
Using an autoencoder with deformable templates to discover features for
automated speech recognition

Navdeep Jaitly1, Geoffrey E. Hinton1,2

1Department of Computer Science, University of Toronto, Toronto, M5S 3G4, Canada
2Google Inc, Canada

ndjaitly@cs.toronto.edu, hinton@cs.toronto.edu

Abstract
In this paper we show how we can discover non-linear features
of frames of spectrograms using a novel autoencoder. The au-
toencoder uses a neural network encoder that predicts how a set
of prototypes called templates need to be transformed to recon-
struct the data, and a decoder that is a function that performs
this operation of transforming prototypes and reconstructing
the input. We demonstrate this method on spectrograms from
the TIMIT database. The features are used in a Deep Neural
Network - Hidden Markov Model (DNN-HMM) hybrid system
for automatic speech recognition. On the TIMIT monophone
recognition task we were able to achieve gains of 0.5% over
Mel log spectra, by augmenting traditional the spectra with the
predicted transformation parameters. Further, using the recently
discovered ‘dropout’ training, we were able to achieve a phone
error rate (PER) of 17.9% on the dev set and 19.5% on the test
set, which, to our knowledge is the best reported number on this
task using a hybrid system.
Index Terms: DNN-HMM, feature discovery, autoencoders

1. Introduction
Spectrograms are a very powerful representation for encapsu-
lating information in raw speech signals. However acoustic in-
formation is often spread over multiple frequency bins, which
makes automated analysis using spectrograms complicated. For
example a formant appears as increased energy over several fre-
quency bins and not as a single, resolved peak. Discovering
a formant peak is further complicated by the presence of ad-
ditional peaks, such as the harmonic stack of the fundamental
frequency (F0). Further, small changes in acoustics, such as
a change in the frequency of a formant peak or F0 can cause
a non-linear change in the spectrogram representation as the
peaks hop from one frequency bin to the neighbouring bins.

Mel scaled log filter-banks mitigate this problem of ‘dimen-
sion hopping’ by adding rescaled intensity information from
multiple neighbouring bins together. Here, the information
about the precise location of the formant peak is obviously lost,
but robustness for speech recognition is gained because speaker
to speaker variability is reduced by the wide triangular win-
dows. Vocal Tract Length Normalization (VTLN), similarly,
mitigates this problem by rescaling the frequency axis of spec-
trograms across speakers - the transformation makes formant
peaks more consistent from speaker to speaker [1].

In this paper we use the above motivation to develop a
method that discovers non-linear features of spectrograms. We
motivate our method with the following simple modification
to how a Mel filterbank spectrum is computed. Tradition-
ally, Mel filter-banks have fixed center frequencies and window

widths, and windowing functions (example triangular). Imagine
a method which customizes how a Mel filterbank spectrum is
computed by predicting the center frequency, the window width
and windowing type. Such a method has the potential of being
more sensitive than Mel filter-banks by integrating information
across neighbouring bins in a more precise manner, depending
on the data.

Here we use a less constrained approach than that suggested
above. We use prototypical patterns or templates that are frames
of spectrograms. The templates are stretched or compressed
along the frequency axis, and are blended together at different
intensity levels to compute a reconstruction. The intensity level
and the degree of stretching / compression required for each
template to make a good overall reconstruction is predicted by
using an encoding neural network. The parameters of the neural
network and the templates are learnt by minimizing the recon-
struction error over training cases.

In machine learning literature, an autonecoder typically
uses a neural network for encoding and another (possibly with
weights tied to the encoder) for decoding. For this work, we
wanted to use a decoder that was constrained to the require-
ments of the domain - namely the stretching and compressing
of the frequency domain, such as is used in VTLN. Thus, we
use a novel autoencoder where the encoder is still a neural net-
work, but the decoder is hard-wired to be an algorithm that takes
prototypes, transforms them and computes a reconstruction. In
addition, the decoder is also able to compute the gradients of
the reconstruction error with respect to the prototypical patterns,
and predicted transformations. These gradients are backpropa-
gated through the neural network encoder during learning, and
neural network parameters, and template parameters are learnt
by stochastic gradient descent with momentum.

We applied this method to learn a model for frames of spec-
trograms from the TIMIT database. We used the features for
speech recognition by augmenting traditional Mel log spectra
with the predicted intensity parameters. When these features
were used in a Deep Neural Network - Hidden Markov Model
(DNN-HMM) hybrid setup for the TIMIT monophone recogni-
tion task, gains of 0.5% were observed (see table 1). Using the
recently discovered ‘dropout’ training, we were able to achieve
a PER of 17.9% on the dev set and 19.5% on the test set.

2. Autoencoder Details
Figure 1 shows an overview of the autoencoder. A neural net-
work (labeled E) takes as input a frame of a log-amplitude
spectrogram, v and predicts T sets of values zt = (ft, at),
1 ≤ t ≤ T . Each set, (ft, at), specifies the parameters of the
transformation (described below) that is applied to the corre-

Figure 1: Overview of the autoencoder. The encoding neural
network predicts transformation variables for the template pat-
terns. The decoder applies the transformations to the template
patterns and computes the reconstruction, v′, of the input, v,
from the transformed templates.

sponding template frame st. The decoder applies these trans-
formations to the templates, and adds the resulting vectors to
create the reconstruction of the input frame (equation 1). The
model is learnt by minimizing the total reconstruction error over
the database (equation 2).

2.1. Model Details

Specifically the autoencoder takes an input data frame v, and
computes a reconstruction v′ as follows. The input data frame
v is forward-propagated through the neural network using its
parameters Θ (weights and biases of the layers), to compute the
encoding h = [f1, a1, f2, a2, · · · fT , aT]′ = N (v,Θ), where
N represents the neural network function. The decoder trans-
forms each template st as follows. It first resamples the tem-
plate along the frequency axis at a new rate ft, using linear in-
terpolation. For example, if st = [s1, s2, s3 · · ·]′ and ft = 1.2
then s′t = [s1, (0.8s2+0.2s3), (0.6s3+0.4s4) · · ·]′. Let r(., .)
represent this multivariate transformation function. Note that
r(., .) retains the property that consecutive peaks of harmonics
stacks are equally spaced. The decoder multiplies s′t by at and
adds all the transformed templates together to compute a recon-
struction for the input. Mathematically,

v′ =
∑
t

atr (st, ft) (1)

2.2. Parameter Learning

Learning is done by finding parameters Θ for the neural net-
work, and ŝ1, · · · , ŝT for the T templates that minimize the
total reconstruction error, E, over the training data, i.e.:(

ŝ1, · · · , ŝT , Θ̂
)
= argmin

s1,··· ,sT ,Θ

∑
v∈D

‖v′ − v‖2 (2)

The above function is differentiable with respect to all the pa-
rameters s1, · · · sT as the bilinear interpolation operation is a

simple linear operation. Similarly, the gradients of the error
with respect to ft and at are also easily computed 1. Gradients
of the reconstruction error with respect to the neural network pa-
rameters are computed by back-propagating the gradients with
respect to ft, at, through the neural network.

Using all these derivatives, we can perform learning in the
model using any of the standard derivative-based optimization
schemes. For this paper the parameters of the models were
learned by performing gradient descent on the error function.
A small learning rate of 1e− 5 per average data case was used.
The parameters of each template were constrained to have an
Euclidean norm of 1, after each gradient update, by renormal-
izing its length. This allows intensity values for different tem-
plates to be somewhat comparable.

In practice, the error function in equation 2 is modified by
adding an L1 penalty to the template intensities at, i.e.

E =
∑
v∈D

‖v′ − v‖2 + λ‖a(v)‖ (3)

where a(v) is the vector of intensity instantiation parameters
predicted for v, i.e. a(v) = [a1, a2, a3 · · ·]′, where at is the
intensity of template t, predicted by the encoder, when data vec-
tor v is presented as input.

This penalty term attempts to make the solution more
sparse, and produces more identifiable features.

3. Experimental Methods and Results
We created a Kaldi [2] recipe to train a monophone model with
a biphone language model on TIMIT. Spectrograms, log Mel
spectra and forced alignment labels for individual frames were
exported from this recipe. The spectrograms and log Mel spec-
tra were computed over 25ms intervals with a stride of 10 ms.
40 dimensional log Mel spectra were computed and deltas and
accelerations were appended. Spectrograms were 201 dimen-
sional, since the FFT were computed over 400 samples of raw
signal. The spectrograms were used for unsupervised learn-
ing with the autoencoder. The discovered features were ap-
pended to log Mel spectra and used in a Hybrid Deep Neural
Network Hidden Markov Model (DNN-HMM) for automated
speech recognition.

3.1. Feature Learning

An autoencoder model with templates was trained to reconstruct
the spectrograms as described below (also see figure 1).

We used a two layer neural network with 2000 nodes in
the hidden layer, and 2T nodes in the second layer. The 2T
nodes in the second layer correspond to T pairs of (ft, at) val-
ues, 1 ≤ t ≤ T . The ft values were outputs of sigmoid units
whose output range of 0-1 was rescaled to − logF, logF , (we
used F = exp(.5)). The at values were outputs of rectified
linear units (ReLU) [3, 4]. Each template st frame was resam-
pled at a new rate of exp (ft) by taking interpolated values at
(0, exp (ft), 2 exp (ft), ..), using bilinear interpolation. Nega-
tive values of ft lead to stretching out of the templates (corre-
sponding to increasing the frequencies of patterns) and positive
values lead to compressing of the templates (corresponding to
reducing the frequencies of patterns). The stretched or com-
pressed template vector is then multiplied by at.

1r(st, ft) is technically not differentiable w.r.t. ft at ft = 1 since
the left and right derivatives may not be equal. However this is trivial
and can easily be avoid by using higher order interpolations e.g., splines.
For convenience we just used a value of 0 for this case.

Figure 2 shows a plot of the templates learnt from an exper-
iment using 20 templates. Figure 3 shows reconstructions of a
spectrogram using these templates (each frame was separately
reconstructed). It can be seen from figure 3 that a very good
reconstruction of the spectrogram is possible from just 20 tem-
plates. Several templates have identifiable characteristics, e.g.
templates 2 and 15 (0 based index) seem to correspond to frica-
tives, as can been seen from their high intensity during fricative
portions of the spectrogram. Template 13 (column 4 from left,
row 3 from top) in figure 2 clearly corresponds to a harmonic
stack.

3.2. Automatic Speech Recognition

For the speech recognition experiments, we used our features
in a hybrid DNN-HMM system [5, 6]. Neural networks were
trained to predict the phoneme state labels, and the predictions
were converted to scores that reflected the generative probabil-
ity of the frame from the HMM model. These scores were fed
into Kaldi, which performed the decoding. A fixed acoustic
model scale of 1.0 was used in the DNN-HMM system. Before
the neural networks were trained, we pretrained the weights us-
ing a Deep Belief Network (DBN) [7].

Template intensities (but not frequencies) were appended to
the 120 log Mel spectra vectors. The log Mel spectrum dimen-
sions were normalized to mean 0 and unit standard deviation.
However, the template intensities were outputs of ReLU’s, and
we didn’t think mean centering and normalizing would be an
appropriate operation for these inputs. This is because a small
template intensity, could possibly end up having a large negative
value, for ReLUs. Instead the intensity values were normalized
by their standard deviation, but not mean centered.

DBN pretraining was performed by training Restricted
Boltzmann Machines (RBMs) for 50 epochs for each layer. The
bottom layer was trained as a Gaussian-Binary RBM while the
others were trained as Binary-Binary RBMs. Unlike [8] we
used only 50 epochs of pretraining - further pretraining did not
seem to help the PER after decoding for our system.

A neural network was trained to predict the phoneme state
label of a frame using the frame with +/- 7 frames of context.
Learning was done using stochastic gradient descent on mini
batches of size 100 , with momentum of 0.0 and learning rate of
0.1 over the average gradient per case, for the first epoch. After
that a momentum of 0.9 was used. At the end of each epoch the
validation set of 400 utterances was decoded with the hybrid
system in Kaldi. If the PER increased over the previous epoch,
the learning rate was decreased by a factor of half, and the pa-
rameters were reset to the values at the start of the epoch. This
process was repeated until the learning rate was decreased eight
times. The test set was then decoded with the final parameters.

Table 1 shows PER as a function of depth for the dev and
core test set in TIMIT, using log Mel spectra and log Mel spec-
tra with template intensities, as the feature inputs to the hy-
brid system. The dimensionality of log Mel spectra only in-
puts was 1800 (=15 * 120), while the dimensionality of log
Mel spectra plus template intensities was 2100 (=1800 + 15 *
20). Each hidden layer used 2000 nodes. Thus the network
with appended features had a slightly larger number of weights
(15*20*2000 extra), which is not much considering the total
number of weights in these neural networks. It can be seen that
the best results on the dev set with log Mel spectra inputs was
with 5 layers, resulting in a dev PER of 19.4% and a test PER
of 21.1%. For log Mel spectra with template intensities the best
dev set result was 19.1% using 7 layers. The corresponding

core test set PER was 20.6%. Thus the small number of extra
concatenated features seems to help recognition accuraccy.

We note here that frequency instantiation parameters did
not seem to help speech recognition accuraccy. It is possi-
ble that we didn’t find the right hyper parameters for neural
network training. However its equally possible that, the fre-
quency parameters learnt to create a normalized representation
over speakers.

Table 2 shows the impact of the regularization parame-
ter, and the number of templates used on the phone recogni-
tion accuraccy. For these experiments we used 5 layers since
that seemed to be a good compromise between speed and ac-
curaccy. Using regularization λ larger than 0.1 impacts PER
negatively, probably because it is too restrictive. Using more
templates does not improve PER either. Manually inspecting
the templates learnt we found that when we used more tem-
plates, the neural network ignored them by predicting template
intensities as small values, effectively creating dead templates.
This is probably because a small number of templates is power-
ful enough to reconstruct the spectrogram (as can be seen from
figure 2). It is possible that more templates would be useful for
larger databases that have more variable acoustic recordings.

Table 1: Recognition results using different numbers of hidden
layers. It can be seen that concatenating capsule intensities to
log Mel spectra improves recognition accuraccy.

Features/depth 3 4 5 6 7
FBanks,∆,∆∆ 19.4/21.7 19.5/21.8 19.4/21.1 19.6/21.3 19.6/21.6

+ ai 19.4/21.3 19.4/21.0 19.3/20.8 19.2/20.3 19.1/20.6

We wanted to assess whether the gains produced from the
capsules were possibly just a result of better optimization from
the added features. So we used the recently introduced method
of dropout to train another neural network [9]. Dropout is a
method that relies on model averaging over a large number of
models, and has recently been shown to be a very effective
method for avoiding optimization problems and overfitting dur-
ing learning of parameters in neural networks. Our assumption
was that if the modified inputs vectors were indeed more infor-
mative for speech recognition, training with dropout would also
lead to be better results.

We trained a DBN with 4 layers and 4000 units per layer to
conform to the architecture used in [9]. The weights learnt were
used to initialize the neural network that was then fine tuned by
backpropagation and dropout. A PER of 17.9% and 19.5% was
observed for the dev and test sets respectively, compared to the
PER of 18.2% and 19.7% that was reported in [9], leading us to
believe that the appended features are indeed more informative.

Table 2: Summary of Speech Recognition Results on TIMIT (5
hidden layers were used in each of the following experiments).

Features # of λ PER (dev/test)
templates

FBanks,∆,∆∆ 19.4 / 21.1
+ ai 20 0.1 19.3 / 20.8

0.2 19.5 / 21.0
0.4 19.8 / 21.2

+ ai 20 0.1 19.3 / 20.8
40 19.5 / 20.8
60 19.3 / 21.0

Figure 2: Template features discovered by our method. x-axis is frequency bin (0-200) and y-axis is intensity.

Figure 3: Reconstructions of spectrogram from our method. Top figure shows original spectrogram, middle figure shows reconstructed
spectrogram and bottom figure shows intensities for the 20 templates.

4. Conclusions
We have shown how a new type of autoencoder can be used
to learn meaningful features called templates, on single frames
of spectrograms. These templates are where shown to improve
speech recognition results when they were concatenated to Mel-
log spectra, leading to what we beleive are the best reported re-
sults with a Hybrid-DNN-HMM system. In the future we want
to apply these autoencoders to patches of spectrograms rather
than individual frames. Using patches over multiple frames will
allow us to capture temporal aspects that the current system ig-
nores, and possibly lead to further improvements in accuraccy.

5. References
[1] L. Lee and R. Rose, “A frequency warping approach to speaker

normalization,” Speech and Audio Processing, IEEE Transactions
on, vol. 6, no. 1, pp. 49–60, 1998.

[2] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek,
N. Goel, M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz,
J. Silovsky, G. Stemmer, and K. Vesely, “The kaldi speech recogni-
tion toolkit,” in IEEE 2011 Workshop on Automatic Speech Recog-
nition and Understanding. IEEE Signal Processing Society, Dec.
2011.

[3] V. Nair and G. Hinton, “Rectified linear units improve restricted

boltzmann machines,” in Proc. 27th International Conference on
Machine Learning, 2010.

[4] N. Jaitly and G. Hinton, “Learning a better representation of speech
soundwaves using restricted boltzmann machines,” in Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International
Conference on, may 2011, pp. 5884 –5887.

[5] H. A. Bourlard and N. Morgan, Connectionist Speech Recognition:
A Hybrid Approach. Norwell, MA, USA: Kluwer Academic Pub-
lishers, 1993.

[6] G. Hinton, L. Deng, D. Yu, G. Dahl, A. rahman Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. Sainath, and
B. Kingsbury, “Deep neural networks for acoustic modeling in
speech recognition,” Signal Processing Magazine, 2012.

[7] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural computation, vol. 18, no. 7, pp.
1527–1554, 2006.

[8] A. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling
using deep belief networks,” Trans. Audio, Speech and Lang.
Proc., vol. 20, no. 1, pp. 14–22, Jan. 2012. [Online]. Available:
http://dx.doi.org/10.1109/TASL.2011.2109382

[9] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” CoRR, vol. abs/1207.0580, 2012.

