
SCARPA: Scaffolding Reads with Practical Algorithms

Nilgun Donmez1∗ and Michael Brudno1,2,3

1Department of Computer Science, University of Toronto, Toronto, ON, Canada
2Donnelly Centre, University of Toronto, Toronto, ON, Canada
3Center for Computational Medicine, Hospital for Sick Children, Toronto, ON, Canada

ABSTRACT

Motivation: Scaffolding is the process of ordering and orienting

contigs produced during genome assembly. Accurate scaffolding is

essential for finishing draft assemblies as it facilitates the costly and

laborious procedures needed to fill in the gaps between contigs. Con-

ventional formulations of the scaffolding problem are intractable and

most scaffolding programs rely on heuristic or approximate solutions

with potentially exponential running time.

Results: We present SCARPA, a novel scaffolder which combines

fixed-parameter tractable and bounded algorithms with Linear Pro-

gramming to produce near-optimal scaffolds. We test SCARPA on

real datasets in addition to a simulated diploid genome and compare

its performance to several state-of-the-art scaffolders. We show that

SCARPA produces longer or similar length scaffolds that are highly

accurate compared to other scaffolders. SCARPA is also capable of

detecting misassembled contigs and reports them during scaffolding.

Availability: SCARPA is open source and available from

http://compbio.cs.toronto.edu/scarpa.

Contact: nild@cs.toronto.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

While assemblers developed for High Throughput Sequencing

(HTS) platforms can produce high quality draft assemblies for the

genomes of bacteria and viruses, de novo assemblies of more com-

plex genomes using short reads are typically very fragmented. This

fragmentation can be partially alleviated through scaffolding: the

process of linking contigs into longer sequences (possibly with

gaps) using paired read information. Scaffolding not only improves

the contiguity of the initial assembly, but is also helpful for desi-

gning experiments for finishing of the genome through additional

sequencing of selected regions with lower throughput technology,

such as Sanger.

Although many genome assemblers produce scaffolds using pai-

red reads during the assembly process (Zerbino et al., 2009; Simp-

son et al., 2009; Li et al., 2009), the problems of building contigs

and scaffolding them are distinct. A scaffolder takes as input a set

of assembled contigs and a set of paired reads. The relative orien-

tation of two paired reads and the approximate distance between

∗to whom correspondence should be addressed

them are known. Thus, if the two reads can be unambiguously map-

ped to different contigs, we can identify the relative ordering and

the distance between these contigs. Due to errors in the read pair

data (e.g. chimeric pairs) and in the assembly (e.g. misassembled

contigs) the ordering achieved from different read pairs can be con-

tradictory. Consequently, the scaffolding problem is often defined

as finding an ordering on the contigs that maximizes the number of

supporting read pairs. Computationally, this formulation is NP-hard

(Huson et al., 2002), leading most scaffolding approaches to use

heuristic algorithms with no provable guarantees.

Some scaffolders greedily link contigs by considering them in

order of strongest paired read support (Pop et al., 2004) or lar-

gest contig length (Boetzer et al., 2011), while rejecting links that

contradict those already chosen. Alternatively, the scaffolding pro-

blem is often represented as a graph, where nodes denote contigs

and edges denote paired read links. SOPRA (Dayarian et al., 2010)

partitions this graph into smaller parts and solves the scaffolding

problem in each subgraph using statistical optimization. MIP Scaf-

folder (Salmela et al., 2011) partitions the graph in a similar way;

however, it solves the problem for each subgraph exactly using

Mixed Integer Programming. To keep the algorithms tractable, both

of these scaffolders limit the sizes of the subgraphs. Opera Gao

et al. (2011) applies an alternate partitioning scheme using a graph

contraction procedure and solves the scaffolding problem with a

fixed-parameter tractable algorithm based on a graph-bandwidth

formulation. These approaches to scaffolding attempt to maximize

the number of paired reads that are satisfied, implicitly assuming

that paired read links are noisy, and the contigs are error-free. Howe-

ver, in larger and more complex genomes the assembled contigs may

well have misassemblies.

In this paper we present a novel method that combines several

practical algorithms for the scaffolding problem. Our approach assu-

mes that both erroneous read pairs and contigs are possible, allowing

us to detect misassembled contigs and remove these from the scaf-

folds. This formulation of the problem allows for an algorithm

with practical time and memory requirements, while providing an

exact solution of bounded error. This algorithm is implemented

within SCARPA, a stand-alone scaffolder for HTS data. We have

tested SCARPA on real datasets as well as on a simulated diploid

genome, and show that it builds highly accurate and longer scaffolds

compared to several state-of-the-art scaffolders.

1© The Author (2012). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Associate Editor: Dr. Alex Bateman

 Bioinformatics Advance Access published December 29, 2012
 at U

niversity of B
ritish C

olum
bia on January 17, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from

http://bioinformatics.oxfordjournals.org/

2 METHODS

We implement our methods in a stand-alone scaffolder named

SCARPA. As input, SCARPA takes a FASTA file containing a set

of contigs and a SAM file containing the mapping positions of

one or more paired read libraries. These files can be generated by

any software of choice. As a preprocessing step, SCARPA filters

ambiguously mapping reads and estimates the mean and standard

deviation of the insert size for each library. SCARPA then assigns

an orientation to each contig discarding a minimal set of contradic-

tory contigs and paired read links. In the next step, contigs are given

a pairwise-consistent order and finally the exact order of the contigs

is determined using a Linear Programming framework. We explain

these steps in detail below.

2.1 Preprocessing

The first step of SCARPA is to filter and analyze the read mappings.

Like other scaffolders, SCARPA discards a read pair if either of the

reads maps ambiguously (i.e. has more than one optimal hit). Next,

SCARPA analyzes the read mappings to estimate the mean and stan-

dard deviation of the insert size for each library. While for most

sequencing projects initial estimates of these are available, inaccu-

rate values will cause gap sizes between the contigs to be incorrectly

estimated. SCARPA re-estimates the insert size distribution using

paired reads that map to the same contig. To make sure this estima-

tion is reliable, we only use contigs that are longer than the contig

N50 (see section 3.2 for a definition of N50). If the calculated mean

is more than half of the contig N50 we use the provided library

statistics instead.

After the library statistics are finalized, we build a scaffolding

graph where nodes are contigs and edges are paired read links bet-

ween the contigs. If there are multiple links between a pair of

contigs, we bundle them provided that they suggest the same relative

orientation. Each edge is weighted by the number of paired reads

supporting the link and edges with support lower than a threshold

are discarded. By default this threshold is 2, however, it can be set

during program execution. In addition, each edge has an associa-

ted estimate for the distance between the contigs it connects. This

distance, denoted with αij , is computed using the formula below:

αij =
1

n

n
X

l=1

ml (1)

where ml is the estimated distance between the contigs i and j

based on the paired read link l and n is the number of paired read

links between these two contigs. Here ml is calculated by subtrac-

ting the distance between the mapped positions and the end of the

contigs from the mean insert size. Note that it is possible for this

value to be negative since the end of the contigs may overlap.

2.2 Contig orientation as Odd Cycle Transversal

Each assembled contig is arbitrarily oriented; it could be mapped

to either strand of the genome. The orientation stage of scaffolding

attempts to orient the contigs based on the read pairs so that within

each scaffold all of the contigs lie on the same strand. This is illu-

strated in Fig. 1. With error-free data this problem has a feasible

solution, easily identified via a greedy algorithm. In the presence of

errors, such as chimeric read pairs, mismapped reads and incorrectly

Fig. 1. Contig orientation. The relative orientation of contigs with respect

to each other is identified via paired read links. Here, we assume the correct

orientation of a read pair is forward-reverse (i.e. paired-end orientation). If

the orientation of the library is otherwise, reads are reverse complemented to

match this orientation prior to scaffolding. Above, we reverse complement

the middle contig in order to satisfy the orientation of the paired reads.

Fig. 2. An example of a misassembled contig. Top: A genome divided into

several regions depicted with letters A-G. The repeat region A has three

copies in the genome, one of which is inverted. Bottom: Five assembled

contigs and a set of paired reads mapped to these contigs. The third contig

is misassembled due to overcollapsing of the repeat region A. Here, we have

to discard two paired read links so that the contig orientation problem has

a feasible solution. Moreover, removing the wrong links will cause further

errors in scaffolds.

assembled contigs, the problem may be infeasible unless we remove

some constraints.

The orientation problem is usually formulated as follows: assign

an orientation for each contig so that the maximum number of pai-

red reads is satisfied. This formulation, adapted by most scaffolders

(Dayarian et al., 2010; Pop et al., 2004; Salmela et al., 2011), is

motivated by the assumption that the majority of incorrect links

are due to chimeric pairs or mismapped reads. However, contradic-

tory links may also be due to misassembled contigs (see Fig. 2). In

such cases, it might be desirable to remove contigs instead of links.

Furthermore, links that are due to chimeric pairs tend to have low

support - such errors are expected to occur independently - and can

often be identified during preprocessing.

Instead, we adopt an approach that allows removal of contigs as

well as paired read links. We will first illustrate how to optimize

the number of contigs that are removed, and then generalize the

approach to paired read links. First, we build an undirected graph

2

 at U
niversity of B

ritish C
olum

bia on January 17, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

G, where each contig c is represented by two nodes c− and c+ cor-

responding to the 5’ and 3’ ends of the contig respectively. For each

contig c, we add an edge between c− and c+. For each read pair

r1 and r2 mapping to contigs x and y respectively, we add an edge

between1:

• x+ and y− if r1 maps to x on the forward strand and r2 maps

to y on the reverse strand

• x− and y+ if r1 maps to x on the reverse strand and r2 maps

to y on the forward strand

• x+ and y+ if both r1 and r2 map on the forward strands

• x− and y− if both r1 and r2 map on the reverse strands

Note that the contig orientation problem has a feasible solution if

and only if G has no cycles containing an odd number of nodes. We

thus attempt to find the smallest set of nodes which can be removed

from the graph to allow for a feasible solution. In graph theory this

is known as finding a minimum odd cycle transversal, and while

this problem is NP-hard in general, it can be solved efficiently if

the number of nodes to be removed is small. Reed et al. (2004)

developed a fixed-parameter tractable algorithm which identifies a

set X of nodes with |X| ≤ k, for any fixed k, such that G − X has

no odd cycles or asserts that no such set exists. This algorithm runs

in time O(3kkmn) (Lokshtanov et al., 2009). The value of k, i.e.

the maximum number of nodes to remove, is first set to 0 and then

iteratively increased until a feasible solution is found.

2.2.1 Removing paired read links in addition to contigs The

algorithm we describe above is based on removal of nodes (con-

tigs). To allow removal of edges (paired read links) in addition to

nodes, we build another graph G′, which is derived from G by inser-

ting auxiliary nodes. Briefly, we insert two nodes for each edge that

connects two contig nodes (but not for an edge that connects the two

ends of the same contig). Figure 3 illustrates this process. It is easy

to see that this transformation does not alter the parity of existing

cycles or create new cycles.

If there is a tie between discarding a contig node versus discarding

an auxiliary node representing a paired read link, we would like the

algorithm to remove the auxiliary node. In order to encourage the

algorithm to remove paired read links before removing contigs, we

order the nodes of G′ such that the auxiliary nodes are considered

before any contig node. Note that the algorithm will never choose to

discard both auxiliary nodes representing the same paired read link,

since this would contradict the optimality of the algorithm.

2.2.2 Assigning the orientation of the contigs Once the graph G

is free of odd cycles, we transform it into a directed graph T , while

simultaneously assigning each contig an orientation. To perform

this task, we start with an arbitrary contig x. Without loss of gene-

rality, we assign the orientation of this contig as “forward”. This

assignment is reflected in the graph T by setting the direction of

the edge (x−, x+) as x− → x+. This also means that all other

edges incident to x+ must be outgoing edges. Similarly, all other

edges incident to x− must be incoming edges. This information is

propagated to the rest of the graph via a breadth-first-search. For

1 In practice, we bundle the paired reads that suggest the same orientation

and represent them as a single edge.

Fig. 3. Formulation of the contig orientation problem as an odd cycle trans-

versal problem. a. We create two nodes for each contig corresponding to the

two ends of the contig and connect these nodes with an edge. Then the paired

read links are used to connect the ends of the contigs. Conflicting links create

odd length cycles in the resulting graph. b. To allow removal of paired read

links in addition to contigs, we modify the graph by creating two auxiliary

nodes on each edge induced by these links. This modification preserves the

parity of the cycles of the original graph.

example, if there is an edge (x−, y−), the direction of this edge is

set to y− → x−. In turn, the direction of the edge (y−, y+) is set

to y+ → y− and therefore the orientation of contig y is assigned as

“reverse”. This process is illustrated in Fig. 4.

2.2.3 A note on the relation of bidirected graphs and the odd cycle

transversal problem The scaffolding problem is sometimes repre-

sented as a bidirected graph (Salmela et al., 2011). It is easy to see

that the initial undirected graph G we construct above is equivalent

to a bidirected graph. For interested readers, we hereby note that

this section also provides a general algorithm to convert an arbitrary

bidirected graph into a directed graph by removing a minimal set of

nodes and edges.

2.3 Ordering

Although the orientation step removes all odd cycles from G, the

directed graph T may still have cycles (see Fig. 4). To place the con-

tigs into a linear order, we need to eliminate all directed cycles from

T . The problem of finding a minimal set of edges, whose removal

makes a directed graph acyclic is known as the feedback arc set pro-

blem. For arbitrary graphs, this problem is NP-hard (Karp, 1972).

We use a heuristic algorithm which runs in O(m) time where m is

the number of edges and guarantees an asymptotically optimal error

bound for sparse graphs (Eades et al., 1993).

2.4 Spacing

During the ordering stage, T is transformed into a directed acyclic

graph and is now guaranteed to have an ordering of the contigs so

that the remaining links are satisfied. In other words, each connected

3

 at U
niversity of B

ritish C
olum

bia on January 17, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Fig. 4. Assigning orientations. a. An undirected scaffolding graph G after odd cycles are removed. b. The edges are given directions in a greedy manner

starting from an arbitrary contig (in this example, from contig 1). c. Once the directions of the edges are assigned, we merge the nodes corresponding to the

ends of the same contig into a single node. The contigs labeled with rc(.) are reverse complemented.

component of T admits a topological ordering. Yet, this ordering

may not be unique. In the last stage of scaffolding, we try to find

a placement of contigs within each scaffold such that the distan-

ces between the contigs agrees best with the size of the gaps as

suggested by the paired read links. This task can be formulated

as a Linear Programming (LP) problem as follows. For each con-

tig 1 ≤ i ≤ N , where N is the number of contigs, we have a

real valued free variable xi that represents the 5’ end of the contig.

Without loss of generality, we set x1 to 0. For each paired read link,

we introduce the following constraints:

xi − xj + dij ≤ C(1 − δij) (2)

xj − xi − dij ≤ C(1 − δij) (3)

where dij is the distance between the 5’ ends of the contigs i

and j suggested by the paired read link. δij is a real valued slack

variable in the range [0, 1]. C is a large constant set to the sum of

all the contig lengths. Subject to the set of constraints as constructed

above, we maximize
P

δij .

Note that the LP formulation is designed to place the contigs so

that the paired read links are satisfied best, however, it may allow

two contigs to occupy the same coordinates. In practice, we do not

use the coordinates returned by the LP solver; rather, we use these

coordinates to order the contigs in linear paths as follows. If a con-

tig i is followed by a contig j according to the coordinates returned

by the solver and i and j are already connected by an edge in T we

keep this edge. If the two nodes are not connected by an edge, we

compute the shortest path between i and j in T . If the length of this

path is less than a small threshold, we create an edge between i and

j. The length of the gap between these contigs is computed using

the coordinates returned by the solver. If the shortest path between

i and j is longer than the threshold, we infer that these contigs are

not supposed to be adjacent. In this case, the contigs following j are

considered in order until one of them passes these criteria. If such a

contig is found, then it follows i in the path and a new path is created

for j. The resulting linear paths are output as scaffolds. If the esti-

mated length of the gap between two adjacent contigs is negative,

we align the ends of these contigs to see whether an overlap is pre-

sent. If a high identity overlap is present, we merge these contigs.

Otherwise, a fixed gap length of 10bp is assigned.

2.5 Components

Trivially, all the steps we describe above can be solved separately for

each connected component of the relevant graph. In order to keep

the running time of SCARPA within practical limits (for orienta-

tion) and to improve accuracy (for ordering and spacing), we further

divide the graph into biconnected components. The biconnected

components of an arbitrary graph can be computed in linear time

using the classical algorithm by Hopcroft and Tarjan (1973). This

algorithm works by finding a set of nodes, called the articula-

tion points, whose removal from the graph increases the number

of connected components. For the orientation and ordering steps,

we have to ensure that each biconnected component can be solved

independently without violating the correctness of the algorithms.

To accomplish this, we only use those articulation points with in

and out degrees equal to 1. Such nodes can never form cycles,

hence their removal does not violate the correctness of the odd cycle

transversal and the feedback arc set algorithms.

Note that highly connected graphs may not admit any articulation

points. These graphs often contain several repeat contigs that act

as hubs. To avoid this scenario, we limit the maximum number of

links a contig can make. If a contig exceeds the threshold, it is dis-

connected from the graph. This threshold is adjusted automatically

depending on the component sizes.

2.6 Multiple libraries

In the presence of two or more libraries, SCARPA starts with the

library of the smallest insert size. Remaining libraries are processed

in order of increasing insert size, where scaffolds from the previous

stages are treated as contigs.

3 RESULTS

3.1 Datasets

In our first set of experiments, we compare SCARPA to other state-

of-the-art scaffolders on two real Illumina datasets sampled from

the bacterium E. coli (strain K-12 substrain MG1655) and the fun-

gus G. clavigera. For E. coli, we evaluate the scaffolders using

the high quality finished sequence available from NCBI (accession

code: NC 000913.2). A finished reference sequence for G. clavi-

gera is not available, so we evaluate the scaffolders on the draft

sequence assembled using Sanger, Roche/454 and Illumina data as

described by DiGuistini et al. (2009). For both genomes, we use

two Illumina paired-end libraries downloaded from the NCBI Short

Read Archive.

In order to estimate the performance of SCARPA on a larger

dataset, we also test the scaffolders using a simulated paired-end

library taken from the first Assemblathon experiment (Dent et al,

4

 at U
niversity of B

ritish C
olum

bia on January 17, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Table 1. Datasets used for evaluation. For G. clavigera, the size of the available draft sequence is given in place of

the genome size. For the Assemblathon1 dataset, the genome size is given as an average of the haploid reference

sequences.

Genome Accession No. of Sequence Spanning Read Insert

Organism size (mbp) code reads Coverage Coverage length (bp) size (bp)

Escherichia coli 4.6 SRR001665 2x10.4m 162x 452x 36 200

SRR001666 2x7.0m 109x 760x 36 500

Grosmannia clavigera 29.7 SRR018008 2x10.2m 28x 68x 42 200

SRR018012 2x12.0m 40x 282x 50 700

Assemblathon1 112.5 - 2x22.5m 40x 60x 100 300

Table 2. Scaffolding statistics for the E. coli dataset. The last column

denotes the number of multi-contig scaffolds that contain breakpoints (i.e.

scaffolds that do not admit a co-linear mapping to the reference). The

numbers in parantheses denote the total number of multi-contig scaffolds.

No. of Coverage Largest N50 Total No. of

scaffolds (%) (kbp) (kbp) (mbp) Breaks

Contigs 489 97.89 103 24 4.54 -

Velvet 138 98.37 312 132 4.56 -

SCARPA 156 98.06 268 136 4.55 5 (56)

SSPACE 81 98.36 275 132 4.55 9 (57)

MIP 85 98.47 226 95 4.55 10 (63)

SOPRA 294 97.98 188 50 4.55 1 (73)

2011). This library consists of 100bp long reads with 300bp insert

size sampled from an artificially evolved diploid genome. Reads are

simulated with sequencing errors and correspond to 40x coverage.

The characteristics of the diploid reference and the simulation pro-

cess are described in detail by Dent et al (2011). The statistics of all

datasets are given in Table 1.

For the E. coli and G. clavigera datasets, we assemble the reads

into contigs using Velvet (Zerbino et al., 2009) and report the con-

tigs with the kmer size that achieves the highest N50 value (29 and

27 respectively). For these datasets, we set the expected coverage

and coverage cutoff to automatic, and only report contigs that are

100bp or longer. For the Assemblathon1 dataset, we assemble the

reads using Hapsembler (Donmez and Brudno, 2011), which has

support for diploid datasets. Since the reads are longer, we set the

minimum contig size to 200bp. For this dataset, we also discard

read pairs that map to the E. coli genome prior to assembly and

scaffolding in order to remove contamination. The total number of

pairs removed by this process is 864,758 corresponding to ∼1.5x

reduction in coverage.

Table 3. Scaffolding statistics for the G. clavigera dataset.

No. of Coverage Largest N50 Total

scaffolds (%) (kbp) (kbp) (mbp)

Contigs 5298 89.09 109 18 26.59

Velvet 2084 89.65 1068 164 27.03

SCARPA 1691 89.24 863 234 26.74

SSPACE 1570 89.20 817 169 26.84

MIP 1839 89.21 367 53 26.75

SOPRA 2305 89.16 855 194 26.70

Table 4. Scaffolding statistics for the Assemblathon1 dataset.

No. of Coverage Largest N50 Total

scaffolds (%) (kbp) (kbp) (mbp)

Contigs 13364 99.19 85 18 114.53

SCARPA 5620 99.30 324 54 114.14

SSPACE 7936 99.25 144 34 114.55

MIP 5193 99.28 325 58 114.01

SOPRA 6258 99.28 280 48 114.55

3.2 Evaluation

We compare SCARPA to three other scaffolders; SSPACE (Boet-

zer et al., 2011), MIP Scaffolder (Salmela et al., 2011) and SOPRA

(Dayarian et al., 2010). We also report the scaffolds produced by

Velvet on the E. coli and G. clavigera datasets. The standard devia-

tion for each library is set to 10% of the mean insert size. For MIP

Scaffolder, the minimum and maximum insert size values are set to

3 standard deviations below and above the mean respectively. The

other parameters are left at default values. We let SCARPA adjust

all parameters automatically for each dataset. For all scaffolders, the

reads are mapped with Bowtie using the same options (Langmead

5

 at U
niversity of B

ritish C
olum

bia on January 17, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Table 5. Number of inversion type errors computed using the same

sampling of sequence pairs as in accuracy.

SCARPA SSPACE MIP SOPRA Velvet

E.coli 0 6 5 0 1

G.clavigera 3 4 28 1 3

Assemblathon1 38 27 53 43 -

Table 6. Wall-clock running times of the scaffolders in minutes. Map-

ping is performed using Bowtie with 16 threads and mapping time is

included for all scaffolders. For information, the total wall-clock time

taken by Bowtie to index the reference and write read mappings in SAM

format is also reported.

Bowtie SCARPA SSPACE MIP SOPRA

E.coli 3 12 3 29 97

G.clavigera 9 15 5 51 172

Assemblathon1 18 27 15 90 515

et al., 2009). For all evaluations reported in this section, the mapping

of scaffolds is performed using the nucmer and delta-filer utilities

of the MUMmer package (Version 3.22) (Kurtz et al., 2004)

The scaffold length statistics are summarized in Tables 2, 3 and 4.

N50 is calculated as the largest scaffold length such that the sum of

scaffolds at least as long is greater than half the total scaffold size.

The coverage is measured by mapping the scaffolds to the reference

sequence and includes gaps. Statistics regarding the number of con-

tigs merged in scaffolds are included in the online supplementary

materials.

For the E. coli dataset, we additonally report the number of multi-

contig scaffolds that contain breakpoints in the mappings. Note that

we can not compute these numbers reliably in the G. clavigera and

Assemblathon1 datasets. In the former case, a finished reference

sequence is not available: The draft assembly we use for evalua-

tion consists of 289 scaffolds. In the latter, the presence of two

haplotypes implies that there may be haplotype switches within the

contigs as well as the scaffolds, making it difficult to estimate the

real number of breakpoints.

To estimate the accuracy of the scaffolds in the other datasets,

we employ a method similar to the one used by Salmela et al.

(2011). Briefly, this method works by extracting pairs of sequences

separated by a certain distance from the scaffolds. These pairs are

then mapped to the reference and the proportion of pairs that map

with the correct orientation and within 10% of the correct distance

is reported. In our experiments, we use a tiling of 1000bp long

sequences separated by a distance of 3000bp. Figure 5 shows the

accuracy versus the N50 measure for each dataset. We also report

the number of inversion type errors in Table 5. An inversion error is

said to occur when one of the tiling pairs map to the forward strand

of the reference while the other maps to the reverse strand.

SCARPA produces highly accurate scaffolds that are at least as

long or longer than the other tools. We also find that for the E.

coli dataset, out of the three contigs with lengths 282bp, 426bp and

428bp removed by SCARPA during scaffolding, two of them (with

lengths 282bp and 428bp) do not map to the reference sequence. For

the other datasets, SCARPA only removed paired read links.

The running times of the scaffolders on a server with 20 cores

operating at 2.67GHz and 80GB memory are given in Table 6. On

these datasets, SSPACE is the fastest, followed by SCARPA and

MIP Scaffolder, while SOPRA is the slowest. Note that SSPACE

actually takes less time than Bowtie, probably due to the fact that it

runs Bowtie internally avoiding the extra time needed to process the

read mappings.

4 CONCLUSION

Scaffolding improves the contiguity of an assembly and facilitates

the finishing of a genome by establishing an order and orienta-

tion of contigs. In this paper, we have presented SCARPA, a

novel scaffolder for HTS data that combines graph algorithms with

Linear Programming. Using simulated and real datasets, we show

that SCARPA produces as long or longer scaffolds than the cur-

rent state-of-the-art tools, while at the same time achieving high

accuracy.

A novel feature of SCARPA is the ability to detect misassemb-

led contigs. Although this procedure may produce false positives,

SCARPA reports only a few such contigs per dataset, which can be

manually investigated if necessary. For instance, SCARPA discards

no contigs in the G. clavigera and Assemblathon1 datasets and only

three contigs in the E. coli dataset, two of which are indeed found to

be erroneous.

We also show that SCARPA has favorable running time on these

datasets, although it is slightly slower than SSPACE. In addition,

SCARPA has a small memory footprint, requiring less than 2GB on

the Assemblathon1 dataset.

Within SCARPA, the most time consuming step is the contig ori-

entation task. While we believe our method typically produces more

accurate scaffolds compared to greedy or heuristic based approaches

and has the advantage of detecting misassemblies, it can be compu-

tationally expensive for large and complex genomes. On the other

hand, the fixed-parameter tractable algorithm we employ is suitable

for parallel computation. Although our current implementation is

single-threaded, we plan to explore this direction in a future version.

ACKNOWLEDGEMENT

We would like to thank members of the Computational Biology Lab

at the University of Toronto for assistance with this manuscript.

Funding: This work was supported by an NSERC Discovery Grant

to MB.

REFERENCES

Boetzer, M., Henkel, C., Jansen, H., Butler, D., and Pirovano, W. (2011). Scaffolding

pre-assembled contigs using SSPACE. Bioinformatics, 27(4), 578–579.

Dayarian, A., Michael, T., and Sengupta, A. M. (2010). SOPRA: Scaffolding algorithm

for paired reads via statistical optimization. BMC Bioinformatics, 11(345).

Dent et al (2011). Assemblathon 1: A competitive assessment of de novo short read

assembly methods. Genome Research, 21(12), 2224–2241.

6

 at U
niversity of B

ritish C
olum

bia on January 17, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

Fig. 5. Scaffold N50 (kbp) versus accuracy (%) for each dataset. For the Assemblathon1 dataset, we map the pairs to both haplomes (i.e. haploid copy of

the genome) and consider a pair correct if it maps to either haplome with the correct orientation and within 10% of the expected distance. We perform all

mappings using MUMmer (version 3.22) (Kurtz et al., 2004).

DiGuistini, S., Liao, N., Platt, D., Robertson, G., Seidel, M., Chan, S., Docking, T. R.,

Birol, I., Holt, R., Hirst, M., Mardis, E., Marra, M., Hamelin, R., Bohlmann, J.,

Breuil, C., and Jones, S. (2009). De novo genome sequence assembly of a fila-

mentous fungus using sanger, 454 and illumina sequence data. Genome Biology,

10(9).

Donmez, N. and Brudno, M. (2011). Hapsembler: an assembler for highly polymorphic

genomes. In V. Bafna and S. Sahinalp, editors, Research in Computational Mole-

cular Biology, volume 6577 of Lecture Notes in Computer Science, pages 38–52.

Springer Berlin / Heidelberg.

Eades, P., Lin, X., and Smyth, W. F. (1993). A fast effective heuristic for the feedback

arc set problem. Information Processing Letters, 47, 319–323.

Gao, S., Nagarajan, N., and Sung, W.-K. (2011). Opera: Reconstructing optimal

genomic scaffolds with high-throughput paired-end sequences. In V. Bafna and

S. Sahinalp, editors, Research in Computational Molecular Biology, volume 6577

of Lecture Notes in Computer Science, pages 437–451. Springer Berlin / Heidelberg.

Hopcroft, J. and Tarjan, R. (1973). Algorithm 447: efficient algorithms for graph

manipulation. Communications of the ACM, 16(6), 372–378.

Huson, D. H., Reinert, K., and Myers, E. W. (2002). The greedy path merging algorithm

for contig scaffolding. Journal of the ACM, 49(5), 6003–615.

Karp, R. M. (1972). Reducibility among combinatorial problems. Complexity of

computer computations, pages 85–103.

Kurtz, S., Phillippy, A., Delcher, A., Smoot, M., Shumway, M., Antonescu, C., and

Salzberg, S. (2004). Versatile and open software for comparing large genomes.

Genome Biology, 5(2), R12.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. (2009). Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biology,

10(3).

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kri-

stiansen, K., Li, S., Yang, H., Wang, J., and Wang, J. (2009). De novo assembly of

human genomes with massively parallel short read sequencing. Gemome Research,

20(2), 265–272.

Lokshtanov, D., Saurabh, S., and Sikdar, S. (2009). Simpler parameterized algo-

rithm for OCT. In J. Fiala, J. Kratochvı́l, and M. Miller, editors, Combinatorial

Algorithms, pages 380–384. Springer Berlin / Heidelberg.

Pop, M., Kosack, D., and Salzberg, S. (2004). Hierarchical scaffolding with Bambus.

Genome Research, 14, 149–159.

Reed, B., Smith, K., and Vetta, A. (2004). Finding odd cycle transversals. Operations

Research Letters, 32, 299–301.

Salmela, L., Makinen, V., Valimaki, N., Ylinen, J., and Ukkonen, E. (2011). Fast

scaffolding with small independent mixed integer programs. Bioinformatics, 27(23),

3259–3265.

Simpson, J. T., Wong, K., Jackman, S. D., Schein, J. E., Jones, S. J., and Birol, I. (2009).

ABySS: A parallel assembler for short read sequence data. Genome Research, 19(6),

1117–1123.

Zerbino, D. R., McEwen, G. K., Margulies, E. H., and Birney, E. (2009). Pebble and

Rock Band: Heuristic resolution of repeats and scaffolding in the Velvet short-read

de novo assembler. PLoS ONE, 4(12).

7

 at U
niversity of B

ritish C
olum

bia on January 17, 2013
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

http://bioinformatics.oxfordjournals.org/

