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Abstract

Picking the best alternative in a given set is a
well-studied problem at the core of social choice
theory. In some applications, one can assume that
there is an objectively correct way to compare
the alternatives, which, however, cannot be ob-
served directly, and individuals’ preferences over
the alternatives (votes) are noisy estimates of this
ground truth. The goal of voting in this case
is to estimate the ground truth from the votes.
In this paradigm, it is usually assumed that the
ground truth is a ranking of the alternatives by
their true quality. However, sometimes alterna-
tives are compared using not one but multiple
quality parameters, which may result in cycles
in the ground truth as well as in the preferences
of the individuals. Motivated by this, we provide
a formal model of voting with possibly intransi-
tive ground truth and preferences, and investigate
the maximum likelihood approach for picking
the best alternative in this case. We show that the
resulting framework leads to polynomial-time al-
gorithms, and also approximates the correspond-
ingNP-hard problems in the classic framework.

1 INTRODUCTION

Typically, voting rules are viewed as vehicles for aggre-
gating subjective preferences of individuals into a consen-
sus or societal preference. However, another paradigm
of voting theory, which dates back to Marquis de Con-
dorcet [12], became increasingly popular in recent years,
motivated in part by its relevance to the design of crowd-
sourcing platforms and human computation systems [15].
Condorcet suggested that votes cast by the individuals
should be viewed as noisy estimates of an underlying ob-
jective ground truth—a ranking of the available alternatives
by their true quality, and the aim of voting should be to
aggregate the votes in order to uncover the ground truth

and thereby pick the best alternative. He proposed a sim-
ple approach for modeling the noise present in individuals’
votes, which is known today as Mallows’ model [19]. In
this model, every voter compares each pair of alternatives
independently, and orders them correctly (as in the ground
truth) with a fixed probability p > 1/2, and incorrectly
with probability 1−p. If the generated vote contains cycles,
it is discarded and the process restarts, continuing until the
pairwise comparisons form a total order over the alterna-
tives. While this model is somewhat unrealistic [20], it is
widely used, in part because it provides control of the level
of noise in the votes through a single parameter.

However, in many applications, alternatives are compared
using not one, but multiple quality parameters [22, 29]. Un-
der multi-criteria decision making, the preference relation
that arises from the pairwise comparisons may contain cy-
cles. Such preferences are known as tournaments. Also,
when the number of alternatives is large (e.g., in many hu-
man computation systems), it is hard for voters to submit
a total order over the alternatives. Hence, most systems
employ vote elicitation techniques where the individuals it-
eratively submit parts of their preference, such as pairwise
comparisons or partial orders. Bounded rationality of vot-
ers may again lead to cyclic preferences in this case. There
are also settings where a voter may in fact be a meta-voter,
representing a group of individuals (e.g., a country or re-
gion). Synthesizing preferences of the people in a group
may also lead to cyclic preference for the meta-voter.

Motivated by this, we introduce a variant of Mallows’
model where both the ground truth and the noisy pref-
erences generated may be tournaments rather than rank-
ings of the alternatives. In this model, the vote genera-
tion process described above simplifies: there is no need to
restart the process if the generated vote has cycles. Con-
sequently, the pairwise comparisons are independent of
each other, resulting in a more tractable model: indeed,
it appears that Young [30, p. 1238] in his analysis of
Condorcet’s approach to choosing the most likely winner
uses the tournament-based model in his calculations, even
though his intention was to study the ranking-based model.



Recently, Procaccia et al. [23] have formalized, corrected,
and extended Young’s analysis of the optimal rule to pick
the best alternative. They focused on the limiting case of
Mallows’ model where the noise is very high (p → 1/2),
as they were motivated by crowdsourcing settings, in which
this is often the case. As a side result, they have also ana-
lyzed the other extreme case of very low noise (p→ 1).

Our Contribution: We introduce the tournament variant
of Mallows’ model and show that the most likely winners
in our model can be identified in polynomial time for a
given value of the noise parameter, as well as in the lim-
iting cases of extremely high and low noise; this is in sharp
contrast with the ranking-based model.1 We then focus on
the limiting cases of the tournament-based model and show
empirically that they provide a good approximation for the
corresponding cases of the ranking-based model. As a side
result we prove that for winner determination, Tideman’s
rule [25, pp. 199-201] (closely related to the high-noise set-
ting in the tournament-based model) is a 2-approximation
of Kemeny’s rule (closely related to the high-noise setting
in the ranking-based model), a result that may be of inde-
pendent interest to the social choice community. Finally,
we propose an agnostic voting rule that circumvents the
problem of not knowing the noise parameter and returns
the set of alternatives that are MLE at some value of the pa-
rameter. Using simulations, we show that this rule is quite
decisive, i.e., returns very few alternatives.

2 RELATED WORK

The maximum likelihood estimation (MLE) approach to
voting was proposed by Condorcet [12]. Young [30] for-
malized Condorcet’s ideas, and showed that Condorcet’s
approach to choosing the best ranking results in a voting
rule that is known as Kemeny’s rule. Young has also con-
sidered the problem of selecting the most likely winner,
focusing on the limit cases where the noise is extremely
high or extremely low. However, his analysis of this set-
ting is presented by means of an example and appears to be
flawed. Procaccia et al. [23] formalized Young’s analysis
and extended it to objectives other than picking the best al-
ternative. Recently, Caragiannis et al. [6] have further gen-
eralized this approach by focusing on the design of voting
rules that demonstrate robustness to noise originating from
a wide family of noise models. Such robustness is also a
feature of our agnostic rule, in that it returns a set of alter-
natives that is guaranteed to contain the most likely alter-
native irrespective of the value of the underlying parameter
of Mallows’ model from which votes are generated.

Other variants of the maximum likelihood approach have
been considered in the computational social choice litera-

1Simultaneously and independently, Azari Soufiani et al. [2]
also introduced the tournament variant of Mallows’ model, but
for a different goal of studying the optimal Bayesian estimators.

ture [10, 9, 28]. Perhaps the closest to our work is that of
Xia et al. [29], who studied the MLE approach in multi-
issue domains, where alternatives represent combinations
of multiple issues. Xia et al. used CP-nets to represent the
(possibly cyclic) preferences of the voters. However, they
focused on dealing with the huge space of alternatives cre-
ated by an exponential number of combinations.

Finally, we show that Tideman’s rule provides a very sim-
ple and elegant deterministic 2-approximation for the Ke-
meny winner. Note that the Kemeny winner and the Ke-
meny ranking are NP-hard to compute [23, 3]. Approx-
imations of the Kemeny ranking have been studied exten-
sively in the literature, varying from deterministic approx-
imations [11, 27] through randomized approximations [1]
to a polynomial time approximation scheme (PTAS) [14];
further, any approximation of the Kemeny ranking implies
an identical approximation of the Kemeny winner (see the
discussion following Theorem 7).

3 PRELIMINARIES

Let [k] = {1, . . . , k}. We consider a set of alternatives A
with |A| = m. Let L(A) denote the set of votes, where
a vote is a ranking (linear order) over the alternatives, de-
noted σ : {1, . . . ,m} → A. Thus, alternative σ(i) is the
i-th most preferred alternative in σ; σ(1) and σ(m) are,
respectively, the most and the least preferred alternatives
in σ. Note that |L(A)| = m!. A profile π ∈ L(A)n is a
collection of n votes. For alternatives a, b ∈ A, let nab de-
note the number of votes in π that rank a above b. Hence,
nab + nba = n for all a, b ∈ A. Let ∆ab = nab − nba; this
quantity can be thought of as the advantage of a over b.

Voting rules. A voting rule is a mapping from profiles to
(a set of tied) winning alternatives. Formally, a voting rule
is a mapping f : L(A)n → P(A), where P(·) denotes the
power set.2 We review three prominent voting rules that
play a crucial role in this paper.

• The Borda count. Under the Borda count, each voter
awards m− i points to the alternative she ranks in posi-
tion i, i.e., each alternative receives a number of points
equal to the number of alternatives it defeats. The scores
of the alternatives are tallied across the votes. That is,
the Borda score of an alternative a ∈ A in profile π is

SCBD(a) =
∑
σ∈π

∑
b∈A\{a}

I[a �σ b] =
∑

b∈A\{a}

nab,

where the second equality follows by switching the order
of summation. The winner(s) are the alternative(s) with
the highest score.

2Technically, such mappings are known as social choice func-
tions. In contrast, social welfare functions map every profile to a
ranking or a set of tied rankings over the alternatives.



• Tideman’s rule. More commonly known as Tideman’s
simplified Dodgson rule,3 this rule was put forward by
Tideman [25, pp. 199-201] as a polynomial-time com-
putable approximation to Dodgson’s rule [13], which is
NP-hard to compute. Under Tideman’s rule, the score
of an alternative a is given by

SCTD(a) =
∑

b∈A\{a}

max(0,∆ba).

That is, the Tideman score of a is the cumulative advan-
tage of all alternatives with a positive advantage over a.
The winners are the alternatives with the minimum score.

• Kemeny’s rule. The Kendall tau distance between two
rankings is the number of pairs of alternatives on which
they disagree, i.e., for σ1, σ2 ∈ L(A), d(σ1, σ2) =
|{(a, b) | a �σ1 b, b �σ2 a}|. With slight abuse of no-
tation, for a profile π and a ranking σ, let d(π, σ) =∑
σ′∈π d(σ, σ′). Under Kemeny’s rule, the score of an

alternative a ∈ A is the minimum distance from the in-
put profile to any ranking that puts a first. Formally,

SCKM (a) = min
σ∈L(A):σ(1)=a

d(π, σ).

The winners are the alternatives with the minimum score.
Equivalently, the rankings with the smallest distance
from the profile are selected, and the winners are the al-
ternatives appearing first in these rankings.

Refinement of voting rules. We say that voting rule f̂ is
a refinement of voting rule f if f̂(π) ⊆ f(π) for every
profile π. That is, f̂ can be seen as a combination of f with
a (partial) tie-breaking rule.

4 MODEL

We begin by presenting the well-known ranking version
of Mallows’ model, and then we introduce a more general
tournament version of this model.

4.1 THE RANKING MODEL

Assume there is a hidden true ranking σ∗ ∈ L(A) over the
alternatives, which reflects the order of their true strengths.
We also make the standard assumption that σ∗ is selected
using a uniform prior over L(A). Thus, σ∗(1) denotes the
true best alternative. A noise model describes how votes
are generated given the true ranking. Votes in a profile are
then assumed to be iid samples from the noise model.

Specifically, in Mallows’ model [19] (also known as the
Condorcet noise model [12]), which was described infor-
mally in the introduction, the probability of generating a

3Tideman’s rule considered in this paper should not be con-
fused with the ranked pairs method, also proposed by Tideman.

vote σ when the true ranking is σ∗ is given by

Pr[σ | σ∗] =
ϕd(σ,σ

∗)

Zmϕ
. (1)

Here, ϕ = 1−p
p ∈ (0, 1) is the noise parameter of the model

and p ∈ (1/2, 1) is the probability of making the correct
decision when comparing two alternatives. Thus, ϕ → 0
represents a distribution concentrated around σ∗, whereas
ϕ→ 1 converges to the uniform distribution, which has the
greatest noise. Finally, d is the Kendall tau distance, and
Zmϕ =

∑
σ∈L(A) Pr[σ | σ∗] is the normalization constant,

which turns out to be independent of the true ranking σ∗

(see, e.g., [17]).

Now, take a profile π ∈ L(A)n. Since individual votes are
sampled iid, the probability of generating π is

Pr[π | σ∗] =
∏
σ∈π

ϕd(σ,σ
∗)

Zmϕ
∝ ϕd(π,σ

∗).

Under the assumption of uniform prior over the true rank-
ing σ∗, and for given ϕ, the probability of an alternative
a ∈ A being the true best alternative is proportional to∑

σ∗∈L(A):
σ∗(1)=a

Pr[π | σ∗] ∝
∑

σ∗∈L(A):
σ∗(1)=a

ϕd(π,σ
∗). (2)

Let ΓRϕ (a) be the “likelihood polynomial” of a, as given in
the final expression of Equation (2). Then, the maximum
likelihood estimator of the true best alternative is the set of
alternatives having the highest probability of being the best
alternative, given by MLERϕ (π) = arg maxa∈A ΓRϕ (a).
Theorem 3.2 by Procaccia et al. [23] shows the following.

Theorem 1 (Procaccia et al. [23]). Computing MLERϕ is
NP-hard.

4.2 THE TOURNAMENT MODEL

We now introduce a variant of Mallows’ model where both
the ground truth and the samples need not be total orders.
Rather, they can be tournaments, i.e., sets of pairwise com-
parisons (one for each pair of alternatives). A tournament
need not be transitive: it can be the case that a beats b, b
beats c, and c beats a. As argued in the introduction, this
is common when the alternatives are compared based on
multiple quality parameters instead of a single parameter,
and/or users are not required to submit total orders. Note
that every ranking can be seen as a tournament.

Let T (A) denote the set of all tournaments over alternatives
inA. We still use a �T b to denote that alternative a is pre-
ferred to alternative b in the tournament T . The Kendall tau
distance extends to T (A) in a natural way: given two tour-
naments T, T ′ ∈ T (A), d(T, T ′) is the number of pairs
of alternatives on which T and T ′ disagree. Further, the



quantities (nab)a,b∈A remain well-defined for a profile of
tournaments π ∈ T (A)n. As the three voting rules intro-
duced in Section 3 (the Borda count, Tideman’s rule, and
Kemeny’s rule) can be defined in terms of (nab)a,b∈A, these
rules are well-defined over profiles of tournaments as well.

Let T ∗ ∈ T (A) denote the hidden true tournament over
the alternatives. We assume that T ∗ is selected using a uni-
form prior over T (A). That is, for each pair of alterna-
tives a, b ∈ A we independently decide whether a �T∗ b
or b �T∗ a, with both possibilities being equally likely.
When generating a vote, each pairwise comparison in T ∗ is
retained with a fixed probability 1/2 < p < 1 and flipped
with probability 1 − p. Unlike in the ranking model, the
pairwise comparisons in the samples are independent of
each other. Accordingly, the probability of generating a
tournament T when the true tournament is T ∗ is given by

Pr[T | T ∗] = p(
m
2 )−d(T,T∗)(1− p)d(T,T

∗) = p(
m
2 )ϕd(T,T

∗).

We consider profiles consisting on n tournaments, which
are sampled iid from the noise model. Let d(π, T ∗) =∑
T∈π d(T, T ∗). Then, the probability of generating a pro-

file π ∈ T (A)n is proportional to ϕd(π,T
∗), similarly to the

ranking-based model.

Procaccia et al. [23] introduced the noisy choice model as
the generalization of Mallows’ model where the ground
truth was a ranking but the samples could be tournaments.
In that sense, our model is a further generalization where
even the ground truth may be a tournament.

However, this causes a potentially serious problem: The
best alternative in a ranking σ∗ is σ∗(1). But the definition
of the best alternative in a tournament T ∗ is unclear. Fol-
lowing Condorcet’s own definition of “Condorcet winners”
for cyclic majority preferences, we say that an alternative is
the winner in a tournament if it is preferred to every other
alternative. Note that not every tournament has a winner.
For a tournament T , define win(T ) to be the winner of T if
it exists, and ∅ otherwise.

Given a profile π ∈ T (A)n, we can now compute the
likelihood of an alternative a ∈ A being the best alter-
native in the unknown true tournament. Indeed, for every
T ∗ ∈ T (A) with win(T ∗) = a we have

d(π, T ∗) =
∑

b∈A\{a}

nba

+
∑

c,d∈A\{a}

(ncd · I[d �T∗ c] + ndc · I[c �T∗ d]) .

Further, for each possible combination of pairwise compar-
isons of the alternatives in A \ {a}, the set {T ∗ ∈ T (A) |
win(T ∗) = a} contains exactly one tournament that real-
izes this combination. Hence, we have∑

T∗∈T (A):
win(T∗)=a

ϕd(π,T
∗) = ϕ

∑
b∈A\{a} nba ·

∏
c,d∈A\{a}

(ϕncd + ϕndc)

∝
∏

b∈A\{a}

ϕnba

ϕnba + ϕnab
=

∏
b∈A\{a}

1

1 + ϕnab−nba
.

Now, for an alternative a ∈ A, define its likelihood poly-
nomial ΓTϕ(a) =

∏
b∈A\{a} (1 + ϕnab−nba). Technically,

ΓTϕ(a) is a Laurent polynomial, i.e., some of the pow-
ers of ϕ may be negative. Therefore, we will sometimes
work with the function Γ̂Tϕ(a) = ϕnmΓTϕ(a), which is a
polynomial of degree at most 2nm. Note that the like-
lihood polynomial of a is proportional to the inverse of
the likelihood, and is therefore to be minimized. Thus,
the maximum likelihood estimator for the best alternative
is given by MLETϕ(π) = arg mina∈A ΓTϕ(a), or, equiva-
lently, MLETϕ(π) = arg mina∈A Γ̂Tϕ(a). Since ΓTϕ(a) can
be computed for every alternative a ∈ A and every ϕ ∈ Q
in polynomial time, the following is trivial.

Theorem 2. Computing MLETϕ is in P .

5 LIMITING VOTING RULES

We will now study the extreme cases with very low and
very high noise in input votes, i.e., ϕ → 0 and ϕ → 1, re-
spectively. First, we observe that both for rankings and for
tournaments and in both limiting cases, the limiting rule is
well-defined, i.e., there exist α and β with 0 < α < β < 1
such that for P ∈ {R, T} MLEPϕ = MLEPα for all
0 < ϕ ≤ α and MLEPϕ = MLEPβ for all β ≤ ϕ < 1.
Indeed, fix a profile π. For each a ∈ A the degree of
the likelihood polynomials ΓRϕ (a) and Γ̂Tϕ(a) is finite, and
therefore we can pick απ, βπ ∈ (0, 1) so that no two of
these polynomials for π intersect in (0, απ) or in (βπ, 1).
Since the number of profiles with a fixed number of votes is
finite, taking the minimum of απ and the maximum of βπ

over all such profiles gives the desired values of α and β.
Note, however, that this argument breaks down if the num-
ber of votes may vary. For example, if ΓRϕ (a) and ΓRϕ (b)

for a profile π intersect at ϕ, then ΓRϕ (a) and ΓRϕ (b) for the
profile kπ intersect at k

√
ϕ (where kπ is the profile where

each entry of π is repeated k times). As k is unbounded,
we obtain β = supπ β

π = 1.

Notation. For the ranking model, let MLERAcc and
MLERInacc denote the limiting rules in the accurate case
(ϕ → 0) and in the inaccurate case (ϕ → 1), respec-
tively. Similarly, for the tournament model, let MLETAcc
and MLETInacc denote the limiting rules in the accurate case
and in the inaccurate case, respectively.

5.1 THE RANKING MODEL

The accurate case (ϕ→ 0): Procaccia et al. [23] showed
that when ϕ → 0, every MLE best alternative is first in
some Kemeny ranking. Further, they also showed that find-
ing even a single Kemeny winner is NP-hard.4 These re-
sults can be restated as follows.

4Both results can be found in the proof of Theorem A.1 in
the appendix of the full version available at http://www.cs.
cmu.edu/˜arielpro/papers/mle.full.pdf.



Theorem 3 (Procaccia et al. [23]). MLERAcc is a refinement
of Kemeny’s rule, and is NP-hard to compute.

In fact, our tools enable us to describe MLERAcc in more
detail; see Appendix A of the full version of the paper.5

The inaccurate case (ϕ → 1): Procaccia et al. [23, The-
orem 4.1] proved that every MLE best alternative in this
case is also a Borda winner. However, they left open the
question of computational complexity. Despite significant
effort, we were unable to settle the computational com-
plexity either. We conjecture that MLERInacc is NP-hard
to compute.

Theorem 4 (Procaccia et al. [23]). MLERInacc is a refine-
ment of the Borda count.

Once again, the exact refinement is given in Appendix A
of the full version. While the computational complexity of
MLERInacc is unknown, we remark that computing its output
is easy whenever Borda’s rule produces a unique winner,
which is often the case.

See Section 5.3 for an example showing the computation
of MLERAcc and MLERInacc for a given profile.

5.2 THE TOURNAMENT MODEL

The accurate case (ϕ → 0): In this case we show the
following.

Theorem 5. MLETAcc is a refinement of Tideman’s rule,
and can be computed in polynomial time.

Proof. To determine the winner(s) under MLETAcc we
need to compare the likelihood polynomials ΓTϕ(a) =∏
b∈A\{a} (1 + ϕnab−nba) when ϕ → 0. Pick α ∈ (0, 1)

so that no two likelihood polynomials intersect in (0, α).
As ϕ → 0, the dominating term in ΓTϕ(a) is the term with
the smallest power of ϕ. Denote the smallest power by
tϕ(a).

tϕ(a) =
∑

b∈A\{a},
nab≤nba

nab − nba = −
∑

b∈A\{a}

max{0,∆ba}

(where we take the sum over an empty set to be 0). Hence,
for ϕ ∈ (0, α) we have ΓTϕ(a) < ΓTϕ(b) whenever tϕ(a) >

tϕ(b), or, equivalently, whenever SCTD(a) < SCTD(b).
Recall that we are interested in alternatives with the small-
est value of the likelihood polynomial on (0, α); our calcu-
lation shows that every such alternative is a Tideman win-
ner.

To show that MLETAcc is polynomial-time computable, it is
not sufficient to observe that the functions ΓTϕ(a), a ∈ A,
can be evaluated in polynomial time, as we also need to

5The full version can be found at http://www.cs.cmu.
edu/˜nkshah/papers.html

find a small enough value of ϕ at which they should be
compared. Nevertheless, comparing likelihood polynomi-
als at ϕ → 0 is not difficult. We first multiply the terms
of Γ̂Tϕ(a) one-by-one, followed by expansion at each stage,
to obtain the coefficients of this polynomial. Note that the
degree of Γ̂Tϕ(a) is at most 2mn, so this step can be imple-
mented efficiently. To compare two polynomials at ϕ→ 0,
it suffices to consider their coefficients lexicographically,
starting with the lowest-order terms. The details are given
in Appendix A of the full version of the paper.

The inaccurate case (ϕ→ 1): This case has striking sim-
ilarity with the inaccurate case of the ranking model.

Theorem 6. MLETInacc is a refinement of the Borda count,
and can be computed in polynomial time.

Proof. Note that Γ̂T1 (a) = ΓT1 (a) = 1 for all a ∈ A.
Therefore, to compare the likelihood polynomials as ϕ →
1, we will first compare their derivatives at ϕ = 1. We have

d

dϕ
ΓTϕ(a)

∣∣∣
ϕ=1

= 2m−2
∑

b∈A\{a}

d

dϕ

(
1 + ϕnab−nba

) ∣∣∣
ϕ=1

= 2m−2
∑

b∈A\{a}

(nab − nba).

As ϕ approaches 1 from the left, we have ΓTϕ(a) < ΓTϕ(b)

whenever d
dϕΓTϕ(a)|ϕ=1 > d

dϕΓTϕ(b)|ϕ=1. Using nba =
n−nab, we observe that the latter condition is equivalent to
SCBD(a) > SCBD(b). Thus, the winners under MLETInacc
must have the highest Borda score, i.e., MLETInacc is a re-
finement of the Borda rule.

In contrast with the ranking-based model, the rule
MLETInacc can be computed in polynomial time. Simi-
larly to the accurate case of the tournament model (see the
proof of Theorem 5), we multiply the terms of each Γ̂Tϕ(a),
a ∈ A, in order to obtain the coefficients of these polyno-
mials. Then, for each polynomial we compute its first 2nm
derivatives at ϕ = 1. As the degree of each of these poly-
nomials does not exceed 2nm, comparing two such poly-
nomials at ϕ→ 1 amounts to lexicographically comparing
these two lists of values.

Alternatively, we can show that MLETAcc and MLETInacc are
polynomial-time computable by using results on root sep-
aration of polynomials. A classic paper by Mahler [18]
proved the following.

Fact: Any two distinct roots of a polynomial are sepa-
rated by at leastH−k+1, whereH is the maximum absolute
value of any coefficient, and k is the degree.

See [4] for further explanation and improved results for
polynomials with integer coefficients. In our case, we can
consider the polynomial P =

∏
a,b∈A

(
Γ̂Tϕ(a)− Γ̂Tϕ(b)

)
;



its degree does not exceed 2nm3 and its coefficients are
at most exponential in poly(n,m). Thus, ∆ = H−k+1

has polynomially many bits. An exponential upper bound
on H (and hence the respective lower bound on ∆) can be
computed without expanding P . Since no two likelihood
polynomials intersect on (0,∆) or on (1 − ∆, 1), the out-
puts of MLETAcc and MLETInacc can be computed by evalu-
ating and comparing ΓTϕ(a), a ∈ A, in their product form
at ϕ = ∆/2 and ϕ = 1−∆/2, respectively. We prefer the
approach presented in the proofs above because it seems to
work faster in practice, possibly due to the fact that it relies
only on integer arithmetic.

5.3 THE TOURNAMENT MODEL VERSUS THE
RANKING MODEL

The goal of this section is to compare the ranking-based
model and the tournament-based model. We begin by pre-
senting a profile on which the limiting voting rules for the
two models differ.

Example 1. Consider a profile π consisting of the follow-
ing 3 rankings over 4 alternatives.

a � b � c � d, d � a � b � c, c � d � b � a.

Recall that the likelihood polynomials ΓRϕ (a) (in the rank-
ing model) and ΓTϕ(a) (in the tournament model) of an al-
ternative a ∈ A are given by

ΓRϕ (a) =
∑

σ∗∈L(A):
σ∗(1)=a

ϕd(π,σ
∗),

ΓTϕ(a) =
∏

b∈A\{a}

(
1 + ϕnab−nba

)
.

For profile π, the likelihood polynomials are given below.

ΓRϕ (a) = ϕ8 + ϕ8 + ϕ8 + ϕ9 + ϕ9 + ϕ9,

ΓRϕ (b) = ϕ9 + ϕ9 + ϕ9 + ϕ10 + ϕ10 + ϕ10,

ΓRϕ (c) = ϕ8 + ϕ9 + ϕ9 + ϕ10 + ϕ10 + ϕ11,

ΓRϕ (d) = ϕ7 + ϕ8 + ϕ8 + ϕ9 + ϕ9 + ϕ10,

ΓTϕ(a) =
(
1 + ϕ1) (1 + ϕ1) (1 + ϕ−1) ,

ΓTϕ(b) =
(
1 + ϕ−1) (1 + ϕ1) (1 + ϕ−1) ,

ΓTϕ(c) =
(
1 + ϕ−1) (1 + ϕ−1) (1 + ϕ1) ,

ΓTϕ(d) =
(
1 + ϕ1) (1 + ϕ1) (1 + ϕ−1) .

Now, we can compute the limiting voting rules using
the likelihood polynomials as explained in Sections 5.1
and 5.2. The results of these rules along with those of the
Borda count, Kemeny’s rule, and Tideman’s rule are given
in Table 1.

While Example 1 shows that the accurate and the inaccu-
rate cases of the tournament model differ from the respec-
tive cases of the ranking model, we show that the tourna-
ment model serves as a satisfactory polynomial-time ap-
proximation of the ranking model, where computing the

Ranking, Accurate MLERAcc(π) = {d}
Ranking, Inaccurate MLERInacc(π) = {d}
Tournament, Accurate MLETAcc(π) = {a, d}
Tournament, Inaccurate MLETInacc(π) = {a, d}
Borda count Borda(π) = {a, d}
Kemeny’s rule Kemeny(π) = {d}
Tideman’s rule Tideman(π) = {a, d}

Table 1: Various voting rules applied on π.

limiting rules is non-trivial (and provably NP-hard in the
accurate case). While the tournament model—where both
the ground truth and the estimates may be cyclic—has its
intrinsic motivation (see Section 1), this offers an additional
strong motivation for the model. The similarity of both
models in the inaccurate case is evident: Both MLERInacc
and MLETInacc are refinements of Borda’s rule. However, as
seen in Example 1, these two rules are not identical. More-
over, we can show that neither of these rules is a refine-
ment of the other: Appendix C in the full version presents
an example with 8 rankings over 4 alternatives where both
MLERInacc and MLETInacc have unique winners that are dif-
ferent. We remark, however, that these two rules return the
same output most of the time (see Section 7), and always
when the Borda winner is unique.

Motivated by the similarity in the inaccurate case, we com-
pared Tideman’s rule and Kemeny’s rule, because the lim-
iting rules in the accurate case of the ranking and the tour-
nament models are refinements of Kemeny’s rule and Tide-
man’s rule, respectively. While the two rules were not pre-
viously thought to be connected, we show that Tideman’s
rule is a 2-approximation of Kemeny’s rule for winner de-
termination.

Theorem 7. The Kemeny score of a Tideman winner is at
most twice the Kemeny score of a Kemeny winner.

Proof. First, we describe an alternative interpretation of
Kemeny’s rule proposed by Conitzer et al. [8]. Given a pro-
file π over A, define a weighted pairwise majority (WPM)
graph for a set of alternatives A′ ⊆ A to be the directed
graphGA′ where the vertices are the alternatives inA′, and
there is an edge between every pair of alternatives a, b ∈ A′
with weight |∆ab| = |nab − nba|. The edge goes from a
to b if nab > nba and from b to a if nba > nab. When
nab = nba, the edge with zero weight may be drawn in
either direction.

The feedback of a ranking with respect to a WPM graph
GA′ is defined as the sum of the weights of edges of GA′
going in direction opposite to the ranking. Conitzer et
al. [8] showed that Kemeny’s rule is equivalent to first find-
ing the rankings with the smallest feedback with respect to
GA, and then returning their top alternatives.

Equivalently, we can say that in GA for every pair of alter-



natives a, b ∈ A there is an edge from a to b with weight
max(0,∆ab). Thus, the Tideman score of an alternative
a ∈ A is the sum of weights of its incoming edges, and the
Tideman winners are the vertices that minimize this sum.
For a subset of alternatives S ⊆ A, let F (S) be the small-
est feedback with respect to GS , over all rankings of A.
To compute the Kemeny score of an alternative a ∈ A, we
consider the set of all rankings La that put a first, and find
a ranking in La that has the minimum feedback with re-
spect to GA. Note that the feedback of any ranking in La
contains all incoming edges of a. Thus, to minimize feed-
back over La, we order the alternatives in A \ {a} so as to
minimize the feedback over GA\{a}. Hence,

SCKM (a) = SCTD(a) + F (A \ {a}). (3)

Further, for all a, b ∈ A with a 6= b, we have

F (A \ {a}) ≤ SCTD(b) + F (A \ {a, b}). (4)

Indeed, the left-hand size of (4) is the feedback of the best
ranking with respect to GA\{a}, whereas the right-hand
side of (4) is the feedback of the best ranking with respect
to GA\{a} among those that put b first, plus max(0,∆ab).

Now, consider a profile π. Let a ∈ A be a Tideman winner
and let b ∈ A be a Kemeny winner. We want to show that
SCKM (a) ≤ 2SCKM (b). If a = b, this is trivial. Thus,
assume a 6= b. Combining (3) and (4), we obtain

SCKM (a) = SCTD(a) + F (A \ {a})
≤ SCTD(a) + SCTD(b) + F (A \ {a, b})
≤ SCTD(b) + SCTD(b) + F (A \ {b})

≤ 2
(

SCTD(b) + F (A \ {b})
)

= 2 · SCKM (b).

Hence, the Kemeny score of any Tideman winner is a 2-
approximation of the optimal Kemeny score.

Appendix D in the full version gives an example using 4
alternatives where the approximation factor is exactly 2.
Hence, the result of Theorem 7 is tight. Caragiannis et
al. [5] show that Tideman’s rule, which was originally pro-
posed as an approximation to Dodgson’s rule, is actually an
asymptotically optimal approximation of Dodgson’s rule.
Theorem 7 shows that it is also a 2-approximation of Ke-
meny’s rule. Dodgson’s rule and Kemeny’s rule are deeply
connected [24]: While Dodgson’s rule makes the smallest
number of pairwise swaps to reach a profile with a Con-
dorcet winner (an alternative preferred by a majority of
voters to every other alternative), Kemeny’s rule makes the
swaps until the majority opinion becomes acyclic and then
returns the first alternative in the acyclic order. Tideman’s
rule can now be seen as a hybrid that provides a good ap-
proximation to both Dodgson’s rule and Kemeny’s rule.

While approximations of the Kemeny ranking are studied
extensively in the literature, we are not aware of any work

explicitly studying approximations of the Kemeny winner.
However, it is easy to check that the first alternative of a
ranking that is a c-approximation of the Kemeny ranking is
also a c-approximation of the Kemeny winner. Hence, we
can directly compare the result of Theorem 7 against ap-
proximations of the Kemeny ranking in the literature. The
Kemeny ranking admits a polynomial time approximation
scheme (PTAS) [14], which is, however, rather impracti-
cal. Constant approximations are therefore studied because
they are fast and simple [11, 1, 27]. Tideman’s rule, which
admits an elegant closed-form expression (see Section 3), is
the simplest deterministic 2-approximation of the Kemeny
winner that we are aware of. We believe that this result may
be of independent interest to the social choice community.

6 THE AGNOSTIC RULE

While the limiting cases of ϕ → 0 and ϕ → 1 may be
appropriate in some scenarios (and their analysis yields in-
teresting connections, e.g., Theorem 7), in most practical
settings the level of noise is unknown. We could include
ϕ as one of the unknown parameters and infer the best
possible values for the true ranking/tournament and ϕ (see,
e.g., [17]). However, this approach gives one specific value
(a “point estimate”) of ϕ. If the point estimate is wrong,
the estimate for the best alternative is also sub-optimal.

Consider instead an agnostic approach that refrains from
estimating the value of ϕ. Rather, given a profile, it returns
the set of all alternatives that are the most likely winners
for some value of ϕ. Let MLERAg and MLETAg denote the
agnostic rules in the ranking model and in the tournament
model, respectively. Then for a profile π,

MLERAg(π) =
⋃

ϕ∈(0,1)

MLERϕ (π),

MLETAg(π) =
⋃

ϕ∈(0,1)

MLETϕ(π).

There are three advantages of this approach over the in-
ference approach: First, as we show below, MLETAg can be
computed in polynomial time, and results presented in Sec-
tion 7 demonstrate that MLETAg is a good approximation of
MLERAg as well. Thus, it is easy to compute and use the
agnostic rule. Most inference problems, on the other hand,
are hard to solve [17]. Second, if the data is indeed gener-
ated from a Mallows’ (ranking or tournament) model, the
MLE best alternative is guaranteed to be in the set returned
by the agnostic rule, which is not the case for the inference
approach. Third, while the set of winners under the agnos-
tic rules contains the set of winners for any specific value of
ϕ, our simulations in Section 7 show that on average only
a few winning alternatives are returned.

Now, we show that the agnostic rule can be computed in
polynomial time for the tournament model. Note that this
is not obvious: While the limiting cases can be analyzed



by looking at the coefficients of the likelihood polynomi-
als or using a root separation approach, these methods do
not work for values of ϕ away from 0 and 1. We use an-
other result regarding polynomials, which is known as root
isolation (see, e.g., [7, 26]).

Fact: Given a polynomial, one can compute, in time poly-
nomial in the input size, a set of disjoint intervals that iso-
late the roots of the polynomial, i.e., disjoint intervals that
collectively contain all roots of the polynomial but each in-
terval only contains a single distinct root.
Theorem 8. Computing MLETAg is in P .

Proof. Once again, consider the polynomial P =∏
a,b∈A

(
Γ̂Tϕ(a)− Γ̂Tϕ(b)

)
. We have argued that the de-

gree of P is at most 2nm3, and its coefficients can be com-
puted in polynomial time. Next, we use root isolation to
isolate the roots of P in polynomial time. Note that any
value of ϕ ∈ (0, 1) where some alternatives a, b, a 6= b,
have equal likelihood is a root of P . Hence, in any region
between two consecutive roots of P , the order of likeli-
hoods of different alternatives is fixed.

Therefore, computing MLETAg amounts to taking one value
of ϕ between each consecutive pair of isolating intervals,
evaluating MLETϕ at every such ϕ, and returning the set of
all MLE alternatives found. Note that the number of roots
of P and therefore the number of evaluations of MLETϕ is
polynomial in the input size, and we have already estab-
lished that evaluating MLETϕ itself can be done in polyno-
mial time (Theorem 2). Hence, the overall running time is
polynomial in the input size.

7 EXPERIMENTS

In this section, we complement our theoretical results by
two sets of experiments. The results of Section 5.3 es-
tablish that the tournament model can be thought of as a
polynomial-time approximation to the ranking model. The
first set of experiments analyzes how close the limiting
rules (and the agnostic rules) in the two models are to each
other on average. The second set of experiments aims to
check whether the agnostic rules return reasonably small
sets of winning alternatives. To this end, we compute the
average number of winning alternatives returned by the ag-
nostic rules in the two models.

For both sets of experiments, we generate profiles using iid
samples from Mallows’ (ranking) model with the noise pa-
rameter ϕ taking 10 different values from 0.1 to 1.6 In each
case, we average our results over 5000 sampled profiles. It
is easy to check that the Borda winner, the Tideman win-
ner, and the Kemeny winner always coincide in case of 3

6We use the ranking model to generate profiles so that the rules
for both models can be applied on the generated profiles which
contain rankings, which are also tournaments.

alternatives. Hence, in our experiments we set the num-
ber of alternatives m to 5 or 7; the number of votes n is
also either 5 or 7. Thus, each of the graphs presented has
four lines; one for each of (n,m) = (5, 5), (5, 7), (7, 5),
and (7, 7). In all the graphs, the x-axis shows the noise pa-
rameter ϕ used to generate profiles. Importantly, while the
tournament model admits polynomial-time algorithms, and
can therefore be used with a large number of alternatives,
we use a small number of alternatives to be able to compare
the associated voting rules with the exponential-time rules
of the ranking model.

For the first set of experiments, we measure the dissimilar-
ity between three pairs of rules in terms of the dissimilarity
between the sets of winning alternatives they return. As the
measure of dissimilarity between two setsA andB, we use
the Jaccard distance, which is defined as follows.

dJ(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
.

Figures 1(a), 1(b), and 1(c) respectively show the dissimi-
larity between the limiting rules for the accurate case, the
limiting rules for the inaccurate case, and the agnostic rules
of the two models—the ranking model and the tournament
model—as a function of their noise parameter ϕ (note that,
while the limiting rules were derived for a specific range of
the noise parameter ϕ, we compare them at all values of ϕ).
An interesting observation is that while the dissimilarity is
quite low in both the accurate and the agnostic cases, it is
surprisingly low in the inaccurate case. This observation
holds true for all combinations of (n,m). This indicates
that the MLE rules of the tournament model are in gen-
eral good approximations of the MLE rules of the ranking
model, and the approximation becomes very good for the
rules derived under the assumption of very high noise.

Recall that Theorem 7 establishes that Tideman’s rule is
a 2-approximation of Kemeny’s rule in the worst case (in
terms of the Kemeny score of the winner). This is a signifi-
cant improvement over the Borda count, which is known to
give a 4-approximation in the worst case [11]. Thus, Tide-
man’s rule improves over Borda’s rule by a factor of 2 in
the worst case. It is interesting to check if this relationship
holds even in the average case.
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Figure 2: Approximations of Kemeny’s rule.

Figures 2(a) and 2(b) show the average-case approxima-
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(c) MLERAg vs. MLETAg

Figure 1: The dissimilarity between the ranking model and the tournament model.

tion factors of the Borda count and Tideman’s rule, respec-
tively, as a function of the noise parameter ϕ. It is evident
that for both rules their average-case approximation factors
are much better than their worst-case approximation fac-
tors. However, in the average case, the Borda count quickly
reaches an approximation ratio of 1.01, while the approx-
imation ratio of Tideman’s rule stays well below 1.003.
That is, the improvement of Tideman’s rule over the Borda
count is at least as good—in fact, slightly better—in the
average case as in the worst case.
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Figure 3: The average number of winning alternatives re-
turned by the agnostic rules.

In our second set of experiments, we analyze the average
number of winning alternatives returned by the agnostic
rules in the ranking and the tournament models, again as
a function of the noise parameter ϕ. Figures 3(a) and 3(b)
show the results for the ranking and the tournament models,
respectively. It can be seen that the agnostic rule—despite
returning a set of alternatives that is guaranteed to contain
the MLE best alternative for all values of ϕ ∈ (0, 1)—
outputs an average of less than 1.3 and 1.2 alternatives in
the ranking model and the tournament model, respectively.
In fact, in our simulations, the agnostic rules in both mod-
els return a single alternative, which is guaranteed to be the
MLE best alternative for all values of ϕ, more than 80% of
the time, for every ϕ ∈ (0, 1).

8 DISCUSSION

We have studied methods for picking the best alternative
given noisy estimates of an objective true comparison be-

tween the alternatives. Besides studying the standard Mal-
lows’ model where both the ground truth and the estimates
are acyclic total orders, we introduced and studied the set-
ting where both may contain cycles. Procaccia et al. [23]
studied the case where the ground truth is acyclic, but the
estimates may or may not be cyclic. The only case not
studied in the literature is that of possibly cyclic ground
truth and acyclic estimates. However, this setting does not
appear natural, and is also technically challenging: the de-
nominator Zmϕ in the probability expression of Mallows’
model (Equation 1) would not be independent of the ground
truth, rendering the analysis extremely difficult.

Generalizations of Mallows’ model have been proposed in
the literature [16, 21]. Some of these use critical informa-
tion regarding positions of the alternatives in the ground
truth ranking. Future work may also involve adapting such
models to the case of tournaments; for example, one can
use the number of alternatives defeated by a given alter-
native as a proxy for its rank, or one can develop distance
metrics over tournaments to replace the Kendall tau dis-
tance in Equation (1). It would be interesting to see if such
adaptations provide tractable approximations of the origi-
nal ranking model.

The maximum likelihood approach to voting focuses solely
on maximizing the likelihood of selecting the best alter-
native. This results in voting rules that can be difficult to
understand, but have performance guarantees nonetheless.
While simplicity is usually an important goal in the design
of voting rules, it is less of an issue in human computation
contexts, where the workers are paid for their input and do
not need to know or understand how their estimates would
be aggregated. Yet, in some practical applications, one may
wish to use rules with additional desirable properties, either
motivated by the application itself or as a safeguard in case
the assumptions about the nature of the noise fail. A very
exciting direction is to use Mallows’ model in order to in-
form the design of voting rules while trading off some of
the likelihood for axiomatic properties such as Condorcet
consistency or monotonicity.
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