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Abstract

Case-based reasoning (CBR) is a suitable paradigm for class
discovery in molecular biology, where the rules that define the
domain knowledge are difficult to obtain, and there is not suf-
ficient knowledge for formal knowledge representation. To
extend the capabilities of this paradigm, we proposelogistic
regression for CBR(LR4CBR), a method that uses logistic
regression as a feature selection (FS) method for CBR sys-
tems. Our method not only improves the prediction accuracy
of CBR classifiers in biomedical domains, but also selects
a subset of features that have meaningful relationships with
their class labels.
In this paper, we introduce two methods to rank features for
logistic regression. We show that using logistic regression as
a filter FS method outperforms other FS techniques, such as
Fisher and t-test, which have been widely used in analyzing
biological data sets. The FS methods are combined with a
computational framework for a CBR system calledTA3 . We
also evaluate the method on two mass spectrometry data sets,
and show that the prediction accuracy ofTA3 improves from
90% to 98% and from 79.2% to 95.4%. Finally, we compare
our list of discovered biomarkers with the lists of selected
biomarkers from other studies for the mass spectrometry data
sets, and show the overlapping biomarkers.

Introduction
The case-based reasoning (CBR) approach is particularly
suitable for applications in the life sciences , where we lack
sufficient knowledge for formal representation or parameter
estimation (Jurisica & Glasgow 2004). Two examples are
gene and protein expression profiling using microarrays and
mass spectrometry. Microarrays are used in biological and
medical domains to provide profiles of diseased and normal
tissues, in order to increase our understanding of biological
processes, disease origin, state, type, and progression at a
molecular level. These profiles will play a crucial role in
information-based medicine in the future by enabling ear-
lier and more accurate diagnosis, prognosis, and treatment
planning.

Microarray data sets are represented by anN ×M matrix
of real values that represent gene expression values, where
M is the number of genes used to profileN samples, and
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they are labeled using clinical profiles (or phenotypes). An-
other recent method for profiling biological samples such as
cancer samples is mass spectrometry, used to measure thou-
sands of elements in a few microliters of serum (Petricoin
et al. 2002). The data obtained are mass-to-charge ratios
(m/z values) of varying intensities. Mass spectrometry data
sets, similar to microarray data sets, are represented by two
dimensional matrices, where each row contains the mass-
to-charge intensities (known as biomarkers) for cancer and
control (normal) samples. In addition, clinical information
is used to label and further describe individual samples.

CBR has been applied to a wide range of tasks, such as
classification, diagnosis, planning, configuration, and deci-
sion support (Lenzet al. 1998; Leake 1996). It does not
rely on statistical assumptions and it has intuitive appeal
because of its similarity to the human analogical reason-
ing in problem-solving. However, CBR classifiers, simi-
larly to other classifiers, can suffer from the “curse of di-
mensionality” that occurs in (ultra-) high-dimensional do-
mains with tens of thousands of attributes1 and only a few
hundreds of samples. Feature selection (FS) techniques help
overcome the problem by selecting “informative” features
among thousands of available features, i.e., those features
that improve CBR performance for a given reasoning task,
and thus are biologically meaningful. For example, in mi-
croarray data sets, “informative” features comprise genes
with expression patterns that have meaningful biological re-
lationships to the classification labels of samples (analo-
gously, they could represent sample vectors that have mean-
ingful biological relationship to the classification labels of
genes).

Feature selection techniques have been successfully com-
bined with CBR systems (Aha & Bankert 1994; Arshadi &
Jurisica 2004). For both microarray and mass spectrometry
data sets, mining a subset of features that distinguishes be-
tween cancer and normal samples (or other phenotypes) can
play an important role in disease pathology and drug dis-
covery. Early detection of cancer can reduce mortality, and
identified markers may also be useful drug discovery targets
that may lead to new therapeutical approaches.

In this paper, we proposeLR4CBR(logistic regression for

1In this paper, we use attributes and features interchangeably,
unless specified otherwise.



CBR) — a method that selects a subset of features using the
logistic regression model for ourTA3 CBR classifier.TA3
is a computational framework for CBR based on a modified
nearest-neighbor technique that employs a variable context,
a similarity-based retrieval algorithm, and a flexible repre-
sentation language (Jurisica, Glasgow, & Mylopoulos 2000).
We demonstrate the improvement in accuracy achieved by
applying our method to two publicly available mass spec-
trometry data sets.

The paper is organized as follows. First, we introduce
Fisher and t-test methods — the two FS methods widely
used for analyzing (ultra-) high-dimensional biological data
sets (Jaeger, Sengupta, & Ruzzo 2003; Zhuet al. 2003;
Wu et al. 2003; Baggerly, Morris, & Coombes 2004). We
then discuss logistic regression for FS. The logistic regres-
sion model has been used for classifying microarray data
sets (Xing, Jordan, & Karp 2001); however, in this paper we
apply it as a filter FS method. Our experiments reveal that lo-
gistic regression combined with our CBR classifier achieves
higher accuracy than the two other FS methods for (ultra-)
high-dimensional data sets. Then, we evaluate the proposed
method on two publicly available mass spectrometry data
sets. Finally, we present a subset of biomarkers that are dif-
ferentially expressed in the sera of ovarian cancer patients,
which after additional biological validation may prove to be
useful for ovarian cancer diagnosis.

The Logistic Regression for Case-Based
Reasoning (LR4CBR) Method

FS algorithms can be classified as eitherfilter or wrapper
methods (Kohavi & John 1997). The main difference be-
tween the two types is the use of the final classifier to eval-
uate the subset of features in the wrapper approaches, while
filter methods do not use it.

In this paper, we focus on filter FS techniques. We present
the results of a comparison of Fisher’s criterion, t-test, and
the logistic regression model (Hastie, Tibshirani, & Fried-
man 2001) with a CBR classifier. We applied the three
FS techniques to theTA3 classifier, and measured its im-
provement inaccuracyandclassification error. Accuracy
measures the number of correctly classified data points, and
classification error counts the number of misclassified data
points. We use both measures, as our classification system
also supports the “undecided” label.

• The Fisher’s criterion score is defined as(m1−m2)2

(v1+v2) ,
wheremi andvi are the mean and variance of the given
feature in classi.

• TheStandard t-test is defined as |m1−m2|√
( v
n1

+ v
n2

)
, wheremi

is the mean of the given feature in classi, ni is the number
of examples in classi, andv is the pooled variance across
both classes (Devore 1995). The score is reported as a
negativelog10 p-value. The greater the score is, the more
significant the difference between the means.

• Logistic Regressionhas been successfully applied to
classifying (ultra-) high-dimensional microarrays (Xing,

Jordan, & Karp 2001). However, we use the logistic re-
gression model as a filter FS method. For two classes, the
logistic regression model has the following form (Hastie,
Tibshirani, & Friedman 2001):

Pr(y = 0|x,w) =
1

1 + e−wT x
, (1)

wherew is a p + 1 column vector of weights, andp is
the number of features. We use maximum likelihood to
estimatew:

l(w) =
N∑
i=1

logPr(y = yi|xi, w), (2)

wherexi is the ith training example augmented with a
constant 1,yi is the binary response for theith training
example, andN is the number of training examples. To
solve the above equation, we use stochastic gradient as-
cent:

w(t+1) = w(t) + ρ(yn − µ(t)
n )xn, (3)

wherew(t) is the parameter vector at thetth iteration,
µ

(t)
n ≡ 1/(1 + exp(wTt xn)) andρ is a step size, which

is determined experimentally.
We compared two feature ranking criteria for logistic re-
gression.

– The first criterion is often applied to linear classifiers
(Mukherjee 2003). It trains the regression classifier us-
ing Equation 3, and selects features corresponding to
the highest ranking magnitude of weights.

– LeCun et al. argue that instead of using the magnitude
of weights as a ranking criterion, it is better to minimize
the change in the cost function — Equation 2 in our
case — after removing one feature at a time (LeCun,
Denker, & Solla 1990). More precisely, they expand
the cost function in Taylor series. At a local optimum,
the first term can be neglected, so those features that
minimize the second derivative are eliminated:

DJ(i) =
1
2
∂2J

∂w2
i

(Dwi)2, (4)

whereDJ(i) is the cost function, andwi is the weight
corresponding to theith feature. Guyon et al. prove
that for linear discriminant functions whose cost func-
tion J is a quadratic function ofwi, the two criteria are
equivalent (Guyonet al. 2002). However, for logistic
regression, applying the above formula yields to:

∂2l(w)
∂w∂wT

= −
N∑
i=1

xix
T
i p(xi;w)(1− p(xi;w)), (5)

wherep(xi;w) = Pr(y = 1|x,w).
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Figure 1: The LR4CBR method

As we demonstrate in the Experimental Results Section,
the subset of features with the highest magnitude of weights
selected by logistic regression achieves higher accuracy than
the subset selected by Fisher and t-test. Figure 1 depicts our
proposed method. It first selects a subset of features using
| w | as a feature ranking criterion. The values for| w | are
calculated by training the logistic regression classifier on the
training set. Features with the highest ranking magnitude of
weights are selected. OurTA3 classifier uses the selected
feature set to classify the test set.

Prior to applying the above criteria, the data sets are nor-
malized such that all features (regressor variables) have the
same mean and the same variance. Since there are thou-
sands of features in the microarray and mass spectrometry
data sets, features are eliminated in chunks; the classifier is
trained only once, and 90% of “non-informative” features
are removed. However, better results might be obtained by
removing one feature at a time, and training the classifier on
the remaining features before removing the next feature.

The TA3 Case-based Reasoning System
Our method is applicable to any CBR system; however, we
used theTA3 CBR system as a framework to evaluate our
method. TheTA3 system has been applied successfully to
biology domains such asin vitro fertilization (IVF) (Jurisica
et al. 1998) and protein crystal growth (Jurisicaet al. 2001).
This section briefly describes the system.

Case Representation inTA3

A caseC corresponds to a real world situation, represented
as a finite set of attribute/value pairs (Jurisicaet al. 1998).
There are two types of cases: (1) an input case (query) that
describes the problem and is represented as a case without a
solution; and (2) a retrieved case, which is a case stored in
a case-base that contains both a problem description and a
solution.

In classification tasks, each case has at least two compo-
nents: problem description and a class. The problem de-
scription characterizes the problem and the class gives a
solution to a given problem. Additional categories can be
used to group attributes into separate equivalence partitions,
which enables treating each partition separately during case
retrieval.

Case Retrieval inTA3

The retrieval component is based on a modified nearest-
neighbor matching (Wettschereck & Dietterich 1995). Its
modification includes: (1) grouping attributes into cate-
gories of different priorities so that different preferences
and constraints can be used for individual categories dur-
ing query relaxation; (2) using an explicit context (i.e., set
of attribute and attribute value constraints) during similar-
ity assessment; (3) using an efficient query relaxation al-
gorithm based on incremental context transformations (Ju-
risica, Glasgow, & Mylopoulos 2000).

Similarity in TA3 is determined as a closeness of values
for attributes defined in thecontext. Context can be seen as
a view or an interpretation of a case, where only a subset
of attributes are considered relevant. Formally, a context is
defined as a finite set of attributes with associated constraints
on their values:

Ω = {<a0 : CV0>, ..., <ak : CVk>},

whereai is an attribute name and the constraintCVi speci-
fies the set of “allowable” values for attributeai. By select-
ing only certain features for matching and imposing con-
straints on feature values, a context controls what is and
what is not considered as a partial match: all (and only)
cases that satisfy the specified constraints for the context are
considered similar and are relevant with respect to the con-
text.

Case Adaptation inTA3

The adaptation process in CBR manipulates the solution of
the retrieved case to better fit the query. Letx1, ..., xk de-
note thek cases retrieved from the case-base that are nearest
to queryxq. The method called distance-weighted nearest-
neighbor decides on the class label of the query by applying
the following formula (Mitchell 1997):

f̂(xq)← argmax
v∈V

k∑
i=1

ωiδ(v, f(xi)),

where

ωi ≡
1

d(xq, xi)2
,

and f̂(xq) represents the predicted label for the queryxq,
V is the finite set of class labels{v1, ..., vs}, f(xi) denotes
the class label of casexi, andδ(a, b) = 1 if a = b and
δ(a, b) = 0 otherwise.

Experimental Results

In this section, we compare the FS methods discussed above
on two microarray data sets. We then evaluate our pro-
posed method on two publicly available mass spectrome-
try data sets. Finally, we discuss the list of cancer-specific
and control-specific biomarkers selected by the LR4CBR
method and markers identified by other studies.



Microarray Data Sets
The experiments have been performed on the following pub-
licly available microarrays data sets:

1. Leukemia data set: The data set contains data of 72
leukemia patients, with 7,129 expression levels for each
sample2 (Golub et al. 1999). 47 samples belong to
type I Leukemia (called Acute Lymphoblastic Leukemia)
and 25 samples belong to type II Leukemia (called Acute
Myeloid Leukemia).

2. Lung data set: The data set taken from the Ontario Can-
cer Institute3 contains 39 samples with 18,117 expression
levels for each sample. Samples are pre-classified into
“recurrence” (23 samples) and “non-recurrence” (16 sam-
ples). Missing values were imputed using the KNNim-
pute software, which is based on the weightedk-nearest-
neighbor method (Troyanskayaet al. 2001).

Mass Spectrometry Data Sets
The two mass spectrometry data sets (Sorace & Zhan 2003;
Zhu et al. 2003) discussed in this paper are both provided
online at the National Institutes of Health and Food and Drug
administration Clinical Proteomics Program Databank.4

1. Ovarian data set 8-7-02: The ovarian data set 8-7-02
consists of 162 MS spectra from ovarian cancer patients
and 91 individuals without cancer (control group) with
15,154 mass-to-charge ratios (m/z values) for each serum.

2. Ovarian data set 4-3-02: The ovarian data set 4-3-02
contains spectra from 100 patients with ovarian cancer
and 116 individuals without cancer (control group). The
serum mass spectrum for each subject consists of 15,154
mass-to-charge ratios of varying intensities.

Feature Selection Results
We used accuracy and classification error to compare sev-
eral FS methods. Since certain cases cannot be uniquely la-
beled, theTA3 classifier categorizes them as “undecided”.
In Table 1, logistic regression Irefers to the first method
explained in the LR4CBR Section (selecting the highest
ranking magnitude of weights), andlogistic regression II
refers to the FS criterion proposed by LeCun et al. (LeCun,
Denker, & Solla 1990).

In order to compare various FS methods for the Leukemia
data set, we used the training and the test sets suggested by
the data set provider, i.e., 38 samples in the training set, and
34 samples in the test set. As Table 1 shows the accuracy
of TA3Leukemia 5 improves using the methods described
in the previous section, compared to the case where no FS
method is applied.

Leave-one-out cross-validation (LOOCV)was used to
compare the various FS methods on the lung data set. In

2http://www.broad.mit.edu/cgi-bin/cancer/
publications/pub_menu.cgi

3http://www.cs.toronto.edu/˜juris/
publications/data/CR02Data.txt

4http://home.ccr.cancer.gov/
ncifdaproteomics/ppatterns.asp

5TA3X denotes application ofTA3 into a domainX.

this method, theTA3Lung classifier is successively trained
on n − 1 data points and tested on the remaining one. The
results are averaged over 20 trials.

As Table 1 shows, logistic regression outperforms the
other FS methods, when the magnitude of weights is used
as a ranking criterion. All methods selected the 10% highest
ranked features from the whole feature set.

Table 1: Accuracy ofTA3Leukemia andTA3Lung with var-
ious feature selection methods

Leukemia Data Set
Method Accuracy Error Undecided
Fisher 74% 23% 3%
T-Test 71% 29% 0
Logistic Regression I 76% 24% 0
Logistic Regression II 71% 29% 0

Lung Data Set
Method Accuracy Error Undecided
Fisher 55% 25% 20%
T-Test 55% 30% 15%
Logistic Regression I 65% 25% 10%
Logistic Regression II 60% 30% 10%

LR4CBR Results
We used 10-fold cross-validation to evaluate our method, as
Table 2 shows, theTA3 classifier was 90% accurate when
the entire feature set was used, and the LR4CBR method im-
proved the prediction accuracy ofTA38−7−02 to 98%. As
the Table shows, the classification error reduced from 9.2%
to 2%. Recall that cases in which there is a tie, so thatTA3
cannot decide on its class label are labeled “undecided”.

These two ovarian data sets have been previously ana-
lyzed (Sorace & Zhan 2003; Zhuet al. 2003). Sorace et
al. report 100% specificity and 100% sensitivity when they
split the ovarian data set 8-7-02 randomly into 125 training
and 128 test set. They use the two-sided Wilcoxon test to
compare the intensity between controls and cancers in the
training set, and then they apply three rules to select a subset
of biomarkers (Sorace & Zhan 2003). Although their results
are impressive, the rules are extracted in an “ad hoc” way,
and might not be applicable to other similar data sets.

Zhu et al. split the 4-3-02 data set randomly into 100
training samples and 116 test samples. After they select a
subset of 18 biomarkers using t-test, they applyk-nearest-
neighbor (k=5) to classify the test set. They report 100%
specificity and 100% sensitivity (Zhuet al. 2003). Since we
used 10-fold cross-validation, our results are not compara-
ble with them, though we testedTA3 with their 18 selected
biomarkers. It appeared that the classifier is not as accu-
rate as in the case where the LR4CBR method is applied
(third and seventh rows of Table 2). As is typically found in
most studies of feature selection, depending on the induction
bias of the classifier, different subsets of biomarkers distin-
guish between cancer and normal samples. Further valida-



tion, which is beyond the scope of this paper, will be able to
determine which list of biomarkers is biologically more “in-
formative” for diagnosis or treatment prediction for ovarian
cancer patients.

When the whole feature set is used, the accuracy is 79.2%
(see Table 2). LR4CBR improves the prediction accuracy of
TA34−3−02 from 79.2% to 95.4%, while the 18 biomark-
ers selected by Zhu et al. (Zhuet al. 2003) improves the
accuracy from 79.2% to 86%. Table 3 displays the list of
15 biomarkers selected by the LR4CBR method. In data set
8-7-02, according to Baggerly et al. (Baggerly, Morris, &
Coombes 2004), biomarker 435.46 is the most useful among
the seven features reported by (Petricoinet al. 2002), Our
algorithm selects that biomarker as well (Table 3). Also, it
is worth mentioning that Baggerly et al. (Baggerly, Mor-
ris, & Coombes 2004) report biomarker 244.95 as the best
single biomaker for data set 8-7-02, and this biomarker also
appears in our list. It is also interesting to see that biomarker
434.69 is in the list of selected biomarkers reported by Zhu
et al. (Zhuet al. 2003).

Table 2: Accuracy ofTA38−7−02 andTA34−3−02

Ovarian Data Set 8-7-02
Method Accuracy Error Undecided
TA3(no FS) 90% 9.2% 0.8%
18 Biomarkers 92.5% 6.3% 1.2%
LR4CBR 98% 2% 0%

Ovarian Data Set 4-3-02
Method Accuracy Error Undecided
TA3(no FS) 79.2% 18.5% 2.3%
18 Biomarkers 86% 8% 6%
LR4CBR 95.4% 4.6% 0%

Table 3: Biomarkers selected by LR4CBR for the ovarian
data set 8-7-02 and 4-3-02

Ovarian Data Set 8-7-02
Markers(m/z)

244.66 244.95 245.24 245.54 245.83
246.12 261.58 261.89 417.35 417.73
434.69 435.07 435.46 435.85 436.24

Ovarian Data Set 4-3-02
Markers(m/z)

0.0386 0.0463 0.0504 0.0735 0.0786
0.0895 0.1468 0.2451 0.4033 0.4153
0.4274 0.5170 0.5306 0.6445 1518.8719

Conclusions and Future Work
Life sciences domains, such as gene and protein expression
profiling, are natural applications for CBR systems, since
CBR systems can perform remarkably well on complex and
poorly formalized domains. However, due to the large num-
ber of attributes in each case, CBR classifiers, similarly to
other learning systems, suffer from the “curse of dimension-
ality”. Integrating CBR systems with feature selection tech-

niques improves the prediction accuracy of CBR classifiers
by removing “non-informative” features in each group.

In this paper, we have proposed using logistic regression
as a filter feature selection method for theTA3 CBR classi-
fier. According to our experiments on microarray data sets,
logistic regression performs more accurately than Fisher and
t-test. We also evaluated our method on two public mass
spectrometry data sets, and showed that LR4CBR improves
the accuracy from 90% to 98% on the ovarian data set 8-7-02
and from 79.2% to 95.4% on the ovarian data set 4-3-02.

Future investigation may further exploit the advantage of
Telos-style categories inTA3 for classification tasks, and
validate the system on diverse high-dimensional data sets.
We plan to evaluate the classifier with wrapper as well ashy-
brid feature selection techniques: a combination of filter and
wrapper approach (Das 2001). Because of the high dimen-
sionality of our data sets, we removed features in “larger”
chunks, though a method that removes features in “smaller”
chunks may lead to better performance. Also, we may con-
sider feature redundancy as well as feature relevance, as Yu
and Liu (Yu & Liu 2004) discuss that feature relevance
alone is insufficient for efficient feature selection of high-
dimensional data.
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