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We study the problem of allocating multiple resources to agents with heterogeneous demands. Technological
advances such as cloud computing and data centers provide a new impetus for investigating this problem
under the assumption that agents demand the resources in fixed proportions, known in economics as Leon-
tief preferences. In a recent paper, Ghodsi et al. [2011] introduced the dominant resource fairness (DRF)
mechanism, which was shown to possess highly desirable theoretical properties under Leontief preferences.
We extend their results in three directions. First, we show that DRF generalizes to more expressive settings,
and leverage a new technical framework to formally extend its guarantees. Second, we study the relation
between social welfare and properties such as truthfulness; DRF performs poorly in terms of social welfare,
but we show that this is an unavoidable shortcoming that is shared by every mechanism that satisfies one of
three basic properties. Third, and most importantly, we study a realistic setting that involves indivisibilities.
We chart the boundaries of the possible in this setting, contributing a new relaxed notion of fairness and
providing both possibility and impossibility results.
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[Computer Applications]: Social and Behavioral Sciences—Economics
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1. INTRODUCTION
Resource allocation is a fundamental issue in the design and implementation of com-
puting systems, which are naturally constrained in terms of CPU time, memory, com-
munication links, and other resources. We are interested in settings where these re-
sources must be allocated to multiple agents with different requirements. Such situa-
tions arise, e.g., in operating systems (where the agents can be jobs) or in cloud comput-
ing and data centers (where the agents can be users, companies, or software programs
representing them). To take one example, federated clouds [Rochwerger et al. 2009] in-
volve multiple agents that contribute resources; the redistribution of these resources
gives rise to delicate issues, including fairness as well as incentives for participation
and revelation of private information, which must be carefully considered.

Despite the growing need for resource allocation policies that can address these re-
quirements, state-of-the-art systems employ simple abstractions that fall short. For
example, as pointed out by Ghodsi et al. [2011], Hadoop and Dryad—two of the
most widely-used cluster computing frameworks—employ a single resource abstrac-
tion for resource allocation. Specifically, these frameworks partition the resources into
bundles—known as slots—that contain fixed amounts of different resources. The slots
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are then treated as the system’s single resource type, and at this point the allocation
can be handled using standard techniques that were developed by the systems commu-
nity. However, in a realistic environment where agents have heterogeneous demands,
the single resource abstraction inevitably leads to significant inefficiencies.

Ghodsi et al. [2011] suggest a compelling alternative. Their key insight is that even
though agents may have heterogeneous demands for resources, their demands can be
plausibly assumed to be highly structured, in maintaining a fixed proportion between
resource types. For example, if an agent wishes to execute multiple instances of a job
that requires 2 CPUs and 1 GB RAM, its demand for these two resources has a fixed
ratio of 2. Given 5 CPUs and 1.8 GB RAM, the agent can run only 1.8 instances of its
task (note that Ghodsi et al. allow divisible tasks) despite the additional CPU, hence
the agent would be indifferent between this allocation and receiving only 3.6 CPUs
and 1.8 GB RAM. Preferences over resource bundles that exhibit this proportional
structure are known as Leontief preferences in the economics literature. There are some
positive results on resource allocation under Leontief preferences [Nicolò 2004], but
more often than not Leontief preferences are drawn upon for negative examples.

Leveraging this model, Ghodsi et al. [2011] put forward the dominant resource fair-
ness (DRF) mechanism. Briefly, DRF allocates resources according to agents’ propor-
tional demands, in a way that equalizes the shares that agents receive of their most
highly demanded resource (we elaborate in Section 2). Ghodsi et al. demonstrate that
DRF satisfies a number of prominent desiderata, including: (i) Pareto optimality (PO),
a well-known criterion of economic efficiency; (ii) sharing incentives (SI), in the sense
that agents are at least as happy as they would be under an equal split of the re-
sources; (iii) envy-freeness (EF), meaning that agents do not wish to swap their al-
located resources with other agents; (iv) strategyproofness (SP), which requires that
agents cannot gain by misreporting their demands. From the perspective of economics,
Ghodsi et al. discovered that the egalitarian equivalent rule [Pazner and Schmeidler
1978] possesses excellent properties under Leontief preferences.

At the risk of sounding melodramatic, we believe that resource allocation in com-
puting systems is one of the most important and real challenges at the intersection of
economics and computer science today. In particular, we find it exciting that the the-
ory of fair division [Moulin 2003], as exemplified by the egalitarian equivalent rule,
provides an ideal, almost tailor-made framework for tackling modern technological
challenges in data centers and cloud computing. Despite the significant step forward
made by Ghodsi et al. [2011], there are still many key issues that need to be addressed.
Is it possible to rigorously extend the DRF paradigm to more expressive settings where
agents are weighted and may not demand every resource? How can we formally tackle
settings where agents’ demands are indivisible? How does DRF compare to alternative
mechanisms when social welfare is a concern? We provide answers to these questions
below.

Our results
Our first order of business is to rigorously extend some of the theoretical results of
Ghodsi et al. [2011]. In Section 3, we consider a setting where agents can be weighted
based on an initial endowment, and modify the definitions of SI and EF accordingly. We
also address the case where agents may not require every resource. We extend DRF to
tackle these extensions of the model, and formally establish that the extended version
still satisfies PO, SI, EF, and in fact satisfies the stronger coalitional version of SP,
group strategyproofness (GSP). (See below for a discussion of closely related results.)

In Section 4, we explore the relation between the desirable properties mentioned
above, and maximization of the social welfare—the sum of utilities of the agents. To
study social welfare we must assume an interpersonal comparison of utilities, that is,
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we need to exactly specify the utilities of agents for allocations, rather than focusing on
ordinal preferences over allocations. Focusing on a natural, albeit specific, utility func-
tion, we observe that DRF can produce allocations that only provide roughly 1/m of the
social welfare of the optimal allocation, where m is the number of resources. However,
we demonstrate that this poor welfare property is necessary for any mechanism that
satisfies at least one of the three properties SI, EF, and SP. While the proofs for SI and
EF are straightforward, the proof for SP is our most technical. These results vindicate
DRF by establishing that reasonable methods for the allocation of multiple resources
are inherently incompatible with social welfare maximization. In other words, the poor
performance of DRF in terms of social welfare does not stem from its implicit focus on
egalitarian welfare.

We view Section 5 as the most important on both a conceptual and practical level.
The definition of Leontief preferences, on which the above results hinge, implicitly
requires that both resources and tasks be divisible, so an agents’ utility can be repre-
sented simply by the proportion between its demand for different resources. However,
in practice an agent’s task would require a minimum, indivisible bundle of resources.
For example, if an agent requires 2 CPUs and 1 GB RAM to run one instance of its task,
allocating 1 CPU and 1/2 GB RAM would be no more preferred than allocating nothing
at all. Indeed, the agent’s utility function should be conceptualized as a step function
that only increases when another complete bundle is available. This setting is novel;
even its single-resource variant has not been studied, to the best of our knowledge.

We observe that DRF performs poorly in this setting, but, more generally, strong
impossibilities rear their head as one moves to a setting with indivisibilities. In partic-
ular, EF and PO are trivially incompatible; inspired by the fair division literature, we
relax EF by considering the novel notion of envy-freeness up to one bundle (EF1): an
agent i prefers its own allocation to the allocation of another agent j, given that a sin-
gle copy of the demanded bundle of i is removed from the allocation of j. Nevertheless,
we show that SP is incompatible with PO and EF1 in a setting with indivisibilities,
nor is it compatible with PO and SI. The main result of Section 5 is a possibility: we
design a mechanism, SEQUENTIALMINMAX, which satisfies PO, SI, and EF1; given
our impossibility results with respect to SP, this is the best combination of properties
one could hope for. In general, the mechanism sequentially allocates bundles to mini-
mize the maximum share of a resource that any agent has after allocation, but at each
step only agents that satisfy certain conditions are eligible. We argue that this mech-
anism is practical for several reasons, in particular because it can be implemented
dynamically (when agents arrive and depart, or change their demands over time).

Related work on the allocation of multiple resources
The work of Ghodsi et al. [2011] has quickly attracted significant attention from the
algorithmic economics community. Consequently, during the process of preparing this
paper, several independent (from our work and each other) related papers have become
available. While none of these papers study social welfare maximization (our Section 4)
or indivisibilities (our Section 5), there is a partial overlap with our results on extend-
ing DRF (Section 3). In the following, we discuss each of these papers in detail, starting
from the original DRF paper.

Ghodsi et al. [2011] focus on the theoretical comparison of DRF to other potential
mechanisms, and provide a systematic empirical study of the computational proper-
ties of DRF. Ghodsi et al. also mention that one can extend DRF to take into account
weighted agents. However, the discussion of this extension is informal, and it is un-
clear whether DRF maintains its properties. In addition, although Ghodsi et al. do
not assume that agents have strictly positive demands for every resource, this issue is
addressed rather informally. Specifically, their proof of SP relies on a loose simulation
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argument that, we believe, may be insufficient when some agents do not demand every
resource. We introduce an alternative technical framework that allows us (in Section 3)
to rigorously establish stronger properties (GSP instead of SP) while simultaneously
tackling agent weights and zero demands on some resources.

A manuscript by Li and Xue [2011] provides a characterization of mechanisms that
satisfy desirable properties under Leontief preferences. As a consequence of their re-
sults, one obtains a formal proof of GSP for certain mechanisms, even when agents
are weighted. Curiously, their results do not capture DRF itself due to a technical as-
sumption. More importantly, Li and Xue assume strictly positive demands; we argue
in Section 3 that the case of zero demands is important, and our results suggest that
it is also technically challenging.

Another manuscript by Friedman et al. [2011] explores the relations between re-
source allocation under Leontief preferences and bargaining theory. Among other re-
sults, they introduce a family of weighted DRF mechanisms. It is important to recog-
nize that here the weights are not exogenously given, but are a way to induce different
variations of DRF as mechanisms for allocating to unweighted agents. In addition,
Friedman et al. explicitly assume strictly positive demands for simplicity. Under this
assumption, they show that every weighted DRF mechanism that satisfies additional
technical properties is GSP.

We mention two additional (already published!) related papers that are disjoint from
ours in terms of results. Dolev et al. [2012] also study resource allocation under Leon-
tief preferences. They consider an alternative fairness criterion, which they call no
justified complaints. They compare allocations that satisfy this criterion with DRF
allocations. Their main result is the existence of allocations that satisfy no justified
complaints. Gutman and Nisan [2012] present polynomial time algorithms for com-
puting allocations under a family of mechanisms that includes DRF. Moreover, they
show that a competitive equilibrium (discussed in passing below) achieves the notion
of fairness of Dolev et al. [2012], thereby leading to a polynomial time algorithm for
computing allocations with this property. The two new mechanisms that we present
are both polynomial time.

2. THE MODEL
The mathematical model is quite simple, and we therefore begin with an intuitive
exposition based on an example from Ghodsi et al. [2011]; we also provide a different
perspective on this example. Subsequently, we more rigorously introduce our notations
and assumptions.

Intuition and an alternative interpretation of DRF
Consider a system with 9 CPUs, 18 GB RAM, and two agents. Agent 1 wishes to exe-
cute a (divisible) task with the demand vector 〈1 CPU, 4 GB〉, and agent 2 has a (divis-
ible) task that requires 〈3 CPU, 1 GB〉. Note that each instance of the task of agent 1
demands 1/9 of the total CPU and 2/9 of the total RAM; the task of agent 2 requires
1/3 of the total CPU and 1/18 of the total RAM.

The dominant resource fairness (DRF) mechanism [Ghodsi et al. 2011] works as fol-
lows. The dominant resource of an agent is the resource for which the agent’s task re-
quires the largest fraction of total availability. In the example, the dominant resource
of agent 1 is RAM, and the dominant resource of agent 2 is CPU. The DRF mechanism
seeks to maximize the number of allocated tasks, under the constraint that the frac-
tions of dominant resource that are allocated—called dominant shares—are equalized.

Returning to the running example, let y and z be the (possibly fractional) quantities
of tasks allocated by DRF to agents 1 and 2, respectively; then overall y + 3z CPUs
and 4y + z GB are allocated, and these quantities are constrained by the availability
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of resources. The dominant shares are 2y/9 for agent 1 and z/3 for agent 2. The values
of y and z can be computed as follows:

max (y, z)
subject to y + 3z ≤ 9

4y + z ≤ 18
2y
9 = z

3

Due to the equality 2y/9 = z/3 it is sufficient to maximize either y or z; we maximize
the pair (y, z) for consistency with [Ghodsi et al. 2011]. The solution is y = 3 and z = 2,
i.e., agent 1 is allocated 3 CPUs and 12 GB RAM, and agent 2 is allocated 6 CPUs and
2 GB RAM.

We next introduce a novel, somewhat different way of thinking about DRF, which
greatly simplifies the analysis of its properties. Let Dir be the ratio between the de-
mand of agent i for resource r, and the availability of that resource. In our example,
when CPU is resource 1 and RAM is resource 2, D11 = 1/9, D12 = 2/9, D21 = 1/3, and
D22 = 1/18. For all agents i and resources r, denote dir = Dir/(maxr′Dir′); we refer to
these demands as normalized demands. In the example, d11 = 1/2, d12 = 1, d21 = 1,
d22 = 1/6.

We propose a linear program whose solution x is the dominant share of each agent.
Observing the fixed proportion between an agent’s demands for different resources,
agent i is allocated an (x · dir)-fraction of resource r.

max x
subject to

∑
i x · dir ≤ 1, ∀r

Allocations are bounded from above by 1 because the program allocates fractions of
the total availability of resources. Clearly this linear program can be rewritten as:

x =
1

maxr
∑

i dir
. (1)

In the example, x = 1/(1/2 + 1) = 2/3. That is, the allocation to agent 1 is 1/3 of the
total CPU, and 2/3 of the total RAM, which is equivalent to 3 CPUs and 12 GB RAM,
as before. Similarly, agent 2 is allocated 2/3 of the total CPU and 1/9 of the total RAM,
which is equivalent to 6 CPUs and 2 GB RAM, as before.

Rigorous model
Denote the set of agents by N = {1, . . . , n}, and the set of resources by R, |R| = m. As
above, we denote the normalized demand vector of agent i ∈ N by di = 〈di1, . . . , dim〉,
where 0 ≤ dir ≤ 1 for all r ∈ R. An allocation A allocates a fraction Air of resource r
to agent i, subject to the feasibility condition

∑
i∈N Air ≤ 1 for all r ∈ R. A resource

allocation mechanism is a function that receives normalized demand vectors as input,
and outputs an allocation.

Throughout the paper we assume that resources (e.g., CPU, RAM) are divisible. Up
to (but excluding) Section 5, our model for preferences coincides with the domain of
Leontief preferences. Let the utility of an agent for its allocation vector Ai be

ui(Ai) = max{y ∈ R+ : ∀r ∈ R, Air ≥ y · dir}.

In words, the utility of an agent is the fraction of its dominant resource that it can ac-
tually use, given its proportional demands and its allocation of the various resources.
Note that this definition makes the implicit assumption that agents’ tasks are divisible;
we relax this assumption in Section 5. Unless explicitly mentioned otherwise, we do
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not rely on an interpersonal comparison of utilities. Put another way, with the excep-
tion of Section 4, an agent’s utility function simply induces ordinal preferences over
allocations, and its exact value is irrelevant.

An allocation A is called non-wasteful if for every agent i ∈ N there exists y ∈ R+

such that for all r ∈ R, Air = y · dir. Note that if A is a non-wasteful allocation then for
all i ∈ N ,

ui(A
′
i) > ui(Ai)⇒ ∀r ∈ R s.t. dir > 0, A′ir > Air. (2)

Properties of mechanisms
DRF is intuitively fair as it equalizes dominant shares. To mathematically gauge its
desirability we consider a set of formal properties that are deemed to be the most
important by Ghodsi et al. [2011], and are also featured prominently in the work of
Li and Xue [2011]. Ghodsi et al. established that these properties are all satisfied by
DRF.

An allocation mechanism satisfies sharing incentives (SI) (also known in this context
as individual rationality) if ui(Ai) ≥ ui(〈1/n, · · · , 1/n〉) for all i ∈ N . In other words,
an agent must receive an allocation that it values at least as much as the allocation
that splits all resources equally between all agents. This property is appropriate when
each agent contributes an equal amount of resources to the system (we generalize it
below).

An allocation mechanism is envy free (EF) if ui(Ai) ≥ ui(Aj) for all agents i, j ∈ N .
In words, each agent prefers its allocation to the allocation received by any other agent.

An allocation mechanism is Pareto optimal (PO) if it returns an allocation A such
that for all allocations A′, if there is an agent i ∈ N such that ui(A′i) > ui(Ai) then
there is an agent j ∈ N such that uj(A′j) < uj(Aj), that is, there is no other allocation
where all agents are at least as well off and at least one agent is strictly better off.

Finally, taking the game theoretic perspective, an agent’s demand vector is its pri-
vate information, and we would like to motivate agents to truthfully report their de-
mands regardless of the reported demands of other agents. We say that an allocation
mechanism is strategyproof (SP) if truth-telling is a dominant strategy. We define SP
in words to avoid introducing additional notation that will not be used later on. Given
a vector of demands for all agents d, let A be the resulting allocation, and let A′ be the
allocation returned by the mechanism when other agents report the same demands
d−i, and agent i ∈ N reports d′i. Then under an SP mechanism ui(Ai) ≥ ui(A′i), where
ui is the utility function induced by di.

3. EXTENSIONS: WEIGHTS, ZERO DEMANDS, AND GROUP STRATEGYPROOFNESS
In this section we depart from the framework of Ghodsi et al. [2011] in three ways.
First, we allow agents to be weighted, based on their contribution to the system. Sec-
ond, we explicitly model the case where agents may have zero demands and there-
fore DRF needs to allocate in multiple rounds (these first two issues were informally
considered by Ghodsi et al., as we discussed in Section 1). Third, we study stronger
game theoretic properties. We show that DRF can be modified to address these real-
istic extensions, although the analysis of its game theoretic properties becomes more
intricate.

For (contribution) weights, we assume that each agent i ∈ N has a publicly known
weight wir for resource r ∈ R, which reflects the agent’s endowment of that resource
(think of this as the amount of the resource contributed by the agent to the resource
pool). We assume without loss of generality that for all resources r ∈ R,

∑
i∈N wir = 1.

PO and SP are defined identically, but the weighted setting does require modifications
to the notions of SI and EF, which are redefined as follows. SI now means that an agent
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i ∈ N receives as much value as it would get from the allocation that assigns it a wir-
fraction of each resource r ∈ R, i.e., ui(Ai) ≥ ui(〈wi1, . . . , wim〉). EF requires that agent
i does not envy agent j when the allocation of j is scaled by wir/wjr on each resource
r. Formally,

ui(Ai) ≥ ui(〈(wi1/wj1) ·Aj1, . . . , (wim/wjm) ·Ajm〉).
An alternative definition for the weighted version of EF might simply require that in
the special case where agents have a uniform weight wi = wir for all r ∈ R, agent i
does not prefer the allocation of agent j scaled by wi/wj . However, note that the above
definition is stronger, and, as we shall demonstrate, the stronger version is feasible.

Our second contribution in this section is explicitly modeling the case where agents
may not demand every resource. At first glance the assumption of positive demands,
which implies that DRF can be simulated via a single allocation according to Equa-
tion (1), seems very mild. After all, it may seem that the allocation when an agent has
zero demand for a resource would be very similar to the allocation when that agent
has almost zero demand for the same resource.

To see why this is not the case, let the normalized demand vector of agent 1 be 〈1, ε〉
(i.e., d11 = 1 and d12 = ε), and let agents 2 and 3 have the demand vector 〈ε, 1〉. DRF
allocates roughly 1/2 of resource 1 to agent 1, and roughly 1/2 of resource 2 to each
of agents 2 and 3. If the ε demands are replaced by zero, the first-round allocation
(using Equation (1)) would be similar. However, then a second round would take place;
participation is restricted to agents that only demand non-saturated resources. In this
second round agent 1 would receive the unallocated half of resource 1, hence agent 1
would ultimately be allocated all, instead of just half, of resource 1.

In dealing with both weights and zero demands, we extend DRF as follows.
Let r∗i be the weighted dominant resource of agent i ∈ N , defined by r∗i ∈
argminr∈R: dir>0(wir/dir). Informally, an agent’s demand is now scaled by its weight
on each resource. Next, we let ρi = wir∗i

/dir∗i be the ratio of weight to demand on
the weighted dominant resource of agent i ∈ N ; for now we assume, for ease of
exposition, that dir > 0 implies wir > 0 (we explain how to drop this assump-
tion later). The extended DRF mechanism proceeds in rounds; let srt be the sur-
plus of resource r ∈ R left unallocated at the beginning of round t (so sr1 = 1
for all r ∈ R). The allocation of resource r to agent i in round t is denoted Airt.
ALGORITHM 1: EXTENDEDDRF
Data: Demands d, weights w
Result: An allocation A
t← 1;
∀r, sr1 ← 1;
S1 ← N ;
while St 6= ∅ do

xt ← srt
maxr∈R

∑
i∈St

ρi·dir
;

∀i ∈ St, r ∈ R, Airt ← xt · ρi · dir;
∀i ∈ N \ St, r ∈ R, Airt ← 0;
∀r ∈ R, sr,t+1 ← srt −

∑
i∈St

Airt;
t← t+ 1;
St ← {i ∈ N : ∀r ∈ R, dir > 0⇒ srt > 0}/* Agents demanding unsaturated resources */

end
∀i ∈ N, r ∈ R, Air ←

∑t−1
k=1Airk

Our main result of this section is that EXTENDEDDRF satisfies the four desirable
properties introduced above. In fact, the mechanism satisfies an even stronger game-
theoretic property known as group strategyproofness (GSP): whenever a coalition of
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agents misreports demands, there is a member of the coalition that does not strictly
gain.

THEOREM 3.1. EXTENDEDDRF is PO, SI, EF, and GSP.

It is trivial that the mechanism is PO, because resources are allocated in the cor-
rect proportions, i.e., it is non-wasteful, and moreover it allocates resources as long as
players can derive value from them. Establishing SI is also a simple matter. Indeed,
for every r ∈ R, ∑

i∈N
ρi · dir ≤

∑
i∈N : dir>0

(
wir

dir
· dir

)
=

∑
i∈N : dir>0

wir ≤ 1

and therefore x1 ≥ 1. Thus, each agent i receives x1 · ρi · dir∗i = x1 · wir∗i
≥ wir∗i

of
resource r∗i already in round 1. We need to show that each agent i ∈ N values its
allocation as much as the allocation 〈wi1, . . . , wim〉, and this now follows from the fact
that the mechanism is non-wasteful and from Equation (2).

For EF, let i, j ∈ N ; we argue that agent i does not envy j. Indeed, let ti and tj ,
respectively, be the last rounds in which these agents were allocated resources. If tj >
ti, agent j does not demand some resource that i does and hence is not allocated a
share of that resource. We can therefore assume that tj ≤ ti. If djr∗i > 0 then

Ajr∗i
=

(
tj∑
t=1

xt

)
· ρj · djr∗i ≤

(
tj∑
t=1

xt

)
·
wjr∗i

djr∗i
· djr∗i =

(
tj∑
t=1

xt

)
· wjr∗i

,

and otherwise Ajr∗i
= 0. Moreover,

Air∗i
=

(
ti∑
t=1

xt

)
· ρi · dir∗i =

(
ti∑
t=1

xt

)
· wir∗i

≥

(
tj∑
t=1

xt

)
· wir∗i

.

Scaling Ajr∗i
by (wir∗i

/wjr∗i
), we get at most Air∗i

; EF is then implied by Equation (2).
The challenge is to show that EXTENDEDDRF is GSP. To gain some insight, let

us concentrate first on a very special case: strictly positive demands (one round), no
weights (ρi = 1 for all i ∈ N ), and SP rather than GSP. For this, assume that agent
i ∈ N reports the demand vector d′i instead of di; this leads to the solution x′ to Equa-
tion (1) instead of x, which induces the allocation A′ir = x′ · d′ir. If x′ ≤ x then agent i
receives x′ ·d′iri ≤ x ·1 = x ·diri of its dominant resource ri, so its utility cannot increase
by Equation (2). If x′ > x, consider a resource r that was saturated when reporting di.
It holds that

Air = 1−
∑
j 6=i

Ajr = 1−
∑
j 6=i

x · djr > 1−
∑
j 6=i

x′ · djr = 1−
∑
j 6=i

A′jr ≥ A′ir,

hence, once again, the utility of agent i cannot increase by Equation (2).
The next lemma extends the above argument to the case of possibly zero demands

and weighted agents, and strengthens SP to get GSP, thereby completing the proof of
Theorem 3.1.

LEMMA 3.2. EXTENDEDDRF is GSP.

PROOF. Assume, without loss of generality, that the set of manipulating agents is
M ⊆ N and they report untruthful normalized demand vectors d′M = 〈d′i〉i∈M (which
induce ratios ρ′i); let d′ be the collection of normalized demand vectors where d′i = di

for all i ∈ N \M .
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Let t∗ be the first round when a demanded resource of some i ∈ M becomes satu-
rated, under truthful or untruthful demands (i.e., the minimum of the two rounds).
Let isSaturated be a boolean variable that is true if and only if a demanded resource
of a manipulator becomes saturated at the end of round t∗ under the truthful reports,
and define isSaturated′ similarly for the untruthful reports. As before, denote by Airt

(resp., A′irt) the share of resource r ∈ R allocated to agent i ∈ N in round t, and let
Air =

∑
tAirt (resp., A′ir) be the total fraction of resource r ∈ R allocated to agent

i ∈ N under d (resp., d′). In addition, St (resp., S′t) is the set of agents that demand
only unsaturated resources in round t under d (resp., d′).

CLAIM 3.3.

(1) For all t ≤ t∗ and r ∈ R such that dir = d′ir = 0 for all i ∈M , srt = s′rt.
(2) For all t ≤ t∗, St = S′t.
(3) For all t < t∗, xt = x′t.

PROOF. We prove the claim by induction on t. The base of the induction is trivial,
as sr1 = s′r1 = 1 for all r ∈ R, and S1 = S′1 = N . We can also let x0 = x′0 as a formality.

For the induction step, consider round t < t∗. We assume statements (1) and (2) are
true for all t′ ≤ t, and that statement (3) is true for all t′ < t. We prove statement (3)
for round t and then we prove statements (1) and (2) for round t+ 1.

In round t, every agent i ∈ M has no saturated resources under d and d′, hence
there are resources r, r′ ∈ R such that for all i ∈ M , dir = d′ir = 0 and dir′ = d′ir′ = 0,
which become saturated at round t under the two demand vectors, i.e.,

xt =
srt∑

i∈St
ρi · dir

,

and

x′t =
s′r′t∑

i∈S′t
ρ′i · d′ir′

.

By the induction assumption, srt = s′rt, sr′t = s′r′t, and St = S′t. Moreover,
∑

i∈St
ρi·dir =∑

i∈S′t
ρ′i · d′ir and

∑
i∈St

ρi · dir′ =
∑

i∈St
ρ′id
′
ir′ , where last two equalities hold because

every i ∈ M does not demand either r or r′ under d or d′ (and hence the summations
include zero terms for these agents). It follows that

xt =
srt∑

i∈St
ρi · dir

=
s′rt∑

i∈S′t
ρ′i · d′ir

≥ x′t,

and similarly x′t ≥ xt. We conclude that xt = x′t.
To establish statement (1) for round t + 1, let r ∈ R such that dir = d′ir = 0 for all

i ∈M . Using the induction assumption we conclude that

sr,t+1 = srt − xt
∑
i∈St

ρidir = s′rt − x′t
∑
i∈S′t

ρ′id
′
ir = s′r,t+1.

Finally, the assertion that St+1 = S′t+1 follows from the fact that all resources not
demanded by members of the coalition have the same surplus under both d and d′, and
resources that are demanded by at least one member of the coalition are not saturated
under d nor under d′.

Having established Claim 3.3, we proceed with the lemma’s proof by distinguishing
between four cases.
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Case 1: x′t∗ ≥ xt∗ and isSaturated is true. Let r be a resource that is saturated under
d in round t∗, and is demanded by some manipulator, i.e., there is i ∈ M such that
dir > 0. Note that such a resource exists by the definition of the variable isSaturated.
Using Claim 3.3, we have that for every t < t∗ and every i ∈ N \M ,

Airt = xt · ρi · dir = x′t · ρ′i · d′ir = A′irt,

and similarly Airt∗ ≤ A′irt∗ by the assumption that xt∗ ≤ x′t∗ . It follows that for all
i ∈ N \M ,

Air =
t∗∑
t=1

Airt ≤
t∗∑
t=1

A′irt ≤ A′ir.

Consider the set of agents M ′ = {i ∈ M |dir > 0}. From the definition of r, M ′ is
nonempty. In addition, for all i ∈ M\M ′, Air = 0 ≤ A′ir. We conclude that for any
i ∈ N \M ′, Air ≤ A′ir. It follows that∑

i∈M ′
A′ir ≤ 1−

∑
i∈N\M ′

A′ir ≤ 1−
∑

i∈N\M ′
Air =

∑
i∈M ′

Air,

where the equality holds because r is saturated under d. In other words, the overall
allocation of resource r to the set of manipulating agents in M ′ does not grow larger
as a result of manipulation, so there must be i ∈M ′ such that A′ir ≤ Air. Since dir > 0,
this implies by Equation (2) that the utility to agent i does not increase, as required.

Case 2: x′t∗ ≤ xt∗ and isSaturated’ is true. Consider an agent i ∈ M that demands a
resource that becomes saturated in round t∗ under d′. Let r∗i be a weighted dominant
resource of agent i. We have that ρi = wir∗i

/dir∗i and ρ′i ≤ wir∗i
/d′ir∗i . It follows that

ρi · dir∗i = wir∗i
and ρ′i · d′ir∗i ≤ wir∗i

. From Claim 3.3, we know that for all t < t∗, xt = x′t,
and our assumption is that x′t∗ ≤ xt∗ . Therefore, for every t ≤ t∗,

A′ir∗i t = x′t · ρ′i · d′ir∗i ≤ x
′
t · wir∗i

≤ xt · wir∗i
= xt · ρi · dir∗i = Air∗i t

.

Next we notice that under d′, agent i is not allocated more resources after round t∗.
We conclude that

A′ir∗i =

t∗∑
t=1

A′ir∗i t ≤
t∗∑
t=1

Air∗i t
≤ Air∗i

.

Thus, there exists an agent i ∈M who does not receive an increased share of weighted
dominant resource under d′, and hence its utility under d′ does not increase.

Case 3: x′t∗ > xt∗ and isSaturated is false (and hence isSaturated′ is true). We argue
that this case is impossible. Let r be a resource that is saturated under d in round t∗.
Since isSaturated is false, it must hold that for all i ∈ M , dir = 0. Thus for all t ≤ t∗

(using St = S′t by Claim 3.3),
∑

i∈S′t
ρ′i ·d′ir ≥

∑
i∈St

ρi ·dir. Claim 3.3 further states that
xt = x′t for all t < t∗, and therefore

srt∗ = 1−
t∗−1∑
t=1

(
xt ·

∑
i∈St

ρi · dir

)
≥ 1−

t∗−1∑
t=1

x′t ·∑
i∈S′t

ρ′i · d′ir

 = s′rt∗ .

We conclude that

xt∗ =
srt∗∑

i∈St∗
ρi · dir

≥ s′rt∗∑
i∈S′

t∗
ρ′i · d′ir

≥ x′t∗ ,
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Which contradicts our assumption that x′t∗ > xt∗ .

Case 4: x′t∗ < xt∗ and isSaturated’ is false (and hence isSaturated is true). This case is
symmetric to case 3, by replacing the roles of d and d′.

It may not be immediately apparent that the above four cases are exhaustive, but
note that it is never the case that both isSaturated and isSaturated′ are false. There-
fore, the three possible combinations of values for isSaturated and isSaturated′ are
covered by cases 1 and 3 when x′t∗ > xt∗ ; by cases 2 and 4 when x′t∗ < xt∗ ; and by cases
1 and 2 when x′t∗ = xt∗ . This completes the proof of Lemma 3.2.

While GSP is a strong game-theoretic axiom, an even stronger version has been
studied in the literature. Under the stronger notion, it cannot be the case that the
value of all manipulators is at least as high, and the value of at least one manipulator
is strictly higher under the false reported demands. If one makes the assumption of
strictly positive demands, it is easy to verify that EXTENDEDDRF also satisfies the
stronger notion (the allocation is made in a single round). However, it turns out that
when there are multiple rounds, one agent can help another by causing a third agent
to drop out early without losing value itself.

Recall that we have assumed for ease of exposition that dir > 0 implies wir > 0. We
now briefly explain how to drop this assumption. Observe that if there exist i ∈ N and
r ∈ R such that dir > 0 but wir = 0, agent i is not entitled to anything according to EF
or SI, i.e., any allocation would satisfy these two properties with respect to i. Hence,
we can initially remove such agents, and proceed as before with the remaining agents.
We then add a second stage where the remaining resources are allocated to the agents
that were initially removed, e.g., via unweighted DRF. Using Theorem 3.1, it is easy to
verify that this two-stage mechanism is PO, EF, SI, and GSP.

4. LIMITATIONS: SP MECHANISMS AND WELFARE MAXIMIZATION
In Section 3 we have established that the DRF paradigm is robust to perturbations
of the model, maintaining its many highly desirable properties. In this section we
examine some of the limitations of DRF, and ask whether these limitations can be
circumvented.

Throughout this section we assume that an agent’s utility is exactly ui(Ai) =
max{y ∈ R+ : ∀r ∈ R, Air ≥ y · dir}. In particular, if the mechanism is non-wasteful,
an agent’s utility is the allocated fraction of its dominant resource. In addition, we
assume an interpersonal comparison of utilities; i.e., the utility function is not merely
a formalism for comparing allocations ordinally. Therefore, given an allocation A, we
define its (utilitarian) social welfare as

∑
i∈N ui(Ai). The results of this section, which

are negative in nature, hold under this assumption specifically, but similar results
hold under perturbations of the utility functions such as linear affine sums of utility.
Because the negative results hold even when players are unweighted in terms of their
resource contributions, we adopt the model and definitions of Section 2.

Our basic observation is that DRF may provide very low social welfare compared to
a welfare-maximizing allocation. For example, consider a setting with m resources. For
each resource r there is an agent ir such that dir,r = 1, and dir,r′ = 0 for all r′ ∈ R\{r}.
Moreover, there is a large number of agents with normalized demands dir = 1 for all
r ∈ R. The optimal allocation would give all of resource r to agent ir, for a social welfare
of m. In contrast, under DRF each agent would receive a (1/(n−m+ 1))-fraction of its
dominant resource. As n grows larger, the social welfare of n/(n −m + 1) approaches
1. The ratio between these two values is arbitrarily close to m. More formally, letting
the approximation ratio of a mechanism be the worst-case ratio between the optimal
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solution and the mechanism’s solution, we say that for every δ > 0, DRF cannot have
an approximation ratio better than m− δ for the social welfare.

In some sense it is not surprising that DRF provides poor guarantees with respect to
social welfare. After all, the DRF paradigm focuses on egalitarian welfare by equalizing
the dominant shares across the agents, rather than aiming for utilitarian welfare. So,
can other mechanisms do better?

Let us first examine mechanisms that satisfy SI. It is immediately apparent that the
above example provides a similar lower bound. Indeed, any SI mechanism would have
to allocate at least 1/n of each resource to each of the n − m agents with an all-ones
normalized demand vector. Intuitively, an SI mechanism must allocate almost εm of
the various resources in order to obtain ε social welfare. That is, for any δ > 0, any SI
mechanism cannot have an approximation ratio better thanm−δ for the social welfare.
A similar (though slightly more elaborate) argument works for EF, by replacing the
demand vectors of the m agents ir with dir,r = 1 (as before) and dir,r′ = ε for all
r′ ∈ R \ {r} and an arbitrarily small ε > 0.

These observations are disappointing, but not entirely unexpected. SI and EF are
properties that place significant constraints on allocations. SP is an altogether differ-
ent matter. A priori the constraints imposed by SP seem almost orthogonal to welfare
maximization, and indeed in some settings SP mechanisms (even without the use of
payments) provide optimal, or nearly optimal, social welfare [Procaccia and Tennen-
holtz 2009]. Nevertheless, the main result of this section, whose proof appears in the
full version of the paper, is a similar lower bound for SP mechanisms.

THEOREM 4.1. For any δ > 0 there exists a sufficiently large number of agents n
such that no SP mechanism can provide an approximation ratio smaller than m− δ for
the social welfare.

Despite their negative flavor, the results of this section can be seen as vindicating
DRF as far as social welfare maximization is concerned. Indeed, asking for just one
of the three properties (SI, EF, or SP) seems like a minimal requirement, but already
leads to an approximation ratio that is as bad as the one provided by DRF itself (or
EXTENDEDDRF, for that matter).

5. INDIVISIBLE TASKS
So far, our theoretical analysis treated agents’ tasks as divisible: if to run a task an
agent needs 2 CPUs and 2 GB RAM, but it is allocated 1 CPU and 1 GB RAM, then it
can run half a task. This assumption, which coincides with Leontief preferences, is the
driving force behind the results of Section 3 as well as earlier and related results [Gh-
odsi et al. 2011; Li and Xue 2011; Friedman et al. 2011].

However, in practice agents’ tasks would usually be indivisible, as is indeed the case
with the implementation and simulations carried out by Ghodsi et al. [2011]. In other
words, a more realistic domain model is a setting with divisible goods but indivisible
tasks: an agent can only derive utility from tasks that are allocated enough resources
to run.1 Hence, informally, an agent’s utility function is a step function that increases
with every additional instance of its task that it can run. In this section we will not
require interpersonal comparison of utilities; i.e., as in Section 3, a utility function is
used only to induce ordinal preferences over allocations. However, for ease of exposi-
tion we do assume here that agents are unweighted (or, equivalently, all agents have
equal weights).

1The combination of divisible goods and indivisible tasks may lead to an additional, practical issue, in regard
to resource fragmentation, which we discuss in Section 6.
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More formally, each agent i ∈ N now reports a demand bundle bi, where bir denotes
the fraction of resource r ∈ R that agent i requires to complete one instance of its task.
Given an allocation A, the utility function of agent i ∈ N is given by

ui(Ai) = max{t ∈ N ∪ {0} : ∀r ∈ R, Air ≥ t · bir},

that is, an agent’s utility increases linearly with the number of complete instantiations
of its task that it can run.

Our positive results focus, as before, on non-wasteful mechanisms that do not allo-
cate resources to agents that cannot use them (our negative results do not make this
assumption). For a non-wasteful mechanism we can simply denote by xAi = xi the
number of bundles allocated to agent i ∈ N under the allocation A, in which case the
utility of agent i is ui(A) = xAi . As a last piece of new notation, we define inequalities
between two vectors as follows. We write v ≥ w if the inequality is satisfied pointwise.
Furthermore, v > w if v ≥ w and there is at least one coordinate k such that vk > wk.

Impossibility results
Observe that the definitions of PO, SI, EF, and SP are identical to the ones given in
Section 2. Interestingly, DRF still satisfies SI, EF, and SP under the new “truncated”
utilities. However, DRF is no longer PO. For example, say that there are two agents
and one resource, and b11 = 1/10, b21 = 2/5. DRF would allocate 1/2 of the resource
to each agent, but allocating 3/5 of the resource to agent 1 and 2/5 of the resource to
agent 2 would be better for agent 1 and equally good for agent 2. An implementation
of DRF that allocates tasks sequentially to agents with currently minimum dominant
share [Ghodsi et al. 2011] also suffers from several theoretical flaws when analyzed
carefully, e.g., it does not satisfy SI.2 Note that it is trivial to satisfy SI, EF, and SP
without PO, by giving each agent exactly its proportional share of each resource.

The next few results imply that we cannot hope to tweak DRF to achieve all four
desirable properties (PO, SI, EF, and SP) under indivisibilities.

THEOREM 5.1. Under indivisibilities there is no mechanism that satisfies PO, SI,
and SP.

PROOF. Consider a setting with two agents and a single resource. Both agents have
bundles b11 = b21 = 1/2+ε, for a small ε > 0. Assume for contradiction that there exists
a mechanism that satisfies PO, SI, and SP. By PO, the mechanism allocates one bundle
to exactly one of the two agents, without loss of generality agent 1. Now suppose that
agent 2 reports b′21 = 1/2; then any SI allocation must allocate at least 1/2 of the
resource to agent 2, hence the only allocation that is both PO and SI allocates all of
the resource to agent 2. This is a contradiction to SP.

An even more fundamental issue is that PO and EF are trivially incompatible un-
der indivisibilities. For example, when two agents have a task that requires all avail-
able resources, the only (two) Pareto optimal allocations give everything to one of the
agents, but these allocations are not EF.

Fortunately there is precedent to studying relaxed notions of EF in related settings.
A recent example is given by the work of Budish [2011] about the combinatorial as-
signment problem. Budish deals with a related resource allocation setting that mod-
els allocations of seats in university courses. Each resource (seats in course) has an
integer availability, and agents have preferences over bundles of resources. Budish
proposes an approximate version of the notion of competitive equilibrium from equal

2As pointed out by Ghodsi et al. [2011], this mechanism does satisfy a coarse version of an approximate EF
notion that is discussed below.
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incomes [Varian 1974].3 An interesting notion of approximate fairness satisfied by his
solution is envy bounded by a single good: there exists some good in the allocation of
agent j ∈ N such that i ∈ N does not envy j when that good is removed.4 This notion
has a natural equivalent in our setting, which we formalize below.

Definition 5.2. A mechanism is envy-free up to one bundle (EF1) if for every vector
of reported bundles b it outputs an allocation A such that for all i, j ∈ N , ui(Ai) ≥
ui(Aj − bi).

Subtraction between vectors is pointwise. In words, a mechanism is EF1 if each
agent i ∈ N does not envy agent j ∈ N if one instance of the task of agent i is removed
from the allocation of j. For non-wasteful mechanisms, this is equivalent to xjbj �
(xi + 2)bi for all i, j ∈ N . Unlike the strict notion of EF, we shall see that the relaxed
notion is compatible with PO. However, the following straightforward result implies
that the latter notion is incompatible with PO and SP.

THEOREM 5.3. Under indivisibilities there is no mechanism that satisfies PO, EF1,
and SP.

PROOF. As above, consider a setting with two agents and one resource. Both agents
have bundles b11 = b21 = 1/3. The only feasible allocations that are EF1 and PO
allocate 2/3 of the resource to one agent and 1/3 to the other. Assume without loss of
generality that agent 1 receives two bundles. If agent 2 reports b′21 = 1/6 then the only
PO and EF1 allocation gives 2/3 of the resource to agent 2 and 1/3 to agent 1, violating
SP.

To summarize, the combination SP+SI+EF1 is trivial, but if we add PO and insist
on SP we immediately run into impossibilities with either SI or EF1. Unfortunately,
SP seems to preclude reasonable mechanisms when tasks are indivisible. We therefore
focus on the other three properties in the context of task indivisibilities, namely PO,
SI, and EF1, which, as we shall see, induce a rich axiomatic framework and lead to the
design of practical mechanisms.

Sequential Minmax: Achieving PO, SI, and EF1 simultaneously
To design a mechanism that is PO, SI, and EF1 under indivisible tasks, we first
introduce a few notations. Given a non-wasteful allocation A, let MaxDom(A) =
maxi∈N maxr∈RAir be the maximum dominant share allocated to an agent, and simi-
larly let MinDom(A) = mini∈N maxr∈RAir be the minimum dominant share. We also
let A ↑ i be the allocation obtained by starting from the allocation A and giving agent
i ∈ N another bundle bi.

An important construction is what we call the future envy (FE) graph of an alloca-
tion, denoted GFE(A). Specifically, given an allocation A, the set of vertices of GFE(A)
is the set of agents N , and there is an edge from j ∈ N to i ∈ N if one of the following
conditions holds:

(1) Giving one bundle to i would make j envy i but giving one bundle to j would not
make i envy j, i.e. (xi + 1) · bi ≥ (xj + 1) · bj but (xj + 1) · bj � (xi + 1) · bi.

(2) Giving one bundle to either i or j would make the other agent envy it, i.e. (xi + 1) ·
bi ≥ (xj + 1) · bj and (xj + 1) · bj ≥ (xi + 1) · bi, and thus (xi + 1) · bi = (xj + 1) · bj .
In addition, we also require that xj < xi.

3Specifically, he allows the market to clear with an error, and also slightly perturbs the initially equal
budgets of agents.
4Related notions appear in earlier work, for example the approximate notion of equal treatment of equals of
Moulin and Stong [2002] and an approximate notion of envy-freeness studied by Lipton et al. [2004].
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Note that in the second case the bundles bi and bj are proportional, and because
xj < xi, bj = c · bi for some c > 1.

LEMMA 5.4. For any allocation A, if the future envy graph GFE(A) is nonempty
then it has a source vertex (with no incoming edges).

PROOF. It is sufficient to show that the graph is finite, irreflexive, antisymmetric,
and transitive. These properties imply that the graph is acyclic and has a source ver-
tex. The first two properties are trivially satisfied.

For antisymmetry, if there is an edge from i ∈ N to j ∈ N and an edge from j to i
then it must be the case that

(xi + 1) · bi = (xj + 1) · bj .

But then we must also have that xj > xi and xi > xj , which is impossible.
For transitivity, note that if there are edges from j to i and k to j then

(xi + 1) · bi ≥ (xj + 1) · bj ≥ (xk + 1) · bk.

Assume for contradiction that there is no edge from k to i, then

(xi + 1) · bi = (xj + 1) · bj = (xk + 1) · bk

and xk ≥ xi. However, then the existing edges imply that xk < xj < xi, which contra-
dicts xk ≥ xi.

We are now ready to present our mechanism, SEQUENTIALMINMAX, which is for-
mally given as Algorithm 2. The mechanism sequentially allocates a bundle at each
step to a source vertex of the subgraph of the future envy graph that is restricted to
agents that minimize the maximum dominant share after allocation.

ALGORITHM 2: SEQUENTIALMINMAX

Data: Bundles b
Result: An allocation A
k ← 1; A0 ← 0; T1 ← N ;
while Tk 6= ∅ do

Mk ← {i ∈ Tk | ∀j ∈ Tk, MaxDom(Ak−1 ↑ i) ≤ MaxDom(Ak−1 ↑ j)};
i←source of GFE(Ak−1) restricted to Mk;
Ak ← Ak−1 ↑ i;
k ← k + 1;
Tk ← {i ∈ N | Ak ↑ i is feasible};

end
return Ak;

Our main result of this section is the following theorem.

THEOREM 5.5. SEQUENTIALMINMAX satisfies PO, SI, and EF1.

Note that the more intuitive alternative of maximizing the minimum dominant
share does not achieve the same properties, nor do variations that consider dominant
shares before rather than after allocation.

To establish PO we need to prove that we are allocating a bundle to some agent
as long as there exists an agent to which we can allocate; this follows directly from
Lemma 5.4. We establish SI and EF1 in the following two lemmas.

LEMMA 5.6. SEQUENTIALMINMAX satisfies SI.
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PROOF. Let ASI be the minimal SI allocation that is obtained by giving each agent
1/n of each resource, and then taking back resources that agents cannot use. We show
that ASI = Ak for some k during the execution of SEQUENTIALMINMAX. This is suf-
ficient because subsequent allocations can only increase the shares of resources that
agents obtain.

We prove, by induction, that Ak ≤ ASI (where allocations are treated as vectors
and the inequality is pointwise) until it becomes equal to ASI for the first time. Note
that initially A0 ≤ ASI. We will show that until Ak = ASI, the mechanism would only
allocate a bundle to an agent that is also allocated in ASI, and therefore after finitely
many iterations Ak = ASI. Formally, we want to prove that if Ak ≤ ASI and Ak 6= ASI

then Ak+1 ≤ ASI.
Indeed, assume that Ak ≤ ASI and Ak 6= ASI. Let i ∈ N be the agent that is given

a bundle in iteration k + 1 of the mechanism. Since Ak 6= ASI, there exists an agent
j who has a strictly smaller number of bundles in Ak than in ASI. Note that ASI is
a feasible allocation, hence the mechanism does have enough resources to allocate a
bundle to j in iteration k + 1, i.e., j ∈ Tk+1. It follows that

MaxDom(Ak+1) = MaxDom(Ak ↑ i) ≤MaxDom(Ak ↑ j) ≤MaxDom(ASI) ≤ 1

n
.

Therefore, Ak+1 ≤ ASI.

The proof of the next lemma shows that the mechanism maintains EF1 at every
step.

LEMMA 5.7. SEQUENTIALMINMAX satisfies EF1.

PROOF. Note that the allocation 0 is EF1. Suppose for contradiction that the allo-
cation returned by the mechanism is not EF1, and let k be the minimum step where
Ak is not EF1. Let i ∈ N be the agent that is allocated a bundle in step k. Thus there
exists an agent j ∈ N who envies i up to one bundle under the allocation Ak. Let
xi and xj denote the number of bundles of i and j, respectively, in Ak. It holds that
xi · bi ≥ (xj + 2) · bj , and therefore

∀r ∈ R, xi · bir ≥ (xj + 2) · bjr. (3)

It is easy to verify that xi ·bi ≥ (xj +2) ·bj implies (xj +1) ·bj � xi ·bi. Hence, there is
an edge from j to i in GFE(Ak−1). In addition, it follows from Equation (3) and the fact
that i ∈Mk that j ∈ Tk implies j ∈Mk, and in that case i would not be a source vertex.
Since the mechanism allocated to i, it must be the case that j /∈ Tk.

Consider the smallest k′ such that j envies i in Ak′+1 but not in Ak′ . It holds that
k′ < k. Let x′i and x′j be the number of bundles allocated to i and j, respectively, under
Ak′ . Due to the monotonicity of the mechanism with respect to allocations we have
that x′i < xi and x′j ≤ xj . In addition,

x′i · bi � (x′j + 1) · bj and (x′i + 1) · bi ≥ (x′j + 1) · bj . (4)

Let r∗ ∈ argminr∈R: bjr>0{bir/bjr}. From Equation (4) there exists r ∈ R such that
x′i · bir < (x′j + 1) · bjr, and by rearranging we get that

bir∗

bjr∗
≤ bir
bjr

<
x′j + 1

x′i
,

that is,

x′i · bir∗ < (x′j + 1) · bjr∗ . (5)
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However, from Equation (3),

xi · bir∗ ≥ (xj + 2) · bjr∗ . (6)

Taking the difference between Equations (6) and (5), we get

(xi − x′i) · bir∗ > (xj − x′j + 1) · bjr∗ ≥ bjr∗ ,

and hence for all r ∈ R such that bjr > 0,

bir
bjr
≥ bir∗

bjr∗
>

1

xi − x′i
,

that is, (xi−x′i) ·bir > bjr, with a weak inequality if bjr = 0. Therefore, (xi−x′i) ·bi > bj .
Note that in iteration k′ +1 the available surplus of resources was at least (xi − x′i) ·

bi > bj . Hence, j ∈ Tk′+1. Furthermore i ∈ Mk′+1 since the mechanism allocates to i.
By Equation (4) it must also be the case that j ∈Mk′+1.

For i to be the source of the subgraph of GFE(Ak′+1) restricted to Mk′+1 it must be
the case that (x′i + 1) · bi = (x′j + 1) · bj and that bi ≥ bj . But using bi ≥ bj we see
that in iteration k there were enough resources to allocate a bundle to j instead of i;
we have reached a contradiction to the assertion that j /∈ Tk.

Crucially, as a special case of Theorem 5.5 we find that an allocation that is PO, SI,
and EF1 always exists for indivisible tasks; this is not a priori clear, and in fact, we are
not aware of a more direct proof of existence. Once we know such an allocation exists
though, we can consider alternative methods of finding it. For example, the compu-
tation of such an allocation can be carried out using a mixed integer program (MIP).
Using a MIP approach one can also optimize an objective subject to the three con-
straints; e.g., maximize the minimum dominant share to achieve the most egalitarian
allocation among allocations that are PO, SI, and EF1.

Another potential approach is to use the properties of competitive equilibrium from
equal incomes (CEEI). In the setting of Section 2 a competitive equilibrium exists and
satisfies PO, SI, and EF [Ghodsi et al. 2011]. While indivisibilities preclude the exis-
tence of a CEEI (obviously, as PO and EF are incompatible), conceivably it may be pos-
sible to prove the existence of an approximate version that is EF1 using an approach
similar to Budish [2011]. Even if such an approximate CEEI exists, its computation
can be challenging [Othman et al. 2010].

In any case, as an algorithm for finding PO+SI+EF1 allocations, SEQUENTIALMIN-
MAX has several major advantages over other potential approaches. First, its running
time is O(n2m/b∗), where b∗ = mini∈N maxr∈R bir; i.e., 1/b∗ is an upper bound on the
number of bundles that can be allocated to an agent. Second, it can be implemented
dynamically. Indeed, even in a realistic setting where agents change their demands
over time, or arrive and depart, we can still carry out the policy of allocating to a
source of the (evolving) FE graph in a way that minimizes the maximum dominant
share. Specifically, at the beginning of step t we can compute the sets Tk and Mk re-
gardless of the currently present agents and their current demands; a source vertex i
ofGFE(Ak−1) restricted toMk will always exist by Lemma 5.4, and hence the allocation
Ak−1 ↑ i will always be well defined.

6. DISCUSSION
This paper enhances our understanding of resource allocation in settings with multiple
resources. Nevertheless, several key challenges remain unresolved.

We have introduced a model of indivisible tasks and demonstrated that this de-
parture from the previous model requires a rethinking of desirable properties and
mechanisms. However, we did make the assumption that there is one pool of divisible
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resources. As discussed in passing by Ghodsi et al. [2011], in practice clusters consist
of many small machines. This issue of resource fragmentation may complicate matters
further, and requires careful attention.

In addition, while working on this paper we spent some time studying a setting
where each agent has multiple divisible tasks. We focused on a specific utility func-
tion: an agent’s utility is the sum of dominant shares of its tasks, under the optimal
division of its allocated resources between different tasks. Such a utility function can
be motivated by routing settings where resources are links and tasks correspond to
different paths from a source to a sink. It is possible to show that a competitive equi-
librium exists in this setting, and the resulting allocation satisfies PO, SI, and EF.
However, we were unable to settle the existence of a mechanism that satisfies PO, SI,
EF, and SP, even under restricted utility functions.

Finally, our analysis is restricted to a static setting where demands are revealed and
a single allocation is made. Above we touched on the issue of dynamic implementation,
and indeed in practice agents may arrive and depart, or change their demands over
time (cf. [Parkes 2007] for analogous settings with money). What theoretical guaran-
tees would we look for in such a setting? In particular, what would be the appropriate
notion of fairness in a dynamic resource allocation setting? These exciting questions
suggest fundamentally new directions for the study of resource allocation.
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