
EUROGRAPHICS Symposium on Sketch-Based Interfaces and Modeling (2012)
L. B. Kara and K. Singh (Editors)

Concepture: a regular language based framework for
recognizing gestures with varying and repetitive patterns

N. Donmez1 and K. Singh1,2

1Dept. of Computer Science, 2Dynamic Graphics Project
University of Toronto

Abstract
We present Concepture, a framework based on regular language grammars for the authoring and recognition of
sketched gestures with infinitely varying and repetitive patterns. Such gestures, while often seen in gesture based
applications are currently hard-coded and not customizable. We endorse an example-based workflow, where users
author gestures by sketching one or more example instances of the gesture. We de-construct these examples into
perceptible stroke segments. Adjacent segment-pairs further capture local spatial relationships between segments
and these segment-pairs form the alphabet of a regular language. We then initialize a grammar for our gesture
by admitting strings that represent the user provided examples. Grammar refinement is user-friendly, in that we
automatically generate new candidate gestures that are visually presented to the user for verification as instances
of the gesture. We show Concepture to be effective in efficiently authoring a number of common, yet difficult to
recognize gestures, and illustrate it using clip-art and image annotation applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Sketch Based Interfaces—
Gesture Recognition

1. Introduction

Figure 1: Lucy in the sky with diamonds: a scene depicted
using gestures of variable repetitive structure.

The use of symbolism in human visual communication
is ubiquitous, whether in the form of signature facial ex-
pressions, hand signals or gestural sketches. It comes as no
surprise thus, that gesture-based interfaces are becoming in-

creasingly popular, fueled by the recent explosion of devices
supporting touch and pen-based interaction [JGHYLD09].
Originally motivated by the problem of handwriting recogni-
tion, the science of symbolism and gesture recognition from
sketched strokes is at least three decades old [Spr79]. The
symbolism depicted in sketches conveying visual concepts
frequently embody a sense of gestalt, that is, our capability
to capture whole forms instead of just a collection of sim-
ple lines and curves [Edw02]. Figure 1, for example shows
childlike depiction of an imagined scene comprising a sun,
stars, clouds, a boat on a river and a little girl. The waves are
recognizable independent of their size or the number of rip-
ples, the sun and stars are similarly not bound to a specific
shape or number of rays or points.

While these sketches are instantly recognizable to hu-
mans, current gesture recognition algorithms are likely to
fail to capture the variability in these drawings. Frameworks
for general gesture recognition such as the simple but pow-
erful $1 Gesture Recognizer [WWY07] classify strokes by
matching them against a finite set of example templates. The
challenge in recognizing the symbols in Figure 1 is that their
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Figure 2: Repetitive gestures are often hard-coded into in-
terfaces: roll back/fwd, scratch-out, resistor/spring in scien-
tific drawing, continuation arrow.

Figure 3: Hierarchical gestures: a Hilbert curve and a lay-
ered sinusoid. We address the most detailed level.

whole is bigger than the sum of their parts: not only do the
parts or salient segments admit variations in shape, they are
also repetitive, optional, and bear specific spatial relation-
ships to each other. In current practice, such gestures cannot
be authored by an artist or end-user sketching a few exam-
ple instances of the gesture, but must be programmed to be
recognized using logic specific to each type of gesture.

This paper thus presents the first framework where such
repetitive gestures can be authored by providing one or more
example instances of the gesture. Given these initial exam-
ples, we construct a number of candidate instances of the
gesture for interactive user verification, to uniquely deter-
mine a Finite State Machine (FSM) that represents the ges-
ture.

The utility of such gestures might not seem obvious from
the simple motivating example in Figure 1. In more com-
mon use, Figure 2 shows example gestures that have been
hard-coded into successful sketch-based interfaces [BBS08,
IMT99]. Even more complex, pre-coded patterns have been
used to retrieve architectural elements and material textures
such as brick and shingles by sketching [CKX∗08]. Current
frameworks for gesture recognition typically operate by ge-
ometrically matching candidate strokes to a discrete set of
examples that define a gesture, or at most some interpolated
combination of them. These approaches are fundamentally
ill-suited for the recognition of gestures in Figures 1 and 2,
which requires an understanding of underlying patterns in
the set of given examples.

Indeed, one needs to capture not only the given examples,
but interpolate and extrapolate them based on a higher-level
understanding of their shape. A body of research in shape
perception [EM07] indicates that we mentally decompose
complex shapes into segments based on various criteria such
as sharp corners or turning points. We thus build our higher-

level model of shape from stroke segments. Local context is
captured by the spatial relationships between adjacent seg-
ments. At a global level, the stroke connecting a represen-
tative point of each segment can be treated as a hierarchi-
cal gesture as exemplified by the Hilbert curve in Figure 3.
In practice though, one seldom sees gestures defined using
fractal strokes, and a two level representation of shape, as
implemented in this paper, is sufficient.

Our approach thus works on two levels. At the lower level,
strokes are segmented via detection of corners and turning
points and adjacent segment-pairs are identified as elements
of a shape alphabet. At the higher level, a candidate ges-
ture is represented as a string made from this alphabet. This
abstraction allows us to apply regular language inference
techniques to both the representation and recognition of ges-
tures. Our authoring workflow is interactive. A user provides
a number of example instances of the desired gesture. These
are converted to strings from which a regular language is
inferred by generating other strings as candidate gestures,
which are displayed to the user for verification. The user ac-
cepts/rejects the candidates until the desired grammar rep-
resenting the gesture is inferred. Once authored, our recog-
nizer efficiently classifies candidate gestures by converting
them to a string that is matched against the grammars of all
defined gestures.

We provide an overview of related work (section 2), fol-
lowed by details of our framework, named Concepture (Sec-
tion 3,4). We illustrate our framework via clip-art drawing
and image annotation applications (Section 5) and discuss
limitations and extensions of our approach (Section 6).

2. Related Work

A recent survey of sketch recognition systems [JGHYLD09]
categorizes this research into hard-coded recognizers, visual
matching and textual description. Hard-coded gesture rec-
ognizers [Rub91,BBS08, IMT99] capture gestures such as a
scratch-out or roll-back in Figure 2, but do not allow users
to customize these gestures or add new ones. Within the do-
main of visual matching the simple and popular $1 Gesture
Recognizer [WWY07] and its multi-stroke sequel [AW10],
provide a reasonable solution by geometrically matching a
given gesture to a user-given set of templates. In Concepture,
we employ a variant of this recognizer at the lower level to
visually match stroke segment-pairs and form the alphabet
of gesture grammars.

While recognition engines based on scripting and textual
description [HD05, Sti80, CDR05, SPRN02] are capable of
encoding arbitrarily complex gestures, they require scripting
skills to author new gestures. Even though our framework is
based on regular language construction, this is transparent to
users: They simply author gestures by providing one or more
examples and verifying system proposed examples. Statisti-
cal and machine learning based approaches like [LBKS07]
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and [SD05] also assume that the end user is oblivious to the
details of the underlying model. Although both approaches
are capable of handling small variations in sketching style,
such as the stroke order in multi-stroke figures [LBKS07] or
differences in the number of strokes that define the same fig-
ure [SD05], neither method is suitable for encoding the ex-
tent of variation that can be captured via a regular language.
In contrast, Concepture can recognize a wave gesture with
any number of ripples after seeing a single training example
and answering two visual queries.

Concepture is also related to a few recognizers built in
the context of 3D modeling [YSvdP05] and animation [TB-
vdP04], that allow shape variation and the hard-coded use
of a gestural language. While we draw inspiration from this
overall body of work and build upon a lightweight template-
based gesture recognizer [WWY07], we believe Concepture
is the first framework to allow easy authoring of gestures
with variational and repetitive patterns.

3. Terminology and Framework

We use the term gesture, to define a class of sketches which
share shape features that can be perceptually identified under
a common name. Gestures consist of one or more strokes.
Each stroke is defined as a sequence of points that have been
sampled from a pointing device such as a mouse or stylus.
Formally, a gesture instance is a sequence of n ≥ 1 strokes
S1,S2, ...,Sn and each stroke Si consists of a sequence of m≥
2 points Si

1,S
i
2, ...,S

i
m. Note that n and m are not fixed and

may assume different values for different gestures or even
different instances of the same gesture. Whenever it is clear
from the context, we will drop the superscript i for brevity.

A segment is a perceptual part of a stroke delimited by
annotation points. Annotation points are defined as corners
and turning points. Two adjacent segments form a segment-
pair. In our framework, gestures are converted into language
strings where each letter in the alphabet is a segment-pair.
Gesture recognition is thus reduced to a regular language
string matching problem.

4. Authoring a Gesture

Users author a new gesture interactively by first drawing one
or more examples then answering visual queries generated
by Concepture. Each example is processed to find corners
and turning points. These points are used for stroke segmen-
tation. Two adjacent segments form a segment-pair, allow-
ing successive segment-pairs to overlap. Each segment-pair
is matched against a shape alphabet using a modified ver-
sion of [WWY07]. This shape alphabet is incrementally built
from an empty set: if a segment-pair does not match any of
the shapes in the alphabet, a new shape is added to the alpha-
bet. Each example is then represented as a string consisting
of letters taken from the shape alphabet. These strings are in-
put to the language inference algorithm, which proposes new

examples for the gesture. The user either accepts or rejects
each example. Based on the collected information, the infer-
ence algorithm builds a Finite State Machine that recognizes
the language of the gesture.

An overview of the training procedure is given in Figure
4. In the rest of this section, we give details for each sub-task.

4.1. Stroke Segmentation

Before we start the segmentation we resample the strokes as
in [WWY07]. We then annotate corners and turning points.
Curvature indicators and corner processing is common
in gesture recognition and sketch-based stroke processing
[MS09]. While various methods for corner detection exist
[WEH08, XL09], most of these approaches are fine tuned to
detect only sharp corners where curvature is discontinuous.

[XL09]

Since our goal is to segment
strokes into meaningful individ-
ual units, such as each ring of a
spring gesture (see figure on the
right) we are interested not only
in sharp corners but also points of
very high curvature. As a result, we use an approach that is
adapted to find curvature outliers in addition to any discon-
tinuity. We estimate an indication of discrete curvature of a
point S j as:

κ(S j) =

(
∑

j+k−1
t= j−k+1 θt

)
∑

t= j+k
t= j−k+1 ||St−1−St ||

(1)

where θt is the angle between vectors St − St−1 and
St+1−St . k is a parameter that averages out curvature noise,
which we set to k = 3 in practice. Points with curvature
greater than 2 standard deviations above the mean curva-
ture of all points in the stroke are marked as corners. This
method avoids the need for a fixed corner threshold and in-
stead adapts to the stroke assuming that corners are a small
fraction of the total number of points. We also set a minimum
standard deviation of 0.05 to avoid picking up false positives
on near circular arcs with low deviation of curvature. We fur-
ther prune corners with proximity to other corners; corners
less than 5 points from each other on a stroke are merged.

Once the curve is segmented by corners, we search for
turning points within each segment. To calculate the tangent
at a point St , we adapt a second order approximation based
on the Taylor Series expansion of the curve [LBS05]:

t =
|d||e|
|d|+ |e|

(
d
|d|2

+
e
|e|2

)
(2)

where d and e are vectors that denote St − St−1 and
St+1− St respectively. If the tangent of a point is within a
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Figure 4: The training framework of Concepture. The hand-drawn examples are first processed to find annotation points in
order to segment the strokes. Stroke segmentation is followed by a segment-pair matching process that simultaneously constructs
a shape alphabet for the gesture. The segment-pair matching process returns a string consisting of letters taken from the alphabet
for each drawn example. Using these strings, the language inference engine generates membership queries for the gesture.
Based on the user’s answers to the queries, the program builds a Finite State Machine (FSM) that recognizes the language of
the gesture.

small threshold of the starting tangent of the segment and if
the tangent of the curve has completed a full rotation, we an-
notate that point as a turning point. Addition of a new anno-
tation point introduces a new segment starting at that point.
The process is then repeated recursively for the new segment
until no new turning point is found.

4.2. Segment-pair Matching

We encode the spatial relationship between adjacent seg-
ments in a stroke by representing our strokes as a sequence
of overlapping segment-pairs. In our framework, segment-
pairs are atomic primitives that are visually matched against
each other using a variant of the $1 Gesture Recognizer
(GR) [WWY07].

Briefly, the algorithm resamples the primitives using the
same number of points and scales them to a unit measure at
the origin. Unlike $1-GR, we scale the segment-pairs uni-
formly to unit total path-length as opposed to a unit square,
making it possible to distinguish an “L” from a “V”. An over-
all point-to-point distance minimizing orientation is found
and this pairwise distance between the points serves as a
measure of visual similarity between the two primitives. Us-
ing this value as a score, we decide whether the best match is
significant enough to label the segment-pair with an existing
member of the alphabet. If the score is less than a prede-
fined threshold, we add the segment-pair as a new shape to
the alphabet. This procedure is analogous to adding a new
template in the framework of $1-GR. We handle multiple
disjoint strokes similar to the $N [AW10] variant of $1-GR,
however we require the drawing order to be consistent.

4.3. Language Inference

The segment-pair matching procedure returns a string for
the gesture. We thus reduce the problem to one in Compu-
tational Linguistics, where a structured grammar has to be
learned from a set of examples. This problem is known as
Formal Language Inference, where each string is a sequence
of letters taken from a fixed alphabet. Though arbitrary lan-
guages may be difficult or impossible to infer computation-
ally, a subset called “Regular Languages” can be identified
in polynomial time using a finite set of examples. Formally,
these represent all languages that are accepted by a Finite
State Machine (FSM) [dlH05].

In Computational Linguistics terms, the strings that be-
long to the language are called positive examples of the lan-
guage. Except for stochastic or heuristic algorithms [CO94],
regular language inference algorithms also require negative
examples, that are made from the same letters of the al-
phabet albeit do not belong to the language being inferred.
Asking a user to both imagine such negative examples and
provide enough variety to uniquely determine the language
is cumbersome cognitively and in terms of workflow. In-
stead, we adapt an algorithm [Ang81] that generates mem-
bership queries as our inference engine. This method uses
positive examples to build an initial FSM of the language,
and then progressively improves this FSM based on the an-
swers to membership queries. If the initial set of positive ex-
amples constitutes a representative sample of the language,
this algorithm is guaranteed to converge to the true language.
Moreover, the number of membership queries needed by this
algorithm is bounded by knN, where k is the size of the al-
phabet, n is the number of states of the minimal FSM accept-
ing the language and N is one more than the size of positive
examples.
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Below, we provide a brief summary of the inference algo-
rithm. We suggest interested readers see [Ang81] for a for-
mal description and correctness proof.

4.3.1. The Inference Algorithm

Let L be a regular language defined on a finite alphabet U
and let A = (Q,q0,F,δ) be the canonical acceptor (i.e. the
FSM with the smallest number of states) for L; where Q is
the set of states, q0 is the starting state, F is the set of accept-
ing states and δ is the transition function that maps Q×U to
Q. We also define λ to denote the empty string. λ is added
to U if it is not already a member. The goal of the inference
algorithm is to construct A given a representative set S of
strings sampled from L and an oracle to answer membership
queries.

Let P be the set containing the prefixes of S including λ

and let P′ = P∪∆, where ∆ is a special symbol not contained
in U . The algorithm creates a set of states where each ele-
ment of P′ is represented by a distinct state. We also define a
transition function f as follows: f (∆,b) = ∆ for each b ∈U
and f (u,b) = ub for all (u,b) ∈ P×U , creating a new state
for each ub 6∈ P. Let T ′ denote this extended set of states.
We also define T = T ′−{∆}.

The motivation behind the algorithm is that T ′ contains
a representative for every state in A, but we need to decide
which states to merge in order to recover A. To achieve this,
we begin with an initial partition of T ′ into accepting and
non-accepting states and successively refine it. In this pro-
cess, we generate a set of strings V = {vo,v1, ...,vm} such
that no two states of A have the same behaviour on V . That
is to say, for any two states q and q′ in A, there exist a vi ∈V
such that δ(q,vi) ∈ F and δ(q′,vi) 6∈ F or vice versa.

At each iteration i, we define Ei(∆) = ∅ and Ei(u) = {v j :
0 ≤ j ≤ i and uv j ∈ L} for u ∈ T . The ith partition is con-
structed by putting all states with a common value of Ei(u) in
the same block. The first iteration starts with v0 = λ. For each
successive iteration, we set vi+1 as follows. We search for a
pair of states u,v ∈ P′ and a symbol b ∈U such that Ei(u) =
Ei(v) but Ei( f (u,b)) 6= Ei( f (v,b)). If such a pair exists,
we choose an arbitrary string w ∈ Ei( f (u,b))⊕Ei( f (v,b)),
where ⊕ denotes the symmetric difference of two sets (i.e.
A⊕B = (A∪B)\ (A∩B)). We then set vi+1 = bw.

If no such pair is found, the algorithm constructs A us-
ing the final partition as follows. Each distinct set Em(u)
for some u ∈ T represents a state of A. The start state is
taken to be Em(λ). The accepting states are those sets Em(u)
such that λ ∈ Em(u). The set with Em(u) = ∅ is taken to
be the sink state, hence the transition on any input b from
Em(u) = ∅ is to itself. If Em(u) 6= ∅, there ∃u′ ∈ P such that
Em(u) = Em(u′), and the transition from Em(u) on input b
is to Em(u′b) for all b ∈U . Note that, depending on the lan-
guage, the sink state may be unreachable after this construc-
tion. In such cases, it is omitted from A.

An example Suppose we would like to learn the “Sun” ges-
ture depicted in Figure 4. The regular language for this ges-
ture is denoted by ABB∗. Assume we are given the string AB
as a representative set. We define:

P′ = {∆,λ,A,AB} (3)

T ′ = {∆,λ,A,B,AA,AB,ABA,ABB} (4)

By definition, we set v0 = λ and generate queries of the
form u+v0 for each u ∈ T : λ,A,B,AA,AB,ABA,ABB. Since
AB+λ and ABB+λ are in L, we set:

E0(AB|ABB) = {λ} (5)

E0(∆|λ|A|B|AA|ABA) = ∅ (6)

We have E0(λ) = E0(A) but E0( f (λ,B)) = E0(B) 6=
E0(AB) = E0( f (A,B)), so we pick w = λ and set
v1 = B + λ = B. At this iteration, we ask the queries
B,AB,BB,AAB,ABB,ABAB,ABBB. Since A+B, AB+B and
ABB+B are in L, we set:

E1(AB|ABB) = {λ,B} (7)

E1(∆|λ|B|AA|ABA) = ∅ (8)

E1(A) = {B} (9)

Now we have E1(∆) = E1(λ) but E1( f (∆,A)) 6=
E1( f (λ,A)). Thus we pick w = B and set
v2 = A + B = AB. Then the queries are
AB,AAB,BAB,AAAB,ABAB,ABAAB,ABBBAB. Since
we have λ+AB ∈ L:

E2(AB|ABB) = {λ,B} (10)

E2(∆|B|AA|ABA) = ∅ (11)

E2(A) = {B} (12)

E2(λ) = {AB} (13)

At this point there is no pair u,v ∈ P′ such that E2(u) =
E2(v) but E2( f (u,b)) 6= E2( f (v,b)) so we stop the algo-
rithm and construct the canonical acceptor A. The sets
{{λ,B},∅,{B},{AB}} above denote the states of A. The
transitions are given as follows:

Source state on input A on input B

{λ,B} → ∅ {λ,B}
∅ → ∅ ∅

{B} → ∅ {λ,B}
{AB} → {B} ∅

This acceptor is easily seen to be isomorphic to the FSM
given in Figure 4 save that the sink state is omitted from the
figure for brevity.
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AB AA ABB ABA A

B AAB ABBB ABAB BB

AAAB ABBAB ABAAB BAB

Figure 5: Visual queries generated for the sun gesture. The
gesture on the top left corner (i.e. AB) is the example drawn
by the user. The positive queries are ABB and ABBB. The
rest are negative queries.

In practice, we only ask a query if it has not been seen
before as a positive example or a previous query. We also
assume λ 6∈ L. The complete set of the queries for the sun
gesture is given in Figure 5. In the next section, we describe
how these queries are visualized.

4.3.2. Visual Query Generation

Naturally, the inference algorithm generates queries from
strings of the alphabet defined by the positive examples.
These strings have to be converted to strokes before being
presented to the user. Segment-pairs corresponding to the
letters of the alphabet for this process are drawn from the
positive examples. The first letter is placed in the middle
of the canvas. Subsequent letters are placed by aligning the
first segment of the current letter with the latter segment of
the previous letter. Similar to segment-pair matching, this is
achieved by calculating the orientation that gives the best
point-to-point distance between the two segments.

Figure 6: Examples of automatically generated queries for
the cloud gesture. The leftmost figure is the example drawn
by the user. The successive figures are positive queries.

Although this method works well for linear gestures such
as a scratch-out gesture, it is problematic for closed gestures
such as a cloud. In order to overcome this problem, we mod-
ify the above algorithm for closed gestures. First, we decide
whether the gesture is closed or not by analyzing the positive

examples drawn by the user. If the end points of the exam-
ples are always within a threshold, the gesture is marked as
closed. For closed gestures we compute the angle difference
between 2π and the turning angle from start to end of the
string created as an open gesture. This angle of excess is ac-
counted for at the segment boundaries producing a gesture
with the right orientation of its segments. The start and end
points are then snapped together, producing visually better
queries in the case of closed gestures (Figure 6).

4.4. Gesture Recognition

When recognizing gestures, the candidate gesture is seg-
mented as explained above and segment-pairs are matched
to the letters in the alphabet. Unlike training, no new letters
are added to the alphabet during recognition: each segment-
pair is labeled with the highest scoring match. The algorithm
then compares the string computed for the candidate against
the regular language of each existing gesture and classifies
the candidate if a match is found.

The matching score produced by visual matching ap-
proaches [WWY07] allow gestural ambiguities to be han-
dled by returning multiple gestures with similar scores. Our
approach as described is more deterministic, in that the
segment-pair is mapped to the best matching shape from the
alphabet producing a single string representing the candidate
gesture. This string is then tested for acceptance by the vari-
ous grammars representing the authored gestures.

Our algorithm is easily adapted to handle gestural ambi-
guity by leveraging the segment-pair visual matching scores.
For each segment-pair of the candidate gesture, instead of
simply picking the best match, we can form sets using the n
best matches. Combinations of these sets produce a number
of strings that represent the candidate gesture. Each string
also has a matching score averaged from the matching scores
of its segment-pairs. Strings that are accepted by a ges-
ture grammar can then be returned along with their average
matching score, making the overall approach more robust to
noise and ambiguity. While an exponential number of query
strings may be generated, the system can remain interactive,
since the FSM simulation time is negligible compared to that
of segment-pair matching. As a comparison, while the total
elapsed time to recognize 64 gestures (see Results for de-
tails) is 877 milliseconds, only 1 millisecond of this time is
devoted to FSM simulation.

5. Results

Figure 7 shows several examples of gestures we have au-
thored. Table 1 lists the number of examples and queries
needed to successfully learn these gestures. We emphasize
here that Concepture can learn all of these gestures from as
little as a single example drawn by the user. Even though
the subsequent number of verification queries generated by
the system can be as high as 22 (eg. the scratch gesture), the
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Figure 7: Several gestures authored and recognized by our
system. Top: star, sun, lollipop, cloud. Bottom: scratch, spi-
ral, sound, wave.

Shape # Examples # Queries Time (sec)

sun 1 13 26
star 1 8 22
spiral 1 2 18
sound 1 2 14
cloud 1 4 21
lollipop 1 13 32
scratch 1 22 38
wave 1 2 16

Table 1: The number of examples and queries that are
needed to train our framework to recognize the shapes given
in Figure 7. The time refers to the wall clock time of the en-
tire training process (user+system) in seconds.

workflow of simply accepting or rejecting each query as an
instance of the gesture is both fast and easy for users, with
a typical gesture being authored in under a minute. Infor-
mal user feedback indicates that such a training workflow
is greatly preferable and more efficient than one where a
user has to draw a number of, both positive and negative, in-
stances of the gesture. Detailed statistics about the training
process for each gesture including the final FSMs produced
are presented in the Appendix.

Though a formal evaluation is the subject of future work,
our preliminary test, in which a single user is asked to draw
a randomized list containing each gesture a total of eight
times, resulted in an average of 93% all-or-nothing accuracy
for the gestures of Figure 7. Table 2 shows that while similar
gestures are more likely to be confused with each other, the
discriminatory power of Concepture is still promising.

Concepture-authored gestures can be used in a variety
of applications. Systems such as ILoveSketch [BBS08] that
employ various pre-programmed gestures like scratch-out
and roll-back (shown in Figure 2) can both expand their
vocabulary of such gestures and render them customizable
by the end-user. Perhaps the most powerful aspect of ges-
tures with repetitive patterns is their ability to simultane-

Figure 8: Clip-art application. Learned gestures can be used
to retrieve clip-art images to quickly illustrate a scene.

Figure 9: Image annotation application. Learned gestures
can capture regions of an image and their repetitive struc-
ture.

ously convey both a gesture and one or more numeric pa-
rameters via the number of repetitions (a volume level, for
example, based on the number of sound wavefronts in Figure
7).

We illustrate this with a drawing application based on
clip-art retrieval and composition. The user trains the system
by authoring gestures for several glyphs (sun, cloud, star,
tree etc. in Figure 8). The user can then sketch freely. When
a gesture is recognized, we search a repository for clip-art
annotated to be of the same type and segment-pair structure
as the user’s sketch. Matched clip-art is then spatially trans-
formed to fit and replace the sketch. Figure 8 depicts a snap-
shot of a scene composed with this application. Tasks such
as image segmentation and labeling (see Figure 9) can also
be enriched by using Concepture, so that not only are re-
gions of an image segmented and labeled but their repetitive
structure encoded by the over-sketched gestures (see accom-
panying video).

6. Conclusion

Our framework is a first attempt to automatically recog-
nize gestures that conceptually capture an infinite family of
shapes using regular language inference. Positive aspects of
our system include an encapsulation of local spatial relation-
ships between stroke segments with our shape grammar and
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sun star spiral sound cloud lollipop scratch wave none

sun 8 0 0 0 0 0 0 0 0
star 0 8 0 0 0 0 0 0 0
spiral 0 0 7 0 0 0 0 0 1
sound 0 0 0 8 0 0 0 0 0
cloud 0 0 0 0 7 0 0 1 0
lollipop 0 0 1 0 0 6 0 0 1
scratch 0 0 0 0 0 0 8 0 0
wave 0 0 0 0 0 0 0 8 0

Table 2: Confusion matrix of the test gestures. Each gesture is drawn a total of 8 times. Each row corresponds to the drawn
gesture, while columns depict the predictions made by Concepture. The last column represents the cases Concepture did not
make a prediction due to a low score.

a simple workflow where users are oblivious of the under-
lying language inference, providing only positive examples
and then verifying system generated candidates. We illus-
trate our framework with clip-art drawing and image anno-
tation applications.

While we are able to successfully recognize a variety of
commonly used gestures, our current implementation has
several limitations. While our approach can conceptually
capture hierarchical structure, we currently only segment
and analyse strokes at the most detailed level. In the fu-
ture, we hope to handle hierarchical structure, by recursively
treating the stroke connecting the centers of segments at one
level as a more abstract gesture. This approach would also
restore higher-level spatial relations between segments lost
during the string generation phase, making it possible to dis-
tinguish between clouds and waves without relying on the
closed vs. open distinction.

Our framework, like similar algorithms based on template
matching of stroke geometry [WWY07], also suffers from a
dependence on stroke ordering and correct stroke segmen-
tation. Stroke ordering can be alleviated by treating per-
mutations of strokes as multiple examples, or performing
matches in image space [KS04]. Moreover, there is some ev-
idence [SD05] supporting the notion that users have a natu-
ral tendency to draw strokes in a consistent order even if this
order varies across subjects. A correct stroke segmentation,
however, is fundamental to our approach as it defines the al-
phabet and subsequent conversion of a gesture to a regular
language string. We believe that there is scope for improve-
ment in both our criteria for choosing annotation points and
the algorithms to identify them.

desired               undesired

Our approach is limited
to regular languages. While
there are gestures that can
only be represented by lan-
guages that are higherin
the Chomsky hierarchy, typ-
ically, such languages can

not be learned in polynomial time. On the other hand, our

framework can approximate some of these gestures if false
positives can be tolerated: e.g. a Christmas tree with a differ-
ent number of branches on each side as illustrated above.

Despite these limitations, we believe our framework takes
a step forward in gesture recognition research by facilitating
the simple authoring and recognition of repetitive gestures,
using a regular language representation.
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APPENDIX

Here we provide detailed statistics of the training process of test
gestures. For each gesture we list:

• Name of the gesture

• The example entered by the user
• The queries generated by the algorithm
• The final FSM learned by Concepture

Please note that we represent a segment-pair by the label that is
automatically assigned by our algorithm. If two gestures share a la-
bel, this means Concepture has chosen to represent a segment-pair
with a label that has already been defined when learning a previ-
ous gesture. The queries that are accepted by the user as positive
examples of the gesture are underlined. Keywords start, state, ac-
cept and sink mark corresponding FSM states and the transitions
are described as:

source state→ (input) target state;

Name: sun
Entered: AB
Queries: AA, ABB, ABA, A,
B, AAB, ABBB, ABAB, BB
AAAB, ABBAB, ABAAB,
BAB
sink 3→ (A)3; (B)3;
state 1→ (A)3; (B)2;
accept 2→ (A)3; (B)2;
start 0→ (A)1; (B)3;

Name: star
Entered: CCCC
Queries: CCCCC, CC, C,
CCC, CCCCCC, CCCCCCC,
CCCCCCCC, CCCCCCCCC
state 3→ (C)1;
accept 2→ (C)5;
state 1→ (C)5;
start 0→ (C)3;
state 5→ (C)2;
sink 4→ (C)4;

Name: spiral
Entered: D
Queries: DD, DDD
sink 2→ (D)2;
start 1→ (D)0;
accept 0→ (D)0;

Name: sound
Entered: E
Queries: EE, EEE
sink 2→ (E)2;
accept 1→ (E)1;
start 0→ (E)1;

Name: cloud
Entered: FF

Queries: FFF, F, FFFF, FFFFF
accept 3→ (F)3;
sink 2→ (F)2;
state 1→ (F)3;
start 0→ (F)1;

Name: lollipop
Entered: DG
Queries: D, DGD, G, DGG,
DD, DGDG, GG, DGGG,
DDG, DGDDG, GDG,
DGGDG, DDDG
accept 3→ (D)2; (G)2;
sink 2→ (D)2; (G)2;
state 1→ (D)0; (G)2;
start 0→ (D)0; (G)3;

Name: scratch
Entered: CHC
Queries: CHCH, CHH, CH, CC,
C, H, CHCC, CHCHC, CHHC,
CCC, HC, CHCCC, CHCHH,
CHHH, CCH, HH, CHCCH,
CHCHCH, CHHCH, CCCH,
HCH, CHCCCH
state 3→ (C)4; (H)2;
accept 2→ (C)0; (H)4;
start 1→ (C)3; (H)4;
accept 0→ (C)4; (H)2;
sink 4→ (C)4; (H)4;

Name: wave
Entered: I
Queries: II, III
accept 2→ (I)2;
sink 1→ (I)1;
start 0→ (I)2;
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