of φ. The latter implies that φ also represents
r (Lemma 5.7). Hence, r must be a neutral SMPR.

Theorem 5.9 translates neutrality of an SMPR to neutrality of its embedding. While it
is straightforward to check whether a given embedding is neutral, generating neutral
embeddings is a non-trivial task. This limits the constructiveness of the characteriza-
tion. Next, we improve the characterization by showing that neutrality of an embed-
ding is equivalent to a structure that provides a way to generate neutral embeddings.

5.2. Linear Embeddings
Group representation theory has played an important role in a diverse set of fields in-
cluding coding theory, quantum mechanics, and crystallography (in chemistry) [Barut
and Raczka 1986; Kovalev et al. 1993; MacWilliams and Sloane 1977]. A linear repre-
sentation of a group essentially maps every group element to a linear transformation of
a vector space, i.e., to an element of the general linear group on the vector space. When
a basis is chosen for the vector space, the linear transformation can be represented via
a matrix. This is known as matrix representation of a group.

In our case, we draw on the representation theory of the symmetric group, which
has gained much attention and for which many interesting structures have been dis-
covered by leveraging extreme symmetry of the group [James et al. 1984]. We fix the
standard Euclidean basis for simplicity. We now introduce linear embeddings using
ideas from linear representations of the symmetric group.

Definition 5.10 (Linear Embeddings). We say that an embedding φ : L(A) → Rk is
linear if there exists a function R : Sm → Rk×k, called the representation of φ, mapping
each permutation to a k × k real matrix such that

(1) the identity permutation τe is mapped to the identity matrix: R(τe) = Ik,
(2) R respects the multiplication operator of the symmetric group: R(τ1τ2) =

R(τ1)R(τ2) for all permutations τ1, τ2 ∈ Sm (where τ1τ2 represents the multipli-
cation of τ1 and τ2 within Sm),

(3) R maps permutations to orthogonal matrices: R(τ)T = R(τ)−1 for all permutations
τ ∈ Sm, and

(4) permuting applying a permutation to a ranking is equivalent to rotating—because
R uses orthogonal matrices—its embedding appropriately: φ(τσ) = R(τ)φ(σ) for all
rankings σ ∈ L(A) and permutations τ ∈ Sm.

It can be easily seen that the first and the second conditions together imply that
R(τ−1) = R(τ)−1 for all permutations τ ∈ Sm, where τ−1 is the inverse of τ in Sm.
Further, the third condition is completely unrestrictive: A striking result from group
representation theory states that for a representation R of any finite group (not just



the symmetric group), there exists a matrix P such that the equivalent representation
R′ defined by R′(g) = PR(g)P−1 for each group element g uses orthogonal matrices;
see, e.g., [Boerner et al. 1963, Thm 6.3]. That is, any representation can be converted
to a representation that uses orthogonal matrices. In what follows, we use Rτ instead
of R(τ) for notational convenience.

Before we dive into the equivalence between neutrality and linearity, we build its
pillars by presenting a few results about linear embeddings.

LEMMA 5.11. For all linear embeddings φ, rankings σ, σ′ ∈ L(A), and permutations
τ ∈ Sm, we have

〈φ(τσ), φ(τσ′)〉 = 〈φ(σ), φ(σ′)〉.

PROOF. Let R be the representation of φ. Then, we have

〈φ(τσ), φ(τσ′)〉 = 〈Rτφ(σ), Rτφ(σ′)〉 = 〈φ(σ), RTτ Rτφ(σ′)〉 = 〈φ(σ), φ(σ′)〉, (4)

where, the last transition holds because Rτ is an orthogonal matrix by definition.

Taking σ = σ′ in Lemma 5.11, we get the following corollary.

COROLLARY 5.12. Every linear embedding has equal norm.

While every linear embedding has equal norm, not every neutral embedding has equal
norm. However, the next result shows that every neutral embedding has a similar
equal distance property. The proof considers a profile where each ranking appears
exactly once; a detailed proof is given in the full version of the paper.5

LEMMA 5.13. Let φ be a neutral embedding, and φavg = (1/m!)·
∑
σ∈L(A) φ(σ) denote

the mean embedding of all rankings. Then, ‖φ(σ)− φavg‖ is independent of σ.

Given an embedding φ, we say that the embedding φ̂ defined by φ̂(σ) = φ(σ) − φavg
for all σ ∈ L(A) is the normalization of φ. Note that φ̂ is simply a translation applied
to φ, which is distance-preserving. Hence, φ̂ represents the same neutral SMPR as φ
does. From Lemma 5.13, the normalization of a neutral embedding has equal norm.
The following result has a straightforward proof, given in the full version of the paper.

LEMMA 5.14. An embedding is neutral (resp. linear) if and only if its normalization
is neutral (resp. linear).

Lemma 5.14 shows that the normalization of a neutral embedding is also neutral, in
addition to having the equal norm property. We now show that this normalization is in
fact linear—this requires a much deeper proof.

THEOREM 5.15. An embedding is neutral if and only if its normalization is linear.

PROOF. We first show that a linear embedding is also a neutral embedding. Let φ
be a linear embedding. Then for all σ, σ′ ∈ L(A) and τ ∈ Sm, we have

‖φ(τσ)− φ(τσ′)‖2 = ‖φ(τσ)‖2 + ‖φ(τσ′)‖2 − 2 · 〈φ(τσ), φ(τσ′)〉
= ‖φ(σ)‖2 + ‖φ(σ′)‖2 − 2 · 〈φ(σ), φ(σ′)〉 = ‖φ(σ)− φ(σ′)‖2.

The second transition is due to Lemma 5.11 and Corollary 5.12. Thus, φ is neutral.
Now, for our main result, let φ be an embedding whose normalization φ̂ is linear.

Then, φ̂ is neutral as shown above. Further, due to Lemma 5.14, φ is also neutral.

5Full version of the paper is available at http://www.cs.cmu.edu/∼nkshah/euclidean voting.full.pdf



The converse is much trickier, therefore we provide the high-level overview of the
proof. Take a neutral embedding φ : L(A)→ Rk, and let r be the rule it represents. We
want to show that φ̂ is linear. By Corollary 5.12 and Lemma 5.14, we know that φ̂ is a
(k-dimensional) equal norm neutral embedding. We first construct an equivalent em-
bedding φf as follows. Let k′ ≤ k be the dimension of the affine subspace of Rk spanned
by the points {φ̂(σ)}σ∈L(A). Then, we obtain φf by taking a distance-preserving map-
ping to Rk′ . Next, we show that φf is linear by explicitly constructing its representation
using Moore-Penrose pseudoinverses. Finally, we use this to construct an explicit rep-
resentation for φ̂ itself.

Now we provide the formal proof. First, it is easy to check that φ̂avg = 0. Hence,
the affine space spanned by the embeddings under φ̂ form a linear subspace of Rk of
dimension k′. Take an orthonormal basis v1, . . . , vk′ of this linear subspace, write φ̂(σ)
as a linear combination of the k′ basis vectors, and let φf (σ) encode the coefficients of
the linear combination. Equivalently, if P is the k′×k matrix with v1, . . . , vk′ as its rows,
then φf (σ) = Pφ(σ) for all σ ∈ L(A). It is now standard to show that the transformation
P preserves all distances. This has two implications: First, φf represents the same
neutral SMPR r as φ̂ and φ do. Second, φf is also an equal norm neutral embedding like
φ̂. These hold because the definitions of mean proximity rules, equal norm property,
and neutrality of embeddings only use distances between pairs of embeddings.

By construction, φf is of full dimension, i.e., the points where the rankings are
mapped span the whole of Rk′ .6 Next, consider the matrix A = [φf (σ1), . . . , φ

f (σm!)],
the k′×m! matrix whose columns are the embeddings under φf . Here, σ1, . . . , σm! is an
enumeration of L(A). This implies that A must have full row rank k′. Fix a permuta-
tion τ ∈ Sm, and consider B = [φf (τσ1), . . . , φ

f (τσm!)]. Then for all i, j ∈ [m!],

(BTB)ij = 〈φf (τσi), φf (τσj)〉 = 〈φf (σi), φf (σj)〉 = (ATA)ij

where the second transition follows because φf is neutral. Thus, ATA = BTB.
We now show that there exists a matrix Rτ such that φf (τσ) = Rτφ

f (σ) for all σ ∈
L(A). Combining the equations for all σ ∈ L(A), it is equivalent to show the existence
of an Rτ such that RτA = B, i.e., existence of a solution X of the linear system ATX =
BT . It is well-known that the system of equations Ax = b has a solution if and only if
AA+b = b, where A+ is the Moore-Penrose pseudoinverse of A (see, e.g., [Barata and
Hussein 2012]). Trivially extending this to multiple systems of linear equations, we
can see that the necessary and sufficient condition for existence of the required Rτ is
AT (AT )+BT = BT , or equivalently, BA+A = B. The last derivation uses the fact that
(AT )+ = (A+)T . Now,

B = BB+B = B
(
(BTB)+BT

)
B = B(BTB)+

(
BTB

)
= B(ATA)+

(
ATA

)
= B

(
(ATA)+AT

)
A = BA+A.

Refer [Barata and Hussein 2012] for the identities X = XX+X (used in the first tran-
sition) and X+ = (XTX)+XT (used in the second and the fifth transitions) regard-
ing Moore-Penrose pseudoinverses. The fourth transition holds because ATA = BTB.
Hence, we have shown that for every permutation τ ∈ Sm, there exists a matrix Rτ
such that φf (τσ) = Rτφ

f (σ) for all σ ∈ L(A). Further, one solution of Ax = b is x = A+b.
Extending this, we can see that one solution of ATX = BT is X = (AT )+BT . Hence,
Rτ = XT = BA+. We choose this particular solution for every τ ∈ Sm and show that it
satisfies the conditions of linearity.

6While it is not relevant for the proof, we remark that the fact that the m! points span Rk′ implies k′ ≤ m!.



Recall that the rank of the product of two matrices is at most the minimum of the
rank of the two matrices, and RτA = B. Also, both A and B are rank k′ matrices.
Hence, rank(Rτ ) ≥ k′. However, Rτ is a k′ × k′ matrix. Hence, we conclude that Rτ is
invertible for every τ ∈ Sm. We now show that Rτ1τ2 = Rτ1Rτ2 for all τ1, τ2 ∈ Sm.

Fix τ1, τ2 ∈ Sm. For every σ ∈ L(A), we have φf (τ1τ2σ) = Rτ1τ2φ
f (σ). Also,

φf (τ1τ2σ) = Rτ1φ
f (τ2σ) = Rτ1Rτ2φ

f (σ). Thus, we have that Rτ1τ2φf (σ) = Rτ1Rτ2φ
f (σ)

for all σ ∈ L(A). It is easy to show that this implies Rτ1τ2 = Rτ1Rτ2 . To see this, con-
sider the submatrix of A—let us call it Ap—by taking k′ linearly independent columns
of A. Then, Ap is an invertible square matrix. Also, Rτ1τ2Ap = Rτ1Rτ2Ap. Multiplying
by A−1p on both sides, we get the desired result. To complete the proof, we need to show
that Rτ is an orthogonal matrix for all τ ∈ Sm, i.e., R−1τ = RTτ . Note that

RTτ B = (A+)TBTB = (A+)TATA = (AA+)TA = IA = A,

where the second transition holds because BTB = ATA, and the fourth transition
holds because AA+ = I for any full row-rank matrix A (see, e.g., [Barata and Hussein
2012]). Thus, we have that RTτ B = A. Applying Rτ on both sides, we get RτRTτ B =
RτA = B. Similarly to Ap, we can construct an invertible submatrix Bp of B, and get
RτR

T
τ Bp = Bp, which, upon right-multiplication by B−1p , yields the required equation

R−1τ = RTτ . Thus, φf is a linear embedding. We now show that φ̂ is also linear.
Consider the orthonormal basis v1, . . . , vk′ that was used for constructing φf from

φ̂, and the corresponding matrix P with vi’s as its rows. Complete this to a basis
v1, . . . , vk of Rk, and consider the matrix Q that has all the vi’s as its rows. Then,
Qφ̂(σ) = [φf (σ)T , 0, . . . , 0]T , where the number of zeros is k − k′. For a permutation
τ ∈ Sm, construct the k × k matrix

R′τ = QT
[
Rτ 0
0 I

]
Q.

Here, Rτ is a k′ × k′ matrix and I is the (k − k′)× (k − k′) identity matrix. Note that

R′τ φ̂(σ) = QT
[
Rτ 0
0 I

]
Qφ̂(σ) = QT

[
Rτ 0
0 I

]
[φf (σ)0 . . . 0]T = QT [φf (τσ)T , 0, . . . , 0]T = φ̂(τσ).

Thus, R′τ φ̂(σ) = φ̂(τσ) for all τ ∈ Sm and σ ∈ L(A). Further,

R′τ1R
′
τ2 = QT

[
Rτ1 0

0 I

]
QQT

[
Rτ2 0

0 I

]
Q = QT

[
Rτ1 0

0 I

] [
Rτ2 0

0 I

]
Q

= QT
[
Rτ1Rτ2 0

0 I

]
Q = QT

[
Rτ1τ2 0

0 I

]
Q = R′τ1τ2 .

Here, the second transition follows since QQT is identity matrix as rows of Q form
an orthonormal basis. Because R′τ is product of three invertible matrices, R′τ itself is
invertible. Further,

(R′τ )
T = QT

[
Rτ 0
0 I

]T
Q = QT

[
RTτ 0
0 I

]
Q = QT

[
Rτ−1 0

0 I

]
Q = R′τ−1 .

Thus, R′τ is also an orthogonal matrix. This completes the proof.

Theorem 5.9 showed that an SMPR is neutral if and only if it has a neutral embed-
ding. The latter occurs if and only if the rule also has a normalized neutral embedding.
Together with Theorem 5.15, this provides another characterization of neutral SMPRs.

THEOREM 5.16. A symmetric mean proximity rule is neutral if and only if there is
a linear embedding representing it.

Theorem 5.16 should be viewed as a fifth equivalent condition of Theorem 5.9. Next,
we show that Theorem 5.16 could also be derived using a much simpler proof, but later



we describe the advantages of our constructive equivalence result between neutrality
and linearity over the alternative proof.

LEMMA 5.17. For an embedding φ of a neutral SMPR r, its neutralization φNT given
in Equation (3) is a linear embedding.

The proof of Lemma 5.17 appears in the full version of the paper. Theorem 5.9 and
Lemma 5.17 together provide another proof of Theorem 5.16. However, our original
proof that showed a stronger connection (equivalence) between normalization of neu-
tral embeddings and linear embeddings bears certain advantages described below.

5.3. Representation Size
The proof of Theorem 5.15 is constructive, meaning that one can use it to explicitly
find the linear representation of the normalization of any given neutral embedding.
The multiplicative property Rτ1τ2 = Rτ1Rτ2 implies that one only needs to store the
representation matrices corresponding to a generating set of Sm.7

It is well-known that the symmetric group Sm has a generating set of size two, ir-
respective of the value of m, consisting of: 1) a cycle, which shifts the labels of the
alternatives in a cyclic fashion, and 2) a transposition, which exchanges the labels of
two alternatives adjacent in the previous cycle. The matrices corresponding to these
two elements along with the value of φ(σ) for a single σ ∈ L(A) is enough to generate
φ(σ) for all σ ∈ L(A). Hence, if the dimension of φ is k, the corresponding SMPR can
be expressed using only 2k2 + k parameters instead of the k ·m! parameters required
to naı̈vely store a k-dimensional vector for each of the m! rankings. This is the first
representation to the best of our knowledge that is not directly exponential in m.

This succinct representation has many advantages. First, it reduces the storage
space required to encode a neutral SMPR. Second, we believe that it would inform
the design of efficient algorithms based on mean proximity rules. Finally, one of the
motivations for studying families of voting rules is to learn the most effective voting
rule from the family, for which fewer parameters implies more efficient learning.

Further, Lemma 5.17 gives a linear embedding that has dimension m! times the di-
mension of the input embedding, whereas Theorem 5.15 produces a linear embedding
of the same dimension as the input embedding. The lower dimension further empha-
sizes the benefits of the succinct representation shown above. Most importantly, our
results show that every rule in a family of low-dimensional neutral mean proximity
rules admits a succinct representation. This is in sharp contrast with other families
of voting rules studied in the social choice literature (see Section 1) where storing a
rule may require exponential space in terms of the number of alternatives in the worst
case. Note that positional scoring rules and the Kemeny rule can be expressed using
polynomial number of dimensions (respectively, O(m) and O(m2)).

This discussion inspires a very interesting basic question: Which neutral SMPRs
admit low-dimensional embeddings? In addition to the benefits mentioned above, low-
dimensional embeddings are important because they provide simple intuition behind
the working of the rules they represent. Turns out, the structure of linear embeddings
allow us to characterize all neutral SMPRs which admit one-dimensional and two-
dimensional embeddings. A one-dimensional embedding partitions the set of rankings
into two — the sets of rankings obtained by applying all odd and even permutations8

to any single ranking. The embedding then maps all rankings in one set to the same

7A generating set of a group is a subset of the group such that every element of the group can be expressed
as the product (under the group operation) of finitely many elements of the subset and their inverses.
8The parity (oddness or evenness) of a permutation σ is the parity of the number of inversions in σ, i.e., the
number of pairs x, y such that x < y but σ(x) > σ(y).



point, thus mapping all possible rankings to one of two distinct points. The set of two-
dimensional embeddings can be mapped to points on a circle as follows. In the matrices
corresponding to the generating set of Sm of size 2, it can be shown that the matrix cor-
responding to the cycle must be a rotation by 4π/m!, whereas the matrix corresponding
to the transposition must be a reflection around a line passing through the origin at
angle θ, where θ ∈ [0, 2π).9 Further, we were able to show that for 3 alternatives, im-
posing Pareto efficiency in the winner and in the loser10 to the set of two-dimensional
embeddings yields a new characterization of positional scoring rules over 3 alterna-
tives. The proofs involve fairly simple algebra, and therefore omitted.

Table I summarizes the characterizations presented in the paper. Multiple condi-
tions within a table cell are equivalent. One crucial result not shown in the table is
that an embedding φ is neutral if and only if its normalization φ̂ = φ− φavg is linear.

A mean proximity
rule is

iff ∃ a score matrix S such that iff ∃ embeddings
(ψ, φ) such that

symmetric S is a negated EDM ψ = φ

symmetric and neutral i) S is neutral and a negated EDM i) ψ = φ is neutral
ii) S is neutral, positive semidefi-
nite, and has equal diagonal entries

ii) ψ = φ is linear

Table I: Summary of the characterization results.

6. CONNECTIONS TO OTHER APPROACHES
In this section, we connect mean proximity rules with various lines of research in the
social choice literature.

Generalized scoring rules. Using Equation (1), it can easily be shown that mean
proximity rules (in our context of social welfare functions) are special cases of gen-
eralized scoring rules [Xia and Conitzer 2008]. Further, similarly to the equivalent
geometric (embedding) and algebraic (scoring function) representations of mean prox-
imity rules, GSRs also admit an algebraic [Xia and Conitzer 2008] and an equivalent
geometric representation [Mossel et al. 2013; Caragiannis et al. 2014]. Finally, a gen-
eralization of mean proximity rules known as mean neat rules [Zwicker 2008a] is char-
acterized by anonymity, consistency, and two other technical conditions (connectedness
and continuity). In contrast, generalized scoring rules are characterized by anonymity
and finite local consistency (a milder version of consistency). This provides an alternate
proof that mean proximity rules are a subset of generalized scoring rules.

Distance rationalizable rules. Meskanen and Nurmi [2008] introduced the distance
rationalizability framework where a rule is defined by a consensus class of profiles on
which the output is already defined and a distance function between the profiles. The
distance rationalizable rule finds the profile in a consensus class closest to the given
profile and returns the output for that class. Elkind et al. [2010a] studied additively
votewise distances, where the distance between two profiles is (informally) the sum
of distances between their rankings. Set the distance between two rankings to be the
squared Euclidean distance between their embeddings, and the consensus class to be

9Orientation of the 4π/m! rotation as well as the initial embedding can be fixed without loss of generality
10When all voters rank an alternative first or last, it should be first or last respectively in the output.



the strong unanimity consensus class (see [Elkind et al. 2010a]). Then, the correspond-
ing distance rationalizable rules coincide with symmetric mean proximity rules.

Maximum likelihood rules. For an embedding φ, consider a “noise model” where the
probability of a noisy estimate σ ∈ L(A) of an underlying ground truth σ∗ ∈ L(A) is

Pr[σ|σ∗] = e−‖φ(σ)−φ(σ
∗)‖2∑

σ′∈L(A) e
−‖φ(σ′)−φ(σ∗)‖2 ∝ e

−‖φ(σ)−φ(σ∗)‖2 . (5)

This is a family of Gaussian noise models, of which the Mallows [1957] model is a spe-
cial case. In the Mallows model, the denominator is independent of the ground truth
σ∗. It can be shown that this generalizes to the case of any neutral embedding φ in
Equation (5). Doignon et al. [2004] showed that the Mallows model admits efficient
sampling. It would be interesting to analyze what noise models arising from Equa-
tion (5) with neutral embeddings also admit an efficient sampling algorithm.

7. DISCUSSION
An important question that is not yet well understood is the relation between var-
ious representations of the same mean proximity rule. Note that a mean proximity
rule essentially takes a convex combination of the embeddings of the input votes,
and returns the rankings whose embeddings are closest to the convex combination,
i.e., it returns the set of rankings whose embeddings’ Voronoi regions contain the con-
vex combination. We conjecture that using Cauchy’s rigidity theorem (see [Aigner and
Ziegler 2010]), it can be established that two embeddings represent the same (neutral)
symmetric mean proximity rule if and only if they are similar, i.e., obtained from one
another by orthogonal transformations, translations, and scaling. This unique repre-
sentation conjecture, if proven, could significantly deepen our understanding of mean
voting in the Euclidean geometry.

Additionally, it can be shown that such a result would also entail our equivalence
between neutrality and linearity (Theorem 5.15), and allow one to calculate the min-
imum dimension required by any embedding representing a given symmetric mean
proximity rule. For instance, the conjecture would imply lower bounds of m−1 and

(
m
2

)
for dimensions required by any positional scoring rule and the Kemeny rule, respec-
tively, which would match the known upper bounds. More importantly, strong connec-
tions with rigidity theory and the geometry of Voronoi diagrams could then be lever-
aged, for example, to generalize the Euclidean distances used in mean proximity rules
to Bregman divergences (see [Boissonnat et al. 2010]). Moreover, rigidity theory and
computational geometry have recently seen significant progress in tackling algorith-
mic and computational challenges (see, e.g., [Biedl et al. 2007]), and this could inform
the design of efficient algorithms based on mean proximity rules.
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