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ABSTRACT

In this paper, we propose the mizture of experts for case-based reasoning (MOE4CBR), a method that combines
an ensemble of case-based classifiers with spectral clustering and logistic regression. We demonstrate the im-
provement achieved by applying the method to a computational framework of a CBR system called TA3. We
evaluate the system with different number of CBR, classifiers (experts) on two publicly available mass spectrom-
etry data sets on ovarian cancer. Our proposed method improves the classification accuracy of TA8 from 90.1%
t0 99.2% on the ovarian data set 8-7-02, and from 79.1% to 96.3% on the ovarian data set 4-3-02.
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1. INTRODUCTION

Case-based reasoning (CBR) has been successfully applied to a wide range of applications including classification,
diagnosis, planning, configuration, and decision-support.! CBR can produce good quality solutions in weak
theory domains such as molecular biology, where the number and the complexity of the rules affecting the
problem are very large, there is not enough knowledge for formal knowledge representation, and our domain
understanding evolves over time.? Protein expression profiling using mass spectrometry is a recent method for
profiling cancer cases to measure thousands of elements in a few microliters of serum,® and also an example
of high-dimensional molecular biology domain. The data obtained are mass-to-charge ratios (m/z values) for
individual proteins. Mass spectrometry data sets are represented by two-dimensional matrices, where each row
contains the mass-to-charge values for proteins (known as biomarkers) for cancer and control (normal) samples.
In addition, clinical information is used to label and further describe individual samples.

Using principles of case medicine for diagnosis and prognosis, CBR naturally fits this application domain.
However, (ultra) high-dimensionality of mass spectrometry data sets (tens of thousands of biomarkers with
only few hundreds of samples) poses a challenge that needs to be addressed. One solution is to combine CBR
classifiers with other machine learning techniques to improve the prediction accuracy and overcome the “curse
of dimensionality”.

We propose an ensemble of CBR systems, called the mizture of experts (MOE) to predict the classification
label of an unseen data (query). A gating network calculates the weighted average of votes provided by each
expert. We apply spectral clustering? to cluster the data set (case-base) into k groups. Each cluster is considered
as a case-base for the k£ CBR experts, and the gating network learns how to combine the responses provided by
each expert. The performance of each CBR expert is further improved by using feature selection techniques. We
use logistic regression® to select a subset of features in each cluster. We demonstrate the improvement achieved
by applying our method to a specific implementation of a CBR system, called TA3.5 TA3 is a computational
framework for CBR based on a modified nearest neighbor technique.

The rest of the paper is organized as follows. Section 2 introduces our proposed method. Section 3 introduces
the TA8 CBR system, which is used as a framework for evaluating MOE4CBR. In Section 4, we demonstrate
the experimental results of the proposed method on two publicly available ovarian data sets.
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2. THE MIXTURE OF EXPERTS FOR CASE-BASED REASONING (MOE4CBR)
METHOD

The goal of our method is to improve the prediction accuracy of CBR classifiers using the mixture of experts.
The performance of each expert in MOE4CBR is improved using clustering and feature selection techniques.
The MOE4CBR method comprises of the following components:

Clustering: Of the many clustering approaches that have been proposed, only some algorithms are suitable for
domains with large number of features and a small number of samples. Our earlier comparison of self-organizing
maps (SOMs)” with k-means clustering® and spectral clustering? suggests that spectral clustering outperforms
k-means clustering and SOMs.?

Feature Selection: Feature selection (FS) improves the quality of data by removing redundant and irrelevant
features, i.e., those features whose values do not have meaningful relationships to their labels, and whose removal
improves the prediction accuracy of the classifier. We compared Fisher criterion with standard t-test'® and
logistic regression model® when applied as a feature selection, logistic regression outperforms the other two
feature selection techniques in terms of accuracy and classification labels.® In our method, feature selection is
applied in two steps: (1) on the whole case-base, F'S selects a subset of features; (2) after grouping the case-base
into k clusters, FS selects a subset of features in each group.

Mixzture of Experts: The mixture of experts approach is based on the idea that each expert classifies samples
separately, and individual responses are combined by the gating network to provide a final classification label.?
It consists of two parts: experts and the gating network. For an unseen query case, each expert of CBR retrieves
I similar cases from its case-base (I can be chosen by the user). It should be noted that experts do not share
their case-bases, rather the case-base of each expert is obtained by clustering the whole case-base into k& non-
overlapping clusters (k can be chosen by the user or estimated by other analysis). In other words, the initial
case-base is clustered into k groups, and then feature selection techniques are applied to each case-base to extract
more “informative” biomarkers.

After retrieving I similar cases from the case-base, the expert applies the weighting vote algorithm?® to predict
the class label of the query case, i.e., performs weighted case adaptation. More precisely, let {C1, ..., Cy} denote
the clusters (or the k case-bases of our k experts), = the unseen data, y a class label, S; the number of similar
cases that belong to C;, and T} the number of similar cases with class label y that belong to C;, Pr(Y = y|C;, z)

. T,
is then computed as .
J

The gating network combines the classification labels predicted by each expert. First, it assigns weights to
each expert — represented by g; using CBR, where 1 < j < k. Briefly, g; represents the probability that the
unseen data z belongs to the case-base of the j* expert. The initial case-base is used in retrieving m similar
cases (m can be chosen by the user). In order to compute g; that can be shown as Pr(C;|z), we perform the
following steps. Let R, represent the number of similar cases to x belonging to C; (the case-base of the ji*
expert), g; then is calculated by dividing R; by m. Finally, in order to combine the responses of k experts,
following formulas are used®:

k
Pr(Y =ylz) =Y _ g; x Pr(Y =y|Cj,z), (1)
j=1
with the constraint that:
k k
> gi=> Pr(Cjle) =1, (2)
j=1 j=1
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Figure 1. Mixture of Experts for Case-Based Reasoning: Training set is grouped into & clusters, and after selecting a
subset of features for each group (shown with vertical bars), each group will be used as a case-base for the K CBR, experts.
The gating network combines the responses provided by each T'A8 expert considering the weights of each expert (weights
are shown on the arrows connecting TA& experts to the gating network.

3. AN INTRODUCTION TO TA3 CASE-BASED REASONING SYSTEM

We used the TA8 CBR system as a framework to evaluate our method. The TA8 system has been applied
successfully to biology domains such as in vitro fertilization (IVF)!! and protein crystal growth.'? This section
briefly describes the system.

Case Representation in TA3: In classification tasks, each case has at least two components: problem de-
scription and class. The problem description characterizes the problem and the class gives a solution to a given
problem. In this domain, a case corresponds to the sample profile represented by a vector of m/z values.

Case Retrieval in TA3: The retrieval component is based on a modified nearest neighbor matching!'® (See®
for more details). Similarity in TAS8 is determined as a closeness of values for attributes defined in the context.
Context can be seen as a view or an interpretation of a case, where only a subset of attributes are considered
relevant.

Case Adaptation in TA8Z: The adaptation process in CBR manipulates the solution of the retrieved case to
better fit the query. We adopt distance-weighted nearest neighbor'* to determine the classification label of the
query based on the labels of similar retrieved cases (See ? for more details).

4. EXPERIMENTAL RESULTS

The experiments have been performed on the following mass spectrometry data sets provided online at the
National Institutes of Health and Food and Drug administration Clinical Proteomics Program Databank. *

Ovarian data set 8-7-02: Ovarian data set 8-7-02 comprises 162 mass spectra from ovarian cancer patients
and 91 individuals without cancer (control group) with 15,154 mass-to-charge ratios (m/z values) measured in
each serum.

Owarian data set 4-3-02: Ovarian data set 4-3-02 contains spectra from 100 patients with ovarian cancer and
116 individuals without cancer (control group). The serum mass spectrum for each subject consists of 15,154
mass-to-charge ratios.

Table 1 depicts the results of applying MOE4CBR, to our two ovarian data sets with different number of
experts. When there is a tie, the TA8 classifier cannot decide on the label; resulting cases are categorized as
“undecided” in the Table. We used 10-fold cross-validation for validation, and the Table shows the average over
the 10 folds. In each iteration, MOE4CBR was trained using 9 folds, and was tested on the remaining fold,
i.e., the test set was completely unseen until the test time, and clustering and feature selection techniques were
applied only to the training set.

When there is only one expert — TA3 classifier — the case-base does not split into groups, and the size of
the case-base is reduced by selecting 15 biomarkers out of 15,154 biomarkers. For the ovarian data set 8-7-02,

*http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp



the minimum classification error is achieved when the number of experts equals 2, while for the ovarian 4-3-02,
the minimum classification error is achieved with 3 experts (Table 1). Table 2 compares the case where only
a single instance of TA8 (without applying feature selection or clustering techniques) is applied to classify our
two data sets with the case that MOE4CBR classifies the data sets.

Table 1. Accuracy of MOE4CBR with different number of experts(shown with n) on ovarian data sets. In all experiments,
15 biomarkers were selected by logistic regression, and the whole case-base was clustered into smaller groups using spectral
clustering.

Ovarian Data Set 8-7-02
n=1|n=2|n=3
Accuracy 98% | 99.2% | 98.8%
Error 2% 0.8% | 1.2%
Undecided | 0% 0% 0%
Ovarian Data Set 4-3-02
n=1|n=2|n=3
Accuracy | 94.9% | 95.4% | 96.3%
Error 4.6% 4.6% 3.7%
Undecided | 0.5% 0% 0%

Table 2. Accuracy of MOE4CBR compared to the case where a single instance of TA3 without applying feature selection
or clustering techniques is used for classification.

Ovarian Data Set 8-7-02
Method Accuracy FError Undecided
Single TA3 90.1% 9.1% 0.8%
MOE4CBR 99.2% 0.8% 0%
Ovarian Data Set 4-3-02
Method Accuracy FError Undecided
Single TA3 79.1% 18.6% 2.3%
MOE4CBR 96.3% 3.7% 0%

These two ovarian data sets have been previously analyzed.'® 16 Sorace et al.'® evaluate their extracted rules
for selecting biomarkers on data set 8-7-02 when it is randomly split into training and test data. They achieve
100% sensitivity and 100% specificity. The rules are extracted in an “ad hoc” way, and might not be applicable
to other similar data sets. Ovarian data set 4-3-02 has also been analyzed by Zhu et al.,'® and they achieve
100% specificity and 100% sensitivity. They also show that their 18 selected biomarkers classifies ovarian data
set 8-7-02 into cancer and control samples with 100% sensitivity. It has been recently reported that their results
cannot be replicated and the overall best performance achieved using the proposed 18 markers is 98.42%.'7 Our
results are not comparable with those two studies, since we used 10-fold cross-validation, while they split the
data set randomly into training and test set.

5. CONCLUSIONS

Molecular biology is a natural application domain for CBR systems, since CBR systems can perform remarkably
well on complex and poorly formalized domains. Removing “non-informative” features from the case-base of
each member classifier helps overcome the “curse of dimensionality”.

In this paper, we proposed the mixture of experts for case-based reasoning (MOE4CBR) method, where an
ensemble of CBR systems is integrated with clustering and feature selection to improve the prediction accuracy



of the TA& classifier. Spectral clustering groups samples, and each group is used as a case-base for each of the
k experts of CBR. To improve the accuracy of each expert, logistic regression is applied to select a subset of
features that can better predict class labels. We also showed that our proposed method improves the prediction
accuracy of the TA3 case-based reasoning system on two public ovarian data sets. In future, we will evaluate
the method on other high-dimensional life sciences domains.
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