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This thesis describes structural properties of hereditary dominating pair (HDP) and min-
imal HDP graphs. A dominating pair (DP) in a connected graph is a pair of vertices
such that every path between them is dominating. A graph G is HDP if every con-
nected induced subgraph of GG has a DP. The class of HDP graphs includes all asteroidal
triple-free (AT-free) graphs — already extensively studied — and some graphs contain-
ing asteroidal triples (ATs). A minimal HDP graph H contains an AT {z,y,z}, and
satisfies the following: if P7, is the set of all induced paths between vertices a and b
that avoid the neighborhood of a vertex ¢, then every vertex of H belongs to a path in
P:,UPY_UP; . The position of DP vertices in minimal HDP graphs is determined, as

well as some structural properties dictated by the position of DP vertices.
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Chapter 1
Introduction

This thesis describes some structural properties of hereditary dominating pair (HDP)
graphs and minimal HDP graphs. To describe these classes of graphs some definitions
need to be introduced. A set of vertices of a graph is dominating if every vertex outside
the set is adjacent to some vertex in the set. A dominating pair (DP) in a connected graph
is a pair of vertices such that every path between them is dominating. A graph is HDP
if all of its induced subgraphs have dominating pairs. The class of HDP graphs contains
asteroidal triple-free (AT-free) graphs as a subclass (Corneil, Olariu, and Stewart 1997),
as well as some graphs with asteroidal triples (ATs), such as a Cs. An asteroidal triple
is defined to be an independent set of vertices such that each pair of vertices is joined by
a path that avoids the neighborhood of the third (Lekkerkerker and Boland 1962).

The motivation for describing the structure of these graphs and the overview of the

thesis will be presented in the next two subsections.

1.1 Motivation

Progress in graph theory has resulted in the identification and study of many different
graph families. An extensive survey of currently known results about various graph
classes loosely associated with perfect graphs was given by Brandstadt, Le, and Spinard
(1999). When examining the structure of AT-free graphs, Corneil, Olariu, and Stewart
(1997) noticed that these graphs exhibit various types of linear structure; for example,
every connected AT-free graph has a dominating pair. Clearly, all subclasses of AT-free
graphs, such as co-comparability, trapezoid, interval, and permutation graphs (definitions

appear in the next chapter), satisfy this property too. However, even though different
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forms of linear structure of these subclasses of AT-free graphs have been noticed before,
the common linear structure of these subclasses was not noticed until the structure of
their superclass, AT-free graphs, was examined by Corneil, Olariu, and Stewart (1997).
For this reason, it is interesting to study the structure of graph classes that contain AT-
free graphs as a subclass, for example, HDP graphs, since they might have an interesting

structure that will reveal many important common properties of its subclasses.

The thesis considers some structural properties of HDP graphs as well as structural
properties of minimal HDP graphs. Minimal HDP graphs are defined differently from
other minimal graph families, such as, for example, minimal imperfect graphs. While
minimal imperfect graphs are those that become perfect by removing any single vertex,
the definition of minimal HDP graphs is based on a completely different concept. Since
AT-free graphs are HDP and the structure of AT-free graphs has already been studied
(Corneil, Olariu, and Stewart 1997), this thesis considers only HDP graphs that have
asteroidal triples, and defines minimal HDP graphs in the following way. If {z,y,z} is
an asteroidal triple of an HDP graph H, and if P§ , is defined to be the set of all induced
paths between vertices a and b in H that avoid the neighborhood of a vertex ¢ in H,
then H is minimal if all of its vertices belong to a path in PZ UPY UP; . Henceforth
Pzy, Prz, and P, . will be used to denote P; ,, PY ., and Py respectively. From this
definition it can be seen that minimal HDP graphs form a rich family, since the paths in
PyyU Py, UP,. can be of any length, can share vertices, and can have different vertex
adjacency patterns. Also, different minimal HDP graphs will have different patterns in
terms of possible positions of their dominating pair vertices. In addition, the position of
DP vertices in a minimal HDP graph G will force some structural properties on G. Thus,
the structure of minimal HDP graphs will be a complex and important building block for
understanding the structure of HDP graphs. Similar to the definition of minimal HDP
graphs, minimal AT graphs can be defined.

Corneil, Olariu, and Stewart (1997) explain AT-free graph properties that are quite
deep and involved. The authors took over five years to understand some aspects of the
structure of AT-free graphs, from their first technical report on this subject (1992), to
completion of the paper (1997). Therefore, it is reasonable to expect that it will be very
difficult and time consuming to describe the structure of HDP graphs as well. Even
the first look at the structure of minimal HDP graphs in this thesis reveals a rich and

intricate structure.
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1.2 Overview of the Thesis

The thesis has the following structure.

Chapter 2 explains the background work relevant to the thesis. It first describes the
currently known hierarchy of graph classes related to HDP graphs. Then it gives a review
of known structural results about AT-free and HDP graphs.

Chapters 3, 4, and 5 contain original work on HDP graphs. Chapter 3 describes the
general structural properties of HDP graphs and minimal HDP graphs. It introduces
definitions and claims common to all HDP and all minimal HDP graphs. It also gives
properties of minimal HDP graphs in terms of the number of their “non-path-disjoint”
vertices. The main theorem of this chapter, Theorem 26, establishes that every asteroidal
triple in an HDP graph must have at least two of its AT vertices path-disjoint. In this
way, minimal HDP graphs are divided into two subclasses, (2,2,2) and (1,2,2) graphs.
Definitions of these two subclasses are given in Chapter 3.

Chapters 4 and 5 describe structural properties of (2,2,2) and (1,2,2) graphs respec-
tively. The structure of (2,2,2) graphs is described first because this subclass is more
restricted than the (1,2,2) graph subclass, i.e., a (1,2,2) graph can contain a (2,2,2)
graph as its induced subgraph, while the opposite is not true. (2,2,2) graphs are further
characterized in terms of the “length of the sides of the graph” into two-long-sided, one-
long-sided, and no-long-sided graphs, while (1,2,2) graphs are similarly characterized into
long-sided, and no-long sided graphs. Structural characteristics specific to the lengths of
the sides of (2,2,2) and (1,2,2) graphs are described in appropriate subsections of Chap-
ters 4 and 5, respectively. Standard definitions of the path “length” and the path “size”
are used throughout the thesis to denote the number of edges and the number of vertices
respectively.

The main results of Chapter 4 are given in Claims 13, 18, 21, 25, 30, and Corollaries 7
and 11. Claim 13 establishes that in a two-long-sided (2,2,2) graph with an AT {z,y,z}
and long paths in P, , and P, ., the length of all paths in P, , must be equal to 2. The
other main results of this chapter describe the positions of DP vertices with respect to
AT vertices in different types of (2,2,2) graphs. These results completely characterize the
positions of DP vertices in all (2,2,2) graphs.

Similarly, the main results of Chapter 5 are given in Claims 35, 39, 41, 44. Claim 35
establishes that in a (1,2,2) graph with an AT {z,y,z} and a non-path disjoint vertex z,
the length of all paths in P, ., must be equal to 2. The other main results of this chapter
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describe the positions of DP vertices with respect to AT vertices in different types of
(1,2,2) graphs. These results completely characterize the positions of DP vertices in all
(1,2,2) graphs.

Finally, Chapter 6 contains concluding remarks and directions for further research
in this area. One possible direction for further research is considered in more detail in
section 6.1. In this section, different conjectures about lifting the Spine Property from
AT-free graphs to HDP graphs are considered, and counterexamples to those conjectures
are given. Also, a possible description of the position of DP vertices in HDP graphs that
differs from the Spine Property seen in AT-free graphs is discussed.



Chapter 2

Background

2.1 Hierarchy of Graph Classes

As mentioned in the previous chapter, various graph classes have intensively been studied
in the past. The most extensive survey of currently known results about graph classes
loosely related to perfect graphs was done by Brandstadt, Le, and Spinard (1999). This
thesis describes the structural properties of HDP and minimal HDP graphs, so it is
important to know the relationship between HDP graphs and other graph classes in
order to get a better intuitive feel about HDP graphs, as well as to understand which
properties might hold for HDP graphs. Definitions of classes in the neighborhood of HDP
graphs as well as the most important results for understanding the relationships between
these classes are described below. Note that only a quick overview of the classes in the
neighborhood of HDP graphs is given. The only results about these graph classes that
are presented are those that are necessary to understand the hierarchy of these graph
classes; many other properties are omitted and can be found in (Brandstadt, Le, and

Spinard 1999).

Perfect Graphs
The following basic definitions will be used to define perfect graphs.

Definition 1 Let G = (V| E) be a graph.
V' C V is an independent set in G if for all u,v € V' uv ¢ F,
V' CV is a clique in G if for all u,v € V' ,u #v,uv € F,
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X(G) = min{k: there is a partition of V into k disjoint independent sets},
w(G) =mazx{|V'|: V' CV and V' is a clique in G}.

X(@) is called the chromatic number of G, since it represents the smallest number of
colors needed to properly color the vertices of (. w((G) is called the cliqgue number of G,
since it represents the size of the largest complete subgraph of GG. Clearly, x(G) > w(G)
for all G.

The following definition was introduced by Berge in the early 1960s (Berge 1960;
Berge 1961).

Definition 2 A graph G is perfect if for all induced subgraphs H of G, x(H) = w(H).

Golumbic (1980) presented many results on various perfect graph classes. One of the
most important results concerning perfect graphs is the Perfect Graph Theorem (PGT)
by Lovasz (1972):

Theorem 1 (Lovasz 1972) The complement of a perfect graph is perfect.

Comparability Graphs

Comparability graphs were defined by Ghouila-Houri (1962), and Gilmore and Hoff-
man (1964). The following is a simple formulation of the definition of comparability

graphs:

Definition 3 An undirected graph which is transitively orientable is called a compara-
bility graph, or a transitively orientable graph.

Transitively orientable means that each edge of G = (V, E) can be assigned a one-way
direction, so that the resulting oriented graph satisfies the following condition: for all
a,b,ceV, ab e E and bc € E imply ac € E.

The following result described the relationship between comparability and perfect

graphs:

Theorem 2 (Berge 1967) Fvery comparability graph is perfect.
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Cocomparability Graphs

A cocomparability graph is the complement of a comparability graph. Since, by The-
orem 2, comparability graphs are perfect and since, by Theorem 1, the complement of a
perfect graph is perfect, it can be concluded that cocomparability graphs are also perfect.

The following result established the relationship between cocomparability and AT-free
graphs:

Theorem 3 (Golumbic, Monma, and Trotter 1984) Fvery cocomparability graph is AT-
free.

Diametral Path Graphs

The diameter of a graph G, denoted by diam((), is defined to be the maximum
distance between any pair of vertices in . Kratsch (1995) introduced the following

definitions:

Definition 4 A pair of vertices u,v of a graph G such that the distance between u and
v equals the diameter of G is called a diametral pair (u,v) of G.

A shortest path P in G between the vertices of a diametral pair (u,v) is called a
diametral path of G.

If in addition to being a diametral path, P is also a dominating set of G, then P is
called a dominating diametral path (DDP).

A graph G is called a diametral path graph if every connected induced subgraph of G

has a dominating diametral path.

Kratsch (1995) established that the class of AT-free graphs is properly contained in
the class of diametral path graphs. He also defined a dominating pair graph as a graph
in which every connected induced subgraph has a dominating pair. This definition is
the same as the definition of an HDP graph used in this thesis. Kratsch (1995) also
established the following result:

Theorem 4 (Kratsch 1995) Any HDP graph is a diametral path graph.
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N

AT-1 AT-2

Figure 2.1: The minimal forbidden subgraphs for chordal diametral path graphs.

Chordal Graphs

Chordal graphs, also called triangulated graphs, are defined as follows:

Definition 5 A graph G is chordal if each cycle in G of length at least 4 has al least

one chord.

These graphs were shown by Berge (1967) to be perfect. Kratsch (1995) presented

the following theorem.

Theorem 5 (Kratsch 1995) A chordal graph G is a diametral path graph if and only if it
does not contain the graphs AT-1 and AT-2, shown in Figure 2.1, as induced subgraphs.

Trapezoid Graphs

The definition of trapezoid graphs was introduced by Corneil and Kamula (1987),
and by Dagan, Golumbic, and Pinter (1988):

Definition 6 G is a trapezoid graph if G is the intersection graph of a finite collection

of trapezoids between two parallel lines.

From the definition, interval graphs and permutation graphs described below are

trapezoid graphs.
Permutation Graphs

The definition of permutation graphs was introduced by Even, Pnueli, and Lempel in

(1971) and (1972):
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Definition 7 (1) Let L£4,Ly be two parallel lines in the plane and label n points by
1,2,3,...,n on Ly and also on Ly. The straight line L; connects 1 on L1 with 1 on L.
(2) Let G = ({1,2,...,n}, Ez) with 1j € E¢ if L; and L; intersect each other.
(3) A graph G is called a permutation graph if there is an intersection model L as
described in condition (1) such that G = G.

The name permutation graph comes from the observation that the points on £; and
Ly can be seen as a permutation 7 = (;" ), and ij € E. if and only if (1 — j)(7 (i) —
7~(j)) <0, i.e., i and j form an inversion in 7.

The following result explained the relationship between comparability, cocomparabil-

ity, and permutation graphs.

Theorem 6 (Pnueli, Lempel, and Fven 1971) G is a permutation graph if and only if

it is both comparability and cocomparability.

Interval Graphs

Interval graphs are defined as follows:

Definition 8 A graph G is an interval graph if the vertices of G can be pul into a one-
to-one correspondence with intervals on the real line, such that two vertices are adjacent

in G if and only if the corresponding intervals have a nonempty intersection.
Lekkerkerker and Boland (1962) characterized interval graphs as follows.

Theorem 7 (Lekkerkerker and Boland 1962) A graph is an interval graph if and only if
it s chordal and AT-free.

Later, Gilmore and Hoffman (1964) strengthened (in light of the more recently known
result that AT-free graphs strictly contain cocomparability graphs) this to:

Theorem 8 (Gilmore and Hoffman 1964) A graph is an interval graph if and only if it

is chordal and cocomparability.



10 CHAPTER 2. BACKGROUND

AT-free Graphs

The definition of AT-free graphs is given in Chapter 1. The structure of these graphs
is explained in detail in section 2.2. Only a couple of major results with regards to the
position of AT-free graphs in the graph class hierarchy are mentioned here.

Corneil, Olariu, and Stewart (1997) proved the following theorem which implies that
AT-free graphs are HDP:

Theorem 9 (Corneil, Olariu, and Stewart 1997) Fvery connected AT-free graph con-

tains a dominating pair.
In fact, they also showed (using the terminology of Kratsch (1995)):

Theorem 10 (Corneil, Olariu, and Stewart 1997) Any AT-free graph is a diametral
path graph.

Clearly, AT-free graphs need not be perfect, since Cs is AT-free.

HDP Graphs

The definition of HDP graphs is given in Chapter 1. The known structural results
about these graphs are presented in section 2.3. Again, only major results that help in
understanding the position of HDP graphs in the graph class hierarchy are mentioned
here.

Kratsch (1995) proved the following result:
Theorem 11 (Kratsch 1995) Any HDP graph is a diametral path graph.

As mentioned above, all AT-free graphs are HDP graphs. In addition, some graphs
that have asteroidal triples are also HDP, for example, Cs. There has not been much
research on graphs that contain asteroidal triples. Thus, as mentioned in Chapter 1,
graphs that contain asteroidal triples which are also HDP (ATNHDP graphs) are the
topic of this thesis.

The summary of the relationships between the described graph classes is represented

in Figure 2.2.
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Diametral Path Graphs Perfect Graphs
HDP Graphs
AT-free Graphs Chorda Graphs

Comparability Graphs ~ Cocomparability Graphs

Trapezoid Graphs

Permutation Graphs Interval Graphs
Figure 2.2: Hierarchy of the Graph Classes in the Neighborhood of HDP Graphs.

2.2 Structure of AT-free Graphs

It has already been mentioned in Chapter 1 that the definition of an asteroidal triple
was first introduced by Lekkerkerker and Boland (1962). Since 1989 Corneil, Olariu, and
Stewart have been working intensively on AT-free graphs and proved many structural
and algorithmic properties of these class of graphs [see for example their papers from
(1994, 1995b, 1995a, 1997)]. Since this thesis deals with the structural properties of
HDP graphs, only structural properties of AT-free graphs are presented in this section.

Theorem 9 by Corneil, Olariu, and Stewart (1997) mentioned above is implied by an

even stronger result:

Theorem 12 (Corneil, Olariu, and Stewart 1997) Let x be an arbitrary vertex of a
connected AT-free graph G. Fither (z,x) is a dominaling pair, or else for a suitable
choice of vertices y and z in N'(z), (y,z), or (y,z) is a dominating pair. Here, N'(x)

denotes the set of all vertices adjacent to x in the complement G of G.

They also proved the following result that Kratsch (1995) used in his work on diame-
tral path graphs:

Theorem 13 (Corneil, Olariu, and Stewart 1997) In every connected AT-free graph

some dominating pair achieves the diameter.

They gave two characterizations of AT-free graphs. The first one characterized AT-

free graphs based on dominating pairs, while the second one characterized AT-free graphs
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in terms of minimal triangulations.

For the first characterization, they introduced the spine property as follows. A con-
nected graph H with a dominating pair satisfies the spine property if for every nonad-
jacent dominating pair (a, 3) in H there exists a neighbor o/ of « such that (¢/,3) is a

dominating pair of the connected component of H \ a containing 3. Then they proved:

Theorem 14 (Corneil, Olariu, and Stewart 1997) (The Spine theorem) A graph G is
AT-free if and only if every connected induced subgraph H of G satisfies the spine prop-
erty.

This result enabled them to formulate a spine of GG as follows. Let G = (V, E) be a
connected AT-free graph with (z,y) as an arbitrary nonadjacent dominating pair. Con-
struct a sequence xg, 1, ..., x}, of vertices of G and a sequence Gy, (51, ..., G}, of subgraphs
of (G defined in the following way:

(i) Go = G and z¢ = z,

(ii) forall i(0 <i <k —1), 2,y ¢ £ and a2y € F,

(iii) for all ¢(1 <7 < k), let (; denote the subgraph of G;_; induced by the component
of Gi_1 \ {z;_1} containing y,

(iv) for all (1 < i < k), let ; be a vertex in (¢; adjacent to z,_y and such that (z;,y)
is a dominating pair in Gj.

The Spine theorem guarantees the existence of the sequence x1, ..., zx. They referred
to the sequence zq, ..., z} as a spine of G. They also emphasized that the existence of a
sequence of vertices and a sequence of subgraphs defined in (i) through (iv) above does
not necessarily imply that the graph is AT-free.

Their second characterization of AT-free graphs in terms of minimal triangulations
was as follows. For an arbitrary graph G' = (V| F), a triangulation T(G) of G is a set
of edges such that the graph G' = (V, F U T(G)) is chordal. A triangulation 7T'(G) is
minimal when no proper subset of T'(() is a triangulation of G. They quoted R. H.
Mohring (1996) for the following result:

Theorem 15 (R. H. Mdohring 1996) If G is an AT-free graph, then for every minimal
triangulation T'(G) of G, the graph G' = (V, E U T(G)) is an interval graph.

Then they proved the converse of Theorem 15 which resulted in the following theorem:
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Theorem 16 (Corneil, Olariu, and Stewart 1997) A graph G is AT-free if and only if,
for every minimal triangulation T(G) of G, the graph G' = (V, F U T(G)) is an interval
graph.

They also gave some interesting results about augmenting AT-free graphs that confirm
the linear structure of AT-free graphs, since the dominating pair can be stretched to a
new dominating pair. They called a vertex v of an AT-free graph G pokable if the graph
G’ obtained from G by adding a degree 1 vertex adjacent to v is AT-free; otherwise v is
called unpokable. A dominating pair (z,y) is referred to as pokable if both z and y are
pokable. After the introduction of these definitions, they proved the following results:

Theorem 17 (Corneil, Olariu, and Stewart 1997) Fvery connected AT-free graph con-
tains a pokable dominating pair; furthermore, every connected AT-free graph which is not

a clique contains a nonadjacent pokable dominating pair.

Theorem 18 (Corneil, Olariu, and Stewart 1997) (The Composition theorem) Given
two AT-free graphs Gy and Gy and pokable dominating pairs (x1,y1) and (x2,y2) in Gy
and Gy respectively, let G be the graph constructed from G and Gy by identifying vertices
x1 and xo. Then G is an AT-free graph.

Another interesting result by Corneil, Olariu, and Stewart (1997) deals with contract-
ing AT-free graphs. First, they introduced the following definitions. For an AT-free graph
G = (V, E) with at least two vertices and a pokable dominating pair (z,y), define a binary
relation R on (G by writing for every pair u, v of vertices, uRv <= D(u,z) = D(v,z),
where D(a,b) denotes the set of vertices that intercept all a,b-paths. Clearly, R is an
equivalence class; denote by C, ..., Cy(k > 1) the equivalence classes of G|R. A class C;
is called nontrivial if |C;| > 2. Then they proved:

Claim 1 (Corneil, Olariu, and Stewart 1997) G|R contains at least one nontrivial equiv-

alence class.

They called a nontrivial class C' of G|R valid if C induces a connected subgraph of
G. Then they proved:

Claim 2 (Corneil, Olariu, and Stewart 1997) G|R contains at least one valid equivalence

class.
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They also introduced the following definition. Let S be a set of vertices of G. The
graph GG’ is said to arise from G by an S-contraction if G' contains all the vertices of
G\ S along with a new vertex s adjacent, in G’ to all the vertices in GG \ S that were

adjacent, in (G, to some vertex in S. They proved:

Theorem 19 (Corneil, Olariu, and Stewart 1997) Let C be an arbilrary valid equiva-
lence class of G|R. The graph G' obtained from G by a C-conlraction is AT-free.

They also gave the following results about high diameter AT-free graphs:

Theorem 20 (Corneil, Olariu, and Stewart 1997) Let G' be a connected AT-free graph

with diameter at least four. There exist nonempty, disjoint sets X and Y of vertices of

G such that (x,y) s a dominating pair if and only if t € X andy € Y.

Corneil, Olariu, and Stewart (1997) also established some results about graphs that

contain asteroidal triples. First, they defined the following. If 7 = wuy, ug,...,u; and
T = V1, 0g,...,0; are two paths, then the path wq, uq,...,u; with ¢ < k is referred to as
a prefic of m. A vertex w is a cross point of m and m if w = u; = v; and the four

vertices u;_q,vj_1,%;+1, and vy, are all defined and distinct. They denoted by G a
graph containing an AT and chose an induced subgraph H of GG with the least number of
vertices such that some triple {z,y, 2z} is an AT in H. They denoted by n(z,y), 7 (z, 2),
and 7(y,z) paths in H demonstrating that {z,y, 2z} is an AT. They also wrote m(z,y) :
T = Uy, Uy Uy = Y, T(T,2) 12 = V1,0, ., =z, and (Y, 2) 1y = Wy, we, ..., W = 2.

Then they showed the following:

Claim 3 (Corneil, Olariu, and Stewart 1997) No pair of paths among m(z,y), n(x,z),

and m(y,z) has a cross point.

Claim 4 (Corneil, Olariu, and Stewart 1997) Let i be the largest subscript for which
there exists a subscript j such that u; = v; and w1 # vjp1. Then i = 3 and u; = v, for

all 1 <t <.

Lemma 1 (Corneil, Olariu, and Stewart 1997) There exist unique vertices ' y', 2" in
H such that

(1) the unique path between x and z' is a prefix of both w(x,y) and (x,z),

(1) the unique path between y and y' is a prefix of both w(y,x) and w(y, z),

(1ii) the unique path between z and z' is a prefix of both w(z,z) and w(z,y).
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Figure 2.3: Mlustration of Corollary 1

Claim 5 (Corneil, Olariu, and Stewart 1997) The vertices x',y" and 2z’ are either all

distinct or else they coincide.

Corollary 1 (Corneil, Olariu, and Stewart 1997) Vertices z',y" and z' coincide if and
only if H is isomorphic to the graph in Figure 2.3.

Broersma, Kloks, Kratsch, and Muller (1999) presented an O(n*) algorithm to com-
pute the maximum weight of an independent set in a given AT-free graph. To do this,
they used the following definitions to describe some additional structural properties of
AT-free graphs. In a graph G = (V, F), they denoted by C*(y) the connected compo-
nent of G[V'\ N|z]] containing the vertex y. Also, they denoted by r(z) the number of
connected components of G[V \ N[z|]. For nonadjacent vertices z and y in G, they said
that a vertex z € V \ {z,y} is between = and y if there is an z, z-path avoiding N[y]
and there is an y, z-path avoiding N[z]. For nonadjacent vertices z and y in GG they said
that the interval I = I(z,y) is the set of all vertices that are between z and y. Thus,
Iany) = C*(y) 1 OV().

They described the following results about splitting intervals in AT-free graphs. Let
G = (V,E) be an AT-free graph, let [ = I(z,y) be an interval, let s € I, and let
I = I(z,s) and I = I(s,y).

Lemma 2 (Broersma, Kloks, Kratsch, and Muller 1999) x and y are in different con-
nected components of G[V '\ N[s]].

Corollary 2 (Broersma, Kloks, Kratsch, and Muller 1999) I, N I, = (.
Lemma 3 (Broersma, Kloks, Kratsch, and Muller 1999) I, C I and I, C 1.

Theorem 21 (Broersma, Kloks, Kratsch, and Muller 1999) There exist connected com-
ponents C3,C35,....C¢ of GV \ N[s]] such thal

t
[—N[S]:[1U[2UUCZS

=1
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Corollary 3 (Broersma, Kloks, Kratsch, and Muller 1999) Fvery connected component
of G[I — (N[s]U I U I1)] is a connected component of G[V \ N|s]].

They also described the results about splitting connected components of AT-free
graphs. As before, they let G = (V, E) be an AT-free graph, let = be a vertex of i, let
C* be a connected component of G[V \ N[z]], let y € C¥, and let [ = I(z,y). They
studied the connected components of G[C* — N]y]] and gave the following results.

Theorem 22 (Broersma, Kloks, Kratsch, and Muller 1999) Let D be a connected com-
ponent of G[C* — N[y]]. Then N[D] N (N[z]\ N[y]) =@ if and only if D is a connected
component of G(V \ N[y]) with D C C”.

Corollary 4 (Broersma, Kloks, Kratsch, and Muller 1999) Let B be a connected com-
ponent of G[C” — Ny]]. Then N[B]N (N[z]\ Ny]) # 0 if and only if B C C¥(x).

Theorem 23 (Broersma, Kloks, Kratsch, and Muller 1999) Let By, ..., B; be all the con-
nected components of G[C® — Nly]], that are contained in C¥(x). Then I = ', B;.

2.3 Structure of HDP Graphs

Kratsch (1995) described some of the structural properties of diametral path graphs. As
mentioned above, the class of diametral path graphs is a superclass of HDP graphs (see
Theorem 4), so all results that apply to diametral path graphs apply to HDP graphs as
well.

The definition of diametral path graphs was given above. Kratsch (1995) also defined
a dominating shortest path of a graph (G as a path between vertices z and y in G of
length dg(z,y), where dg(z,y) is the distance between vertices x and y in G, i.e., it is

the length of the shortest path between x and y. Then he proved the following theorem.

Theorem 24 (Kratsch 1995) A graph G is a diametral path graph if and only if every
connected induced subgraph H of G has a dominating shortest path.

It has already been asserted in Theorem 10 that AT-free graphs are diametral path
graphs. Moreover, Kratsch (1995) gave examples of many graphs that are diametral
path graphs, but not AT-free, i.e., the class of diametral path graphs properly contains
AT-free graphs as a subclass.



2.3. STRUCTURE OF HDP GRAPHS 17

Figure 2.4: A diametral path graph that is not HDP.

Theorem 11 above explained the relationship between HDP graphs and diametral
path graphs. Furthermore, diametral path graphs properly contain HDP graphs (see
example in Figure 2.4). We also know that HDP graphs properly contain AT-free graphs
(an example is graph Cg).

Theorem 5 above gave the relationship between chordal and diametral path graphs.
Kratsch (1995) also characterized diametral path graphs in terms of PATH-MCDS, where
PATH-MCDS is a minimum connected dominating set that induces a path in G.

Theorem 25 (Kratsch 1995) Let G = (V, E) be a connected diametral path graph with
diam(G) > 4. Then G has a PATH-MCDS.
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Chapter 3

General Structure of HDP Graphs

This chapter and the following two chapters contain original work.

This chapter describes some structural properties of both HDP and minimal HDP
graphs. The main result of the chapter is Theorem 26 which establishes that every AT
of an ATNHDP graph must have at least two of its vertices path-disjoint. Definition 9
introduces a notion of a path-disjoint vertex. Theorem 26 is important since it implies
that only two types of minimal ATNHDP graphs exist: those with all AT vertices being
path-disjoint, and those with one non-path-disjoint AT vertex in at least one of their ATs.
Consequently, these two types of minimal HDP graphs are introduced in Definitions 12
and 13.

The following lemma, i.e., Lemma 4, is used in the proof of Claim 6. Claim 6 is
applied extensively in the proofs of claims throughout the thesis. Some examples of its
use are in the proofs of Corollary 5, and Claims 8, 9, 11. The main result of this chapter,
Theorem 26, follows from Claim 11.

The following notation will be used throughout this chapter. Let H be an HDPNAT
graph with an AT {z,y,z}. As stated previously, let P, denote the set of all induced
paths from z to y that avoid N(z), P,.. the set of all induced paths from z to z that
avoid N(y), and P, the set of all induced paths from y to z that avoid N(z) in H.
Let Py, P:., P, be arbitrary induced paths that establish the AT {z,y,z} in H. The
reader is reminded that standard definitions of the path length and the path size will be
used to represent the number of edges and the number of vertices respectively. In the
definitions and claims in this chapter which say “let H be defined as above,” or “let H
be defined as in the paragraph preceding Lemma 4,” it is assumed that H is defined as
in this paragraph. The same holds for P, ,, P, ., and P, .

19
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Lemma 4 If H is an HDP graph, then there does not exist an AT {z,y,z} in H with
paths Py, Ps., and P, establishing AT {x,y, z}, such that all three paths have a com-

mon verter w.

Proof:  Assume to the contrary. That is, assume H is an HDP graph with an AT
{z,y,z}, induced paths P,,, P,., P,. that establish an AT {z,y,z}, and a common
vertex w of these three paths. Let H' be the graph induced on the union of paths
P,;UP,,UP, . of H, where P, is the path between w and z induced on P, ,, P, , is
the path between w and y induced on P, ,, and P, . is the path between w and z induced
on P, .. Since {z,y, z} was an AT of H, the definition of H' implies that {z,y, z} is also
an AT of H'. The length of P, is at least 2 because {z,y, 2z} is an AT of H'. Similarly,
the length of P, , and the length of P, . are both at least 2.

Since H is an HDP, H' has a DP, say («,3). Each of the DP vertices must belong
to one of P, ;, Py, and P, ., by definition of H’. The DP vertices cannot both belong
to P, because in that case a path between them induced on P, ., avoids N(z), which
would contradict the assumption that («, 3) is a DP. This is because z cannot be adjacent
to any vertex of P, ,, since otherwise the path P, ,, whose subpath is the path P, ,, by
definition, would not avoid the neighborhood of z contradicting the fact that {z,y,z} is
an AT of H'. Similarly, both DP vertices cannot belong to P, , and cannot belong to
P,... Therefore, they must belong to different paths in {P, . U P,, U P,.}. W.lo.g.
assume that a € P, and 8 € P, .. Now, the path from « to # induced on P, , U P, g,
where P, ,, is the path between « and w induced on P, , and P, s is the path between 3
and w induced on P, ,, avoids the neighborhood of z, again contradicting the fact that
(o, 3) is a DP of H'. P,,, U P, s avoids N(z) because it is actually a subpath of P, ..
Thus, H' cannot have a DP. This contradicts the assumption that H is HDP. O

The path-disjoint and non-path-disjoint vertices mentioned before are defined as fol-

lows.

Definition 9 Let H, P, ,, and P, . be defined as above. An AT vertex x is called path-
disjoint with respect to y, z if for all paths P € P, and for all paths Q) € P, ., PN =

An AT vertex x is called non-path-disjoint if there exist paths P € Py, and Q € Py,
such that PN Q 2 {x,z'}, where x # 2’
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Note that sometimes “z is path disjoint” will be used to mean “x is path disjoint with
respect to y, z.”
Definition 9 motivates defining a significant neighbor of a non-path-disjoint vertex,

as well as defining a 1-disjoint graph. These two terms are defined as follows.

Definition 10 A neighbor =’ of x in an HDPNAT graph H with an AT {z,y,z} and a
non-path-disjoint vertex x is called a significant neighbor of z if 2’ € P, ,N P, ,, for some

induced paths P, , € Py, and P, , € P, ..

Definition 11 Consider an HDPNAT graph H with a non-path-disjoint vertex x and a
significant neighbor x' of x, such that H\ {z'} is disconnected into a connected component
containing y and z and not containing =, and some other connected components. Such a

graph will be called 1-disjoint w.r.t. x.

Claim 6 Let H be defined as in the paragraph preceding Lemma 4, lel x be a non-path-
disjoinl vertex of H w.r.l. y, z, and let P,,, P, ., P,. be induced paths establishing the
AT. If any 2’ € P,y N P, ., where ¥’ # x, then xx' is an edge in H.

Proof: Assume z2' is not an edge in H. Then, since z # 2, there must exist a path
P . between x and 2’ of length at least 2. W.l.o.g. let the path P, ./ be a subpath of P, .
Also, let P, and P, , be subpaths of P, , between z’ and y, and of P, , between 2z’ and
z respectively. The assumption that ' € P,,NP, . implies that the length of P, , and
the length of P,/ , are both at least 2, since otherwise ' would be in the neighborhood
of either y, or z, or both, contradicting the fact that P, ,, P, ., and P, establish an AT
{z,y,z} in H.

Now look at the graph H' induced on P,/ U Py U Py .. Note that in H', {z,y,z}
is still an AT. But now, z’ is a common vertex of the paths that establish an AT in H’
and therefore, by Lemma 4, H' cannot have a DP. Since H' is an induced subgraph of
H, this contradicts the assumption that H is an HDP graph. O

Corollary 5 Let H be defined as in the paragraph preceding Lemma J with a non-path-
disjoint vertex x w.r.t. y, z. Let Pp, € Py, and P, ., € P, be such that 2’ € P, ,N P, .,
and ¥’ # x. H\ {z} has only one connected component C.

Proof:  Assume to the contrary. Let H \ {z} have two connected components, C

containing y, z, and D not containing them. Consider any vertex  of D that is adjacent
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toz in H. Now, {Z,y, 2z} is also an AT in H, but 22’ is not an edge, contradicting Claim

6. O

The following claim presents an interesting result that will be used in the proofs
throughout this thesis, such as for example, in the proofs of Claims 8, 39, and Corollary
8.

Claim 7 For any HDP graph G and any of its DP’s (o, 3), if H < GG, H is connected
and o, 3 € H, then (o, 3) is a DP of H.

Proof: Assume that (a,3) is not a DP of H. Then, since H is connected, there exists
a path P from a to # in H that misses a vertex w € H. However, P also belongs to ¢
and misses w in G, contradicting (a, #) being a DP of G. O

The following claim will be used in the proofs of Claims 11 and 37. The reader is

reminded that the main result of this chapter is a corollary of Claim 11.

Claim 8 Let H be defined as in the paragraph preceding Lemma 4 with induced paths
Poy, Ps., P,. establishing the AT, such that x' € Py, N Py, and @' # x. Let H \ {2'}
be disconnected, i.e. H is 1-disjoint w.r.t. x, and let C' denote the connected component
of H\ {2'} that contains y and z. Then, for every DP (a,3) of H, one of a, B is in
H\ C and the other is in C. Furthermore, if H is minimal, then H \ C = {z,2'}.

Proof: Let H be the subgraph of H induced on P.yUP,,UP,,U{a,B}. By Claim
7, (o, 3) is a DP of H as well.

Suppose both o, 3 € C'N H. Since H is an induced subgraph of H, any path L from
ato Bin C N H is also in H. No vertex v of L is adjacent to z in H for the following
reasons. Sincev € Le CNH,ve P, UP,.\{z,2'}. Ifv e {y,z}, then vz ¢ E in H,
since {z,y,z} isan AT of H. If v € P, \ {z,2",y}, or v € P, \ {z,2', 2}, then vz ¢ F
in H, since P, and P, are induced paths. If v € P,, \ {y, 2}, then zv ¢ E in H, since
all vertices on the path P,, must miss x because paths P, ,, P, ., P, . establishing the
AT {z,y,z}. Therefore, all vertices of L miss x contradicting («, 3) being a DP of H.
Therefore, at least one of «, 3 must be in H \ C.

Now, suppose both a,3 € H \ C. Then, any path from a to 3 in H \ C' misses both
y and z contradicting (a, 3) being a DP of H. Therefore, not both « and 3 are in H \ C.
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Figure 3.1: Illustration of Claim 8.

It is proven that at least one DP vertex must be in H \ C', but not both of them are
in H\ C. Thus, one of a, 3 is in H \ C and the other is in C. An example is in Figure
3.1.

Now prove that if H is minimal, then H \ C' = {z,2'}. Let H be a minimal HDP
graph. Let H\ C ={z,2',v}, x # v # /. va’ € E, since otherwise it would contradict
Claim 6. Now, either zv € F, or v ¢ K. If zv € E, then v belongs to a path in P,
that is not an induced path, which contradicts the definition of P, ,. If zv ¢ F, then v
does not belong to any path in P, , U P, , U P, ., which again contradicts the definition
of a minimal HDP graph. O

Claim 9 Let H be 1-disjoint w.r.t. =. If v & C, then v is either z' or il is adjacent lo

z'

Proof:  Assume v # 2’ and v is not adjacent to z’. Then, there exists a path @ in
H\ C of length at least 2 between 2’ and v. Let P,, be the path from v to y induced on
QU Py, and let P, , be the path from v to z induced on Q U P,/ .. But now, {v,y,z}
is an AT and {2’} C P,, N P, ., and vz’ ¢ F contradicting Claim 6. O

The following claim will be used in the proofs of Claims 35 and 37.

Claim 10 Let H be I-disjoint w.r.t. x, and let (o, 3) be a DP of H. If « ¢ C, then
B¢ PpyU Py, for any path P, between x and y thal avoids N(z), and any path P, ,
between x and z that avoids N(y).

Proof: W.lo.g. if 3 € P,,, then the path from « to  induced on P, , U{«,z'} does
not hit z contradicting (o, 3) being a DP of H. O

The claims above will be used to prove the following.



24 CHAPTER 3. GENERAL STRUCTURE OF HDP GRAPHS

Claim 11 If z is non-path-disjoint with respect to y, z, and y is non-path-disjoint with
respect to x,z in a graph H with an AT {z,y,z}, i.e., 32" € Ppy N Py, 2’ # z, and
dy' € P,yNP,., y #vy, for some paths P, € Py, Pr. € Py, and Py, € P, ., then H
is not an HDP graph.

Proof: Assume to the contrary. Thus, H is HDP. By Claim 6, zz" and yy’ are edges
in H. First note that 2’ # y’. This is because if ' =y, then y intercepts path P, . in H
contradicting the fact that {z,y, 2z} is an AT in H.

Let H be the subgraph of H induced on P,, U FP,, U P,.. Now, H is a minimal
HDP graph. Let (a,3) be a DP of H. By Claim 8, H \ C, = {z,2'} contains a DP
vertex, w.l.o.g. say a € H\ C,, where C, is the connected component of H \ {z'} that
contains y and z. By the same reasoning, 3 € [:[\C'y = {y,y'}, where C, is the connected
component of H \ {y'} that contains z and z. Consider the path joining o and 3 that is
induced on {a, 3} U Py, where P, is a subpath of P, , between z’ and y’. This path
misses z, since {z,y, 2z} is an AT, contradicting (o, 3) being a DP of H. O

The following theorem is the main result of this chapter. It follows from the previous

claim.

Theorem 26 [f H is an ATNHDP graph, then for any AT in H at least two of its AT

vertices are path-disjoint.
Proof: Follows immediately from Claim 11. O

This theorem motivates the introduction of the Definitions 12, 13, 14, and 15. These
definitions separate minimal HDP and minimal AT graphs into subclasses called (2,2,2),
(1,2,2), (1,1,2), and (1,1,1) graphs, depending on the number of non-path-disjoint AT
vertices. Note that (1,2,2) notation is used for minimal HDP graphs with exactly one
non-path-disjoint AT vertex, and that the order in which path-disjoint and non-path-
disjoint AT vertices appear does not matter; i.e., (2,1,2) and (2,2,1) notation need not

to be used. The same holds for (1,1,2) notation.

Definition 12 A minimal HDP graph is called a (2,2,2) graph if it has no non-path-
disjoint AT vertices.

Definition 13 A minimal HDP graph is called a (1,2,2) graph if it has exactly one
non-path-disjoint AT vertex.
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Definition 14 A minimal AT graph is called a (1,1,2) graph if it has exactly two non-
path-disjoint AT vertices.

Definition 15 A minimal AT graph is called a (1,1,1) graph if it has exactly three non-
path-disjoint AT vertices.

From Theorem 26, and Definitions 12 and 13 it can be concluded that the only AT
graphs that are minimal HDP are (2,2,2) and (1,2,2) graphs. Therefore, the following
two chapters will talk about (2,2,2) and (1,2,2) graphs. Before analyzing the structure
of (2,2,2) and (1,2,2) graphs in detail, some additional definitions and claims about the
general structure of HDPNAT graphs will be introduced.

Recall that standard definitions of the path length and the path size are used through-
out this thesis to denote the number of edges and the number of vertices respectively.

The size of a path P is denoted by |P].
Definition 16 A path of size bigger than 3 is called a long path.

For (1,2,2) graphs the definition of R, ,, and R, is needed. Let R, C P, be the
set of all paths P € P, such that 3Q € P, , and 2’ € PNQ such that 2’ # x. Similarly,
let R, C P, be the set of all paths P € P, , such that 3Q € P, , and 2’ € PN such
that 2’ # z. Let R, , be the set of subpaths of paths in R, , between 2’ and y, and R, .
be the set of subpaths of paths in R, , between z’ and z.

Definition 17 A (2,2,2) graph H will be called two-long-sided if there exists Py, € Py,
and there exists P, , € Py, in H such that |P,,| >3, and |P,.| > 3. A (1,2,2) graph H
will be called two-long-sided if there exisls Ry, € Ry, and there exists Ry, € Ry, in
H such that |R, | > 3, and |R. .| > 3.

Definition 18 A (2,2,2) graph H will be called one-long-sided if there exists P, € P,,
in H such that | P, | > 3, and both P, , and P, . in H consist of P3’s only. A (1,2,2) graph
H will be called one-long-sided if there exists Ry, € Ry in H such that |Ry,| > 3,
and both Ry, and P, in H consist of P3’s only.

Definition 19 A (2,2,2) graph H will be called no-long-sided if Py, Py, and P, . in
H consist of Ps’s only. A (1,2,2) graph H will be called no-long-sided if Ry, Ry -, and
Py.- in H consist of P3’s only.
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Definition 20 A (2,2,2) or a (1,2,2) graph is called long-sided if it is either one-long-
sided, or two-long-sided.

Note that any (2,2,2) and any (1,2,2) graph is either two-long-sided, or one-long-sided,
or no-long-sided. The structure of these three types of (2,2,2) graphs will be considered
separately in sections 4.1, 4.2, and 4.3. The structure of these three types of (1,2,2)

graphs will be considered in sections 5.1, and 5.2.

The structure of two-long-sided (2,2,2) graphs will differ depending on the lengths of
paths in P, , and P, .. A specific structure will result if in addition to having long paths
in P, and P, ., a two-long-sided (2,2,2) graph H also has a path of length 2 in P, ,,
or in P,.. Similarly, a specific structure will result if a two-long-sided (2,2,2) graph has
more than one long path in P, ,, or more than one long path in P, .. The position of
DP vertices in these two sub-families of two-long-sided (2,2,2) graphs will be examined
in subsections 4.1.1 and 4.1.2. For that purpose, the paths of length 2 will be called
short paths, and the set of paths that contains a long path, i.e., P,, or P, , will be
called a long side. Similarly, the structure of one-long-sided (2,2,2) graphs with the long
side containing a short path will be described in subsection 4.2.1, and the structure of
one-long-sided (2,2,2) graphs with the long side containing at least two long paths will
be described in subsection 4.2.2. Equivalent results hold for (1,2,2) graphs and will be
explained in subsections 5.1.1, 5.1.2.

The structure of all these subfamilies of graphs will be examined in order to determine
the position of their DP’s in relation to position of their AT vertices.

The following three lemmas present results about the position of DP vertices in HDP
graphs. They will be used in the proofs of Claims 13, 18, 30, 39, and Lemma 8. Note
that sometimes the terminology will be abused by letting P, , denote both the set of

paths between x and y that miss 2z, and the union of the vertices on these paths.

Lemma 5 Let (a,3) be a DP of an ATNHDP graph H. o and (3 cannot both belong to
Pz, cannot both belong to P, ., and cannol both belong to P, ..

Proof: W.lo.g. assume that o and 3 both belong to P,,. Since the subgraph
induced on the vertices in P, , is connected, there is a path between them that misses z,

contradicting (a, 3) being a DP. O

Lemma 6 Let (a,3) be a DP of a graph H.
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(1) If H is a two-long-sided (2,2,2) graph, then o and [ cannot belong to the union
of the internal vertices of P, and P, ., where P, and P, , are long paths in P, and
Py.» respectively.

(2) If H is a (1,2,2) graph, then o and 3 cannot belong to the union of the vertices
of Ry y and R, ., where Ry, and Ry, are paths in Ry, and R, , respectively.

Proof: Assume to the contrary.

(1) W.l.o.g. let a be an internal vertex of P,, and let 3 be an internal vertex of P, ..
Note that a cannot be adjacent to both x and y, and that 3 cannot be adjacent to both
z and z, since | P,y > 3 and |P,.| > 3. If ay € F and Bz € F, then the path from « to
3 induced on ay U P, . U Bz does not hit z contradicting (o, 3) being a DP of H, where
P, . 1s any path in P, ,. If one of these two edges oy and 3z does not exist, i.e. w.l.o.g.
if ay ¢ E, then the path from « to 3 induced on P, .U P, s does not hit y contradicting
(o, 3) being a DP, where P, is the subpath of P,, between a and z, and P,z is the
subpath of P, , between z and . Therefore, o and 3 do not both belong to the union
of the internal vertices of P, , and P, ..

(2) W.lo.g. let @ € Ry, and B € Ry .. Clearly, either 3 = 2/, or 8 € Ry, \ {2'}.
If 3 =2 (and @ € R, ,), then both «,3 belong to P, contradicting Lemma 5. If
B € Ry .\ {z'}, then we have the following cases:

(i) if @ = 2/, then both «a, 8 belong to P, . contradicting Lemma 5.

(ii) if @ € Ry \ {2}, then the path between o and  induced on P,, U P,. U P, 3
does not hit z, where P, , is the path between o and y induced on R, ,, P, 3 is the path
between z and 3 induced on R,/ ,, and P, is any path in P, .; note that no vertex on

P, , and no vertex of P, 5 is adjacent to z, since R, and R,/ , are induced paths. O

Lemma 7 (a) Consider a two-long-sided (2,2,2) graph H with long paths P, € P,
and P, , € P, .. Il is nol the case that one DP vertex of H is an inlernal vertex of Py,
and the other one is equal to z. By symmetry, it is not the case that one DP vertex of
H is an internal vertex of P, , and the other one is equal to y.

(b) Consider a (1,2,2) graph H with paths Ry, € Ry, and Ry, € Ry .. It is not
the case that one DP vertex of H is an internal vertex of Ry, and the other one is equal
to z. By symmetry, il is not the case that one DP vertex of H is an internal vertex of

R, . and the other one is equal to y.

Proof: (a) Let (o, 3) be a DP of a two-long-sided (2,2,2) graph H. W.l.o.g. assume
that « = z and § € P, \ {z,y}. Since |P,,| > 3, 3 cannot be adjacent to both z and y.
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If Bz ¢ E, then the path from « to 3 induced on P, .U P, sz does not hit = contradicting
(a, 3) being a DP, where P,z is the subpath of P, , between y and . If By ¢ E, then
the path from « to 3 induced on P, . U P, 3 does not hit y contradicting (o, 3) being a
DP, where P, s is the subpath of P, , between z and j3.

(b) Corollary of Lemma 6 (2). O



Chapter 4
(2,2,2) Graphs

The claims in this section will describe some structure of (2,2,2) graphs. The goal is to
describe enough structure of (2,2,2) graphs, so that the positions of all DP vertices in
these graphs can always be determined. This goal is achieved and presented in Claims
18, 21, 25, 30, and Corollaries 7 and 11. These are the main results of this chapter.
Each of them describes the positions of DP vertices in a specific type of (2,2,2) graphs,
and together they describe the positions of DP vertices in all types of (2,2,2) graphs. In
addition, an interesting structural result appears in Claim 13.

The following notation will be used in this chapter. Let H be a (2,2,2) graph with
an AT {z,y,z}. As before, let P, be the set of induced paths between z and y that
avoid N(z), let P, be the set of induced paths between = and z that avoid N(y), and
let P, . be the set of induced paths between y and z that avoid N(z). In the claims in
this chapter which say “let H be defined as in the paragraph preceding Claim 12.” it is
assumed that H is defined as in this paragraph. The same holds for P, ,, Py ., and Py ..

The following claim describes the positions of DP vertices in a restricted subfamily

of (2,2,2) graphs.

Claim 12 IfVP,, € Py, YP;. € Py, and YP,, € P, there are no edges between
internal vertices of P,,, Py., and P, ,, then a DP vertex of any DP of H must be in

{z,y,2}.

Proof:  Assume to the contrary. Thus, VP, , € Py, VP, € Py, and VP, , € P,
there are no edges between internal vertices of P, ,, P, ., and P, ., and no DP vertex
is in {z,y,z}. Denote by (a,3) any DP of H. W..o.g. assume a € P., \ {z,y},
g€ P..\{z,z} for some P, € P, and some P, . € P, .. Denote by P, the subpath

29
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of P, between o and z, and by Pz, the subpath of P, , between  and z. But now,
the path between « and 3 induced on P, ;U Pg, does not hit any internal vertex of any

P, . € P, . contradicting («, #) being a DP. O

The following claim describes an interesting structural property of (2,2,2) graphs.

Claim 13 If 3F,, € P,, and 3P, . € P, in H such that |P,,| > 3, |FP,.| > 3, then
VP eP,., |P|=3.

Proof: Assume to the contrary. Thus, 3P, , € P, such that |P, .| > 3. So, |P,,| > 3,
|Ps2| > 3, |P,.| > 3. Let H be the subgraph of H induced on P,, U P,, U P, ,. Let
(o, B) be any DP of H. Where could o and 3 be positioned?

By Lemma 6 (1), @ and 3 do not belong to the union of the internal vertices of P, ,,
P;., and P, ,. Therefore, one of a, 3 must be in {z,y,z}. W.l.o.g. let @ = z. Then by
Lemma b, 3 ¢ P,, U P, .. Therefore, 8 € P, \ {y,z}. B cannot be adjacent to both y
and z, since |P, .| > 3. W.l.o.g. assume that 3z ¢ E. Now the path between o and
induced on P, 3 U P, , does not hit z contradicting («, 3) being a DP, where P, 3 is the
subpath of P, . between y and j3.

Thus, H does not have a DP contradicting H being HDP. O

Additional structural properties of (2,2,2) graphs are described in the following claim.

Claim 14 In a (2,2,2) graph H, let P,y € Pry, Pr. € Po., P,. € Py, and let
u € Py \{z,y},v € P..\{x,z} be such that the length of the path between them induced
on Py, U P, thal includes x is al least 4. Lel P, , be the subpath of P, , belween x and
v, and lel P, be the subpath of P, , between x and u. If uv € E, then either

(1) u is universal to P,,, or

(i1) v is universal to Py ,, or

(iii) if xzv € E, and v is notl adjacent to w € P,,, and wu € F, then either w is
adjacent to a vertex in P, \ {y,z}, or every vertex in P, . \ {y,z} is adjacent either to
u ortow.

Note that by symmetry, the same holds if u € P,, \ {z,y},v € P,. \{y,z}, or if
w€ P, \{z,z},ve P, .\ {y,z}, and the conditions above are satisfied.

Proof: Assume to the contrary. Thus, uv € E and neither u is universal to P, ,, nor v

is universal to P,, (negation of the condition (iii) above will be added in part (2)(a)(i)
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of this proof). Consider the subgraph H of H induced on P,,UP,,UP,,. Sincethe

length of the u, v-path induced on P, , U P, , is at least 4, there are two cases to consider:

(1) zu,zv ¢ E. Consider H= ]z[\{PW \{y, z}}. H is (1,1,2), in particular, vertices
y and z of the AT {z,y,z2} in H are non-path-disjoint, contradicting Theorem 26.

(2) Exactly one of zu,zv is an edge. W.l.o.g. let zv € F. Clearly, u is not universal
to Py, since zu ¢ E. Also, by assumption, v is not universal to P, ,. Let w € P, , be a

vertex not adjacent to v. Here, there are the following cases to consider:
(a) wu € F, or wx € K. Consider each of these two cases separately.

(i) Assume wu € F, w is not adjacent to any vertex in P, \ {y,z}, and there exists
a vertex p € P, \ {y, z} that is not adjacent to u and is not adjacent to v. Clearly,
wx ¢ F since the length of the path between u and v induced on P, ,U P, , that includes
x is at least 4 and zv € FE. Let P,, be the subpath of P, between z and w, let
w' = Py, N N(w), let 2’ = P, N N(z), and let P, be the subpath of P,, between
2" and w'. Now, H \ Py is (1,1,2), in particular, vertices w and x of the AT {w,p, z}
are non-path-disjoint, contradicting Theorem 26; note that w is not adjacent to any
vertex of P, ., where P, , is the subpath of P, , between v and z, since otherwise, i.e., if
wq € K,q € P,,, then w and ¢ satisfy the condition of case (1) above (replace v by g,
and u by w).

(ii) Now assume wz € K. Denote by H the graph obtained by removing from H all
verticeson P, . \{y,z}. Now, Hisa (1,1,2) graph with an AT {w,y, z}, in particular, the
non-path-disjoint vertices are y, and z, contradicting Theorem 26; note that if wg € E
for some ¢ € P, ., then H is not a (2,2,2) graph, since the path @) € P, . induced on
{zw}U{wq}UP, ., where P, is the subpath of P, . between ¢ and z, has common vertices
{z,w} with P,,, i.e., z is not a path-disjoint vertex, contradicting the assumption that
His (2,2,2).

(b) wu ¢ E, and wz ¢ E. Now, the graph H\{P,.\{y,z}}is (1,1,2), in particular,

vertices y and z of the AT {w,y,z} are non-path-disjoint contradicting Theorem 26;
again, wq ¢ F, for all ¢ € P, ., as explained in part (2)(a)(ii) above. O

It has been mentioned before that any (2,2,2) graph is either two-long-sided, or one-
long-sided, or no-long-sided. The structure of these three types of (2,2,2) graphs will be

considered separately in the next three sections.
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4.1 Two-Long-Sided Graphs

In this section, assume that the graph is two-long-sided, i.e. that there exists P, , € P, ,
and there exists P,, € P, in a (2,2,2) graph H such that |P,,| > 3,|P:.| > 3. By
Claim 13, P, . consists of P5’s only. Denote by M the set of internal vertices of all paths
in P, .. These assumptions about the graph H hold in all claims in this section.

The standard definition of distance between two vertices v and v, denoted by d(u,v),
which defines it as the minimum length of a u, v-path, is used in this thesis. Recall that
the length of a path is the number of its edges.

The following claim describes the structural property of two-long-sided graphs that
will be used in proofs of various claims in this thesis, such as for example, in the proofs

of Claims 16, 17, 20, and Corollary 9 in this chapter.

Claim 15 The vertex of distance 1 from x on P,,, for1 > 2, cannot be adjacent to the

vertex of distance j from x on P, ,, for j > 2.

Proof: Assume to the contrary. Denote by u the vertex of distance ¢ from z on P, ,,
for « > 2, and by v the vertex of distance j from z on P, ,, for 7 > 2, with uwv € E. That
is, d(u,z) =1 > 2, d(v,z) = j > 2, and uv € F. Note that u # y, because otherwise u
could not be adjacent to any vertex on P, ., since y is an AT vertex. Similarly, v # z.
Consider the subgraph H of H induced on P,, U P,,. Since uv € E, H is a (1,1,2)
graph, namely the AT vertices y and z of the AT {z,y,z} of H are non-path-disjoint,
contradicting Theorem 26. O

Note that edges from the neighbor of z on a long path P, , to a non-neighbor of z
on a long path P, , can occur in minimal HDP graphs. However, such an edge would
imply the graph is (1,2,2) and is considered in the next chapter. Therefore, the following

corollary.

Corollary 6 In a two-long-sided (2,2,2) graph H with long paths Py, € Py, and P, , €
Py.z, the vertex of distance 1 from x on P, for1 > 1, cannol be adjacent lo the vertex

of distance j from x on P, ,, for 7 > 2.
Proof: Follows directly from Claim 15 and the paragraph preceding Corollary 6. O

The following lemma describes the positions of DP vertices in a specific type of an

induced subgraph of a two-long-sided (2,2,2) graph. One of the main results of this
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chapter, namely Corollary 7, follows directly from this lemma. The lemma will also be
used to prove Claims 16, 17, and 19. Claim 17 will further be used in the proofs of Claims
42 and 46.

Lemma 8 Let H be a two-long-sided (2,2,2) graph with long paths P,, € P, and
Py, € Py, let P, be any path in P, of H, and lel (a,3) be a DP of the subgraph H
of H induced on P,, U P,,UP,.. Then one of o, 3 is in N[z] = {x} U N(z) in H and

the other one is the internal vertex of P, ,.

Proof: Note that H is a two-long-sided (2,2,2) graph.

By Lemma 5, o and 3 cannot both belong to P, ,, cannot both belong to P, ., and
cannot both belong to P, ..

By Lemma 6 (1), a and 8 cannot belong to the union of the internal vertices of P, ,
and P .

Let 2’ = P,, N N(z). It is not the case that one of a, 3 is an internal vertex of P, .
and the other one belongs to P, \ {z,z’,y} for the following reason. Assume to the
contrary. Thus, w.l.o.g. assume that o € P,, \ {y,z} and 8 € P, \ {z,2',y}. Then
the path from a to 3 induced on {ay} U P, does not hit z contradicting (e, 3) being
a DP, where P, 5 is the subpath of P, , between 3 and y. Similarly, it is not the case
that one of a, 3 is in P, \ {y,z} and the other one belongs to P, . \ {z,2", 2}, where
" = P,,N N(z).

By Lemma 7 (a), it is not the case that one of a, 3 is equal to z and the other one
belongs to P, \ {z,y}. Similarly, it is not the case that one of o and (3 is equal to y and
the other one belongs to P, . \ {z,z}.

Therefore, the only possible position for (a, 3) is that one of them is in N[z] and the
other one is in P, \ {y,z}. O

Corollary 7 Let H be a 2-long-sided (2,2,2) graph with no short paths in the long sides.
One DP vertex of H must be in N[z] and the other one must be an internal vertex of a

path in Py ..

Proof: Follows directly from Lemma 8. O

The following two claims describe some structural properties of two-long-sided (2,2,2)

graphs.
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Claim 16 Let x| and z!, be the neighbors of x on long paths P,, and P, in H respec-
tively, and let zY and z7 be of distance 2 from x on P,, and P, , respectively. Let v be a
vertex in M. Then {z\z}, z{v,zhv} N E £ 0. By symmetry, {z\z}, ziv, v} N E £ 0 as

well.

Proof: Assume to the contrary. Thus, z{z}, z{v, zhv ¢ K. Note that ziz}, ¢ F since H
is a (2,2,2) graph. Denote by P, . € P, . the path that contains v. Consider the subgraph
H of H induced on P.y U P, . UP, .. Denote by (a,3) a DP of H. From Lemma 8, in
H one of {a, 3} is in N[z] and the other one is in M. W.l.o.g. let « € M and 8 € N|z].

However, 3 cannot belong to {z,z,} together with a = v for the following reason.
Assume that o = v and § € {z,z},}. Then the path from « to 8 induced on P, . U {vz}
does not hit zf, contradicting («, 3) being a DP, since by Claim 15, no vertex of P, .
that is of distance 2 or more from z is adjacent to any vertex on P, , that is of distance
2 or more from z, i.e., 7 is not adjacent to any non-neighbor of z on P, ,; also, by
assumption, z{v ¢ E. Similarly, a cannot be equal to v together with § being equal to
z, since otherwise the path between them induced on {P,, \ {z}} U {yv} would not hit
xh; this is true because z} is not adjacent to any non-neighbor of z on P, ,, since H is
(2,2,2); also, by assumption, x5z, vhv ¢ F.

Thus, H does not have a DP contradicting H being HDP. O

Claim 17 All vertices of distance © from x on P,,, for i > 3, if they exist, must be
adjacent to all vertices in M. By symmetry, the same holds for the vertices of distance 1

fromx on P, ,.

Proof:  Assume to the contrary. Thus, there exists a vertex of distance 7 from z on
P, ,, call it u, where 1 > 3, that is not adjacent to a vertex v € M. Note that u is not
adjacent to z’, where z’ is the neighbor of x on P, ,, and P, . is a long path in P, ., since
His (2,2,2). Let P,, € P, . be the path that contains v. Consider the subgraph Hof H
induced on P, ,U P, .U P, .. Denote by («, 3) a DP of H. From Lemma 8, one of {a, 3}
is in N[z] and the other one is in M.

As in the proof of Claim 16, it is not the case that one of o and 3 is equal to v
and the other one belongs to {z,z'}, since otherwise the path between them induced
on {vz} U P, . would miss u; note that by Claim 15, u cannot be adjacent to any non-
neighbor of z on P, ., and in addition, by our assumption, v is not adjacent to v; note

again that uz’ ¢ K, since H is (2,2,2).
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Similarly, it is not the case that one of a and 3 is equal to v and the other one
belongs to P, N N(z) for the following reason. Assume to the contrary. Thus, w.l.o.g.
assume that o = v and 8 € P,, N N(z). Since Sz € E, the path from «a to # induced
on {vz} U P, U {3} misses u; note that by our assumptions and Claim 15, u is not
adjacent to any vertex on P, . and is not adjacent to v.

Thus, H does not have a DP contradicting H being HDP. O

4.1.1 A Long Side Has a Short Path

Let H be a two-long-sided (2,2,2) graph with a long side having a short path. W.l.o.g.
let P, have a short path. Denote by P, , a long path in P,,, by P, . a long path in
Py, and by P a path of length 2 in P, , in H. Denote by W the set of middle vertices
of all P3’s in P, ,. As before, denote by M the set of middle vertices of all paths in P, ..
Let m be the middle vertex of P, ., where P, , is an arbitrary path in P, ,.

The following claim represents one of the main results of this chapter. It describes
the positions of DP vertices in two-long-sided (2,2,2) graphs with a long side having a
short path. The three corollaries following this claim describe some of the structural

properties that are dictated by specific positions of DP vertices in these graphs.

Claim 18 Consider a two-long-sided (2,2,2) graph H with a short path in a long side
as described in the first paragraph of this subsection. One DP vertex of H is in N[x] =
{z}UN(z) and the other one is in M, or one DP vertex is in N[z] = {z} UN(z) and the
other one is in W. Fach of these two types of DPs can occur. Note that the symmetric
resull would hold if there was a Ps in P, ,.

Proof: Let (a,3) be a DP of H. Consider where o and 3 could be positioned in H.

By Lemma 5, o and 3 cannot both belong to P, ,, cannot both belong to P, ., and
cannot both belong to P, ..

By Lemma 6 (1), @ and 3 cannot belong to the union of the internal vertices of P, ,
and P, ., where P, , and P, , are long paths in P, , and P, , respectively.

By Lemma 7 (a), it is not the case that one of a and [ is equal to z and the other
one belongs to P, \ {z,y}, and also is not the case that one of them is equal to y and
the other one belongs to P, . \ {z,z}.

If one of @ and (3 is equal to m and the other one belongs to P, ,\{z,y, z'}, or if one of

them is equal to m and the other one belongs to P, .\ {z, z,2"}, where 2’ = N(z)N P, ,,
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Figure 4.1:
" = N(z)N Py, and m is any vertex in M, then the proof is as follows. W.l.o.g. assume

that « € Py, \ {z,y,2'} and § = m. Since azx ¢ F, the path between o and 3 induced
on P, ,U{yl} does not hit z contradicting (e, 3) being a DP, where P, , is the subpath
of P, , between o and y.

Thus, the only two options for {a, 3} are that one is in N[z] and the other one is in
M, or that one is in N|[z] and the other one is in W.

Examples showing that each of these two types of DPs can occur are given in Figure

4.1. DP vertices are shaded in these examples. O

Consider each of the possible positions for {a, 3} from the previous claim separately.

The following notation will be used in the following three corollaries. Consider a
two-long-sided (2,2,2) graph H with a short path in a long side as described in the first
paragraph of this subsection. Let m be a vertex in M, let w be a vertex in W, let
=Py, NN(x),y =Py NN(y), 2’ = PN N(2), 2" = P,. N N(z), where P,, and
P, . are long paths in P, , and P, , respectively, let P, , be the path containing m, and
let P be a P5 in P, , whose mid-vertex is w. Let P, , be the subpath of P, , between
' and y’', let H be the subgraph of H induced on P, , U P, ,UP,,U P, and let P, be
the subpath of P, , between 2’ and y. Denote by U the set of midpoints of all Ps’s in
Pry U Py s note that W C U. Denote by 2" the second neighbor of z on P, ..

Corollary 8 If one of the DP vertices of H is equal to x and the other one is m, then all
non-neighbors of x and y on the long paths in P, if they exist, and all non-neighbors of
x and z on the long paths in P, ., if they exisl, must either be universal to U, or adjacent

to m, or both.

Proof: Assume to the contrary. W.l.o.g. let v be a non-neighbor of x and y on the

long path P,, € P., that is not adjacent to w and is not adjacent to m, where (z,m) is
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a DP of H. Consider the subgraph H of H induced on P U P,,UP,,UP, .. ByClaim?7,
it is known that, since (z,m) is a DP of H, and since z,m € H, (z,m) is also a DP of H.
However, the path from z to m in H induced on P U {ym} does not hit v contradicting

(z,m) being a DP of H. O

Corollary 9 Let (w,z) be a DP of H. Then H has the following properties:

(a) Let v be an internal vertex of Py, different from z'. Then vw € E.

(b) Let v be an internal vertex of Py, different from y', or an internal vertex of Py .
different from z'. If vw ¢ K, then v is universal to M.

(¢) If y'w,y'm ¢ E, then m is not adjacent to a non-neighbor of y' on P, ,.

Proof: (a)Letv € P,,\{z,2',y} be such that vw ¢ E. Note that va” ¢ F since H is a
(2,2,2) graph. Then the path from w to z induced on P, .U {xw} misses v, contradicting
(w, z) being a DP of H (note that by Claim 15 the only vertex on P, that v can be
adjacent to is z”).

(b) W.l.o.g. let v be an internal vertex of P, , different from y’ such that vw,vm ¢ E.
Then the path from z to w induced on P, . U {yw} misses v, contradicting (w, z) being
a DP of H.

(¢) If y'w,y'm ¢ E and m is adjacent to a non-neighbor ¢ of y’ on P, ,, then the path
from z to w induced on {zm} U {mgq} U P, . U{xw} does not hit ¢, contradicting (w, z)
being a DP of H, where P, ; is the subpath of P, , between ¢ and z. O

Corollary 10 If (w,m) is a DP of H, then every internal vertex of a long path P, . €
P..» and every internal vertex of a long path P, € P, different from y' must be adjacent
either to m, or to w, or to both. In addition, if wm € FE, then y' must also be adjacent

to m, or to w, or to both.

Proof: Assume to the contrary. Let v be an internal vertex of P, , different from v/,
or an internal vertex of P, .. Since by assumption vm,vw ¢ E, the path between m and
w induced on {ym} U {yw} does not hit v contradicting (m,w) being a DP. Similarly, if
wm € F and y’ is not adjacent to m and not adjacent to w, then the path from m to w

induced on {mw} does not hit y'. O

4.1.2 A Long Side Has at Least Two Long Paths

The following notation will be used in the claims in this subsection. Let H be a two-

long-sided (2,2,2) graph that has at least two long paths on one of its long sides. W.l.o.g.
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let P, have at least two long paths. Denote by P and () two long paths in P, , of H.
Denote by P, . a long path in P, .. Remember that, by Claim 13, P, . consists of FPs’s
only. Let P, . be any path in P, .. Let 2, = N(z)N P, 2z, = N(2)NQ, z, = N(z)N Py .,
v, = N(y)NP,y, = N(y)NQ, and let m be the middle vertex of P, .. Let N;(x) be the
neighborhood of = on the long paths.

The following claim describes the positions of DP vertices in a subfamily of two-long-

sided (2,2,2) graphs with a long side having at least two long paths.

Claim 19 Ifthere are no P3’s in Py, and Py ., then one DP vertex of H is in {x }UN;(x)
and the other one is in M.

Proof: Corollary of Lemma 8. O

As mentioned before, let D(u, v) denote the set of vertices that intercept all u, v-paths

in a connected graph.

Claim 20 VP, Q € P, that are long paths, and Vv, € P\ {z,z,} and Yoy € Q\{z,z,},
v € D(z,v3), or vy € D(z,vy).

Proof: Assume to the contrary. Let P, Q) € P,, be long paths, let P, , be any long
path in P, ., and let x, be the neighbor of z on P, .. Let vy € P\{z,z,}, v2 € Q\{z,z,}
be such that vy ¢ D(x,vy) and vy ¢ D(z,vq1). Note that viz, ¢ E and vyx, ¢ F since H
is a (2,2,2) graph. Let P,. be any path in P,.. Let [ be the subgraph of H induced on
PUQUP,,UP,,. Let m be the mid-vertex of P, ,.

H\{m} does not have a DP any more, since {vq,vy,2} is its AT that contradicts
Claim 6. In particular, {vy, vy, 2} is an AT of H for the following reasons:

(i) the path from v to v, induced on P, , U P,, , misses z, where P,, , is the path
between v; and y induced on P, and similarly, P,, , is the path between v; and y induced
on ; this is true by the definition of P, and P, .;

(ii) the path between z and v; induced on P, , U P,,, misses vy, where P, ,, is the
path between v; and = induced on P; this is true because viz, ¢ F, since H is (2,2,2),
and also, by Claim 15, vy is not adjacent to any non-neighbor of z on P, ,;

(iii) similarly, the path between z and v induced on P, , U P, ,, misses vy, where P, ,,
is the path between vy and x induced on Q).

Clearly, in H, zz ¢ E, contradicting Claim 6. O
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mq m

Figure 4.2:

4.2 One-Long-Sided Graphs

Let H be a one-long-sided (2,2,2) graph with an AT {z,y,z}. W.lLo.g. let P,, be the
long side of H. Denote by M, the set of mid-points of all paths in P, ., by M, the set of
mid-points of all paths in P, ,. For now assume that the long side does not contain any
short paths; the case when the long side has a short path will be discussed in subsection
4.2.1.

Note that for any internal vertex v of a long path P, , € P, ,, edges between v and
any vertex in My, and between v and any vertex in M; are allowed in these types of
graphs. For example, the fact that vm; € E in H, for some m; € M;, might seem
to contradict the fact that H is (2,2,2), since the path L between x and z induced on
Py U{vmy}U{m iz}, where P, , is the path between x and v induced on P, ,, seems to
be in P, ., and it shares vertex v with P, , € P,, making the graph H (1,2,2). However,
this is not so, since, by definition, all paths in P, . are induced paths, while L is not
induced, and therefore not in P, .; in particular, xm;,vm, € E. Therefore, even if v is a
non-neighbor of  and a non-neighbor of y on a long path P, , € P,, in a one-long-sided
(2,2,2) graph H described here, this does not contradict H being (2,2,2).

The following claim is one of the main results of this section. It describes the positions
of DP vertices in one-long-sided (2,2,2) graphs. The three claims following it establish
some structural properties that are dictated by specific positions of DP vertices in these

graphs.

Claim 21 One DP vertex of a one-long-sided (2,2,2) graph is in N[z] and the other one
is in My, or one of its DP vertices is in N[y| and the other one is in M,. Fach of these

two types of DPs can occur.

Proof: Follows the proof of Claim 18.
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Examples showing that each of these two types of DPs can occur are given in Figure

4.2. DP vertices are shaded in these examples. O

Claim 22 [f {«a,8} = {x,mq} for some vertex my € My, then for all my € My, every
vertex in P, \ {x,y,2'}, where P, is a long path in P, and ' is the neighbor of x on

P, s adjacent lo my, or to mq, or lo both.

Proof:  Assume to the contrary. Let v € P,, \ {z,y,2'} be non-adjacent to some
my € M, and non-adjacent to my. Then the path from a to 8 induced on {xm;} U
{miz} U {zmsy} would not hit v contradicting («, 3) being a DP. O

Claim 23 If {a, 3} = {2/, ma} for some vertex my € My and the neighbor z' of x on a
long path P, € Py, then every vertex in My is adjacent to a vertex in {mz}UP,,\{z,y}.
By symmetry, if {a, B} = {y',m1} for some vertex my € My and the neighbor y' of y on a
long path P,, € Py, then every vertex in My is adjacent to a vertex in {my}UP,,\{z,y}.

Proof: Assume to the contrary. Let {a,3} = {2',my} and a vertex m; € M; is not
adjacent to any vertex in {ms} U P, \ {z,y}. Then the path from a to # induced on
{ym2} U P, \ {z} does not hit m; contradicting (a, 3) being a DP. O

Claim 24 If {a,8} = {my,mz} for some vertices my € My and mqy € My, then every

internal vertex of a long path P, € P, is adjacenl to my, or to my.

Proof: This is true because otherwise the path from o to 5 induced on {myz}U{mqz}

would not hit an internal vertex of P, that is not adjacent to {my,mz}. O

4.2.1 The Long Side Has a Short Path

The following assumptions and notation hold for the claims in this subsection. Let H
be a one-long-sided (2,2,2) graph with an AT {z,y, z}, the long side P, ,, a long path
P,, € Pyy, and a short path P in P, ,. As before, denote by M; the set of mid-points
of all paths in P, ,, and by M; the set of mid-points of all paths in P, .. Also, denote
by W the set of mid-points of all paths in P, ,. Let 2’ be the neighbor of z on P, ,. Let
y' be the neighbor of y on P,,. Let m; be an arbitrary vertex in M;, my an arbitrary
vertex in My, and w an arbitrary vertex in W. Let P, , be any path in P, ,.

The following claim is one of the main results of this section. It describes the positions

of DP vertices in one-long-sided (2,2,2) graphs in which the long side contains a short
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path. The three claims following it establish some structural properties that are dictated

by specific positions of DP vertices in these graphs.

Claim 25 DP vertices of a one-long-sided (2,2,2) graph with a short path in a long side
satisfy the following. Fither:

(a) one DP vertex is in N[z] and the other one is in My, or

(b) one DP vertex is in N[y| and the other one is in My, or

(¢) one DP vertex is in N[z| and the other one is in W.

Fach of these three types of DPs can occur.

Proof: Follows the proof of Claim 18.
Examples showing that each of these three types of DPs can occur are given in Figure

4.3. DP vertices are shaded in these examples. O

Claim 26 Let (z,w) be a DP of H.

(a) If z'w ¢ E, then ' must be universal to My. By symmetry, if y'w ¢ E, then y'
must be universal to M.

(b) Let v be an internal vertex of P, different from 2’ and y'. If vw ¢ E, then v is
universal to My U My. Also, if 2'w, 2"y, y'w ¢ E, then x' is universal to My U M;, and
similarly, if y'w, 2"y, 2'w ¢ E, then y' is universal to My U Mj.

Proof: (a) Assume to the contrary. Let 2'w ¢ E, and let 2'mq ¢ E, for some my € M.
Let my € P, .. Then the path from z to w induced on P, . U{yw} misses 2’ contradicting
(z,w) being a DP.

(b) Assume to the contrary. Let vw ¢ E and, w.l.o.g., v is not adjacent to some
vertex m; € M. Then the path between z and w induced on {zm;} U {myz} U {zw}

misses v.
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Now, prove the second part of the claim. If z'w,z'y’, y'w ¢ E and w.l.o.g. ' is not
adjacent to some m/ € M, since y' is universal to M; (by part (a)), the path between z

and w induced on {zm/{} U {miy'} U {y'y} U {yw} misses z’. O

Claim 27 If (mq,w) is a DP of H, then:
(a) every vertex in My U Py, \ {y'} must be adjacent to my, or to w, or to both;
(b) it is possible for vertices in {y'} U My \ {mz} to be not adjacent to both my and w.

Proof: (a) Assume to the contrary. Let v € M; U P, \ {y'} be non-adjacent to ms
and w. Then the path from my to w induced on {may} U {yw} does not hit v.

(b) To see that it is possible for y’ not to be adjacent to my and w consider the
following. If y’ is adjacent to all vertices in My, and if there are no edges between mjy
and internal vertices in P, , (note that internal vertices of P, \ {w} can be adjacent to
w), then every path from ms to w contains at least one of the vertices in M; U {y}, and
therefore hits y'.

To see that it is possible for a vertex in My \ {my} not to be adjacent to my and w
consider the following. If for all internal vertices u of all paths in P, , U P,., mou ¢ F,
then any path from m, to w must include at least one of vertices y and z, and therefore

every vertex v € My \ {m3} is hit by any path from m, to w. O

Claim 28 Not all internal vertices of a path P, in H, such that |P.,| > 4, can be

non-adjacent to both vertices in {my,msy}, for any my € My and any mqy € M,.

Proof: Assume to the contrary. Thus, all internal vertices of a path P,, in H,
|P;y| > 4, are non-adjacent to both vertices in {my, msy}, for some m; € M; and some
my € M,. Then the subgraph H of H induced on P, ,UP, ,UP, ., wherem, € P, € P,
and mqy € P, , € Py, has a chordless cycle of length at least 7, and therefore does not
have a DP. O

4.2.2 The Long Side Has at Least Two Long Paths

Let H be a one-long-sided (2,2,2) graph with an AT {z,y, z}, the long side P,,, and at
least two long paths in P, ,. Let P and @) be the long paths in P, ,. As before, denote
by M; the set of mid-points of all paths in P, ,, and by M; the set of mid-points of all
paths in P, .. Let z, be the neighbor of  on P, let x, be the neighbor of z on Q).

The following corollary specifies the positions of DP vertices in one-long-sided (2,2,2)
graphs in which the long side has at least two long paths.
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Corollary 11 If there are no short paths in P,,, one DP vertex of H is in N[z| and
the other one is in My, or one DP vertex of H is in N[y| and the other one is in M.
FEach of these two types of DPs can occur.

Proof: Follows directly from Claim 21.
Examples showing that each of these three types of DPs can occur are given in Figure

4.4. DP vertices are shaded in these examples. O

The following claim describes an interesting structural property of these types of

(2,2,2) graphs.

Claim 29 VP, Q) € P,y that are long paths, and Vv, € P\ {z,z,} and Vv, € Q\{z,z,},
if vimy,vamy ¢ E for some my € My, then vy € D(z,v3), or va € D(z,v1).

Proof: Follows the proof of Claim 20. O

4.3 No-Long-Sided Graphs

Let H be a no-long-sided (2,2,2) graph with an AT {z,y,z}. That is, all paths in
PryUPs.UP,. are Pys. Denote by M; the set of mid-points of all paths in P, ,, by M,
the set of mid-points of all paths in P, ., and by Mj; the set of mid-points of all paths in
Py,s-

The following claim is one of the main results of this section. It describes the positions
of DP vertices in no-long-sided (2,2,2) graphs. The two claims following it establish some

structural properties that are dictated by specific positions of DP vertices in these graphs.

Claim 30 A DP of a no-long-sided (2,2,2) graph consists of an AT vertex v € {z,y,z}
and a mid-point of a path thal avoids the neighborhood of v, or of a vertex in M; and a
vertex in M;, where 1 # 5, and 1,7 € {1,2,3}. Fach of these lypes of DPs can occur.
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Figure 4.5:

Proof: Denote by (o, 3) a DP of a no-long-sided (2,2,2) graph H with an AT {z,y, z}.
By Lemma 5, o and 3 cannot both be in P, ,, cannot both be in P, ., and cannot both
be in P, .. Therefore, since H is a no-long-sided (2,2,2) graph, the only two options for
the position of a and 3 are an AT vertex v € {z,y,2} and a mid-point of a path that
avoids the neighborhood of v, or a vertex in M; and a vertex in M;, where ¢ # j, and
i,7 €41,2,3}.

Examples showing that each of these types of DPs can occur are given in Figure 4.5.

DP vertices are shaded in these examples. O

Claim 31 Let (o, 3) be a DP of a no-long-sided (2,2,2) graph H with an AT {x,y,z}. If
a € M;, B € Mj, where i # j, and 1,5 € {1,2,3}, then every vertex in My, fork ¢ {i,5}
and k € {1,2,3}, must either be adjacent to o, or to [3.

Proof: Assume to the contrary. W.l.o.g. let @ € M;y,3 € M, and let v be a vertex
in M5 that is not adjacent to a and is not adjacent to 3. Then the path from «a to 3
induced on {az} U {zB} does not hit v contradicting (e, 3) being a DP of H. O

Claim 32 Let (o, 3) be a DP of a no-long-sided (2,2,2) graph H with an AT {z,y,z}.
If {a, 3} € {x,m3} for mg € Ms, then mg cannot be adjacent to any vertex p € My U M,
unless every vertex of Mz is adjacent to either ms or p. By symmelry, the same holds

Jor {a, B8} € {y,ma} for mqy € My, and for {a, 3} € {z,m1} for my € M;.

Proof: W.o.g. let @« =2 and 8 = m3, ms € Ms. Assume to the contrary. Thus, let
msp € K, p € My U My, and a vertex m% € Ms is neither adjacent to mg, nor to p. Then
the path from a to 8 induced on {ap} U {pB} does not hit m% contradicting (e, 3) being
a DP. O



Chapter 5

(1,2,2) Graphs

The claims in this section will describe some structure of (1,2,2) graphs. As in the
previous chapter, the goal is to describe enough structure of (1,2,2) graphs, so that the
positions of all DP vertices in these graphs can always be determined. This goal is
achieved and presented in Claims 39, 41, and 44. These are the main results of this
chapter. Each of them describes the positions of DP vertices in a specific type of (1,2,2)
graphs, and together they describe the positions of DP vertices all types of (1,2,2) graphs.
In addition, an interesting structural result appears in Claim 35.

In this chapter we will assume the following. Let P, ,, P, . and P, . be defined as
before in a (1,2,2) graph H with AT {z,y, z}. Let x be a non-path disjoint AT vertex of
H with 2’ € P, , N P, ., x # 2', for some P, , € P,,, and some P, ., € P, .. Let P, , be
the subpath of P, , between 2’ and y, P,/ , the subpath of P, . between 2’ and z, and let
P, . be any path in P, ,. In the claims in this chapter which say “let H be defined as in
the paragraph preceding Claim 33,” it is assumed that H is defined as in this paragraph.
The same holds for P, ,, P, ., and P, ..

The following two results present some structural properties of (1,2,2) graphs.
Claim 33 For any a € Py y \ {2’} and any b € Py, \ {2'}, ab¢ E.

Proof: Assume to the contrary. Thus, ab € FE. Take a subgraph H of H induced on
P,, U P, .. Note that H is also an AT graph because it has the path P, , that avoids
the neighborhood of z, P, , that avoids the neighborhood of y, and the path from y to z
induced on P,,U{ab} U P, ,, where P, , is the subpath of P, , between y and a, and P, ,
is the subpath of P, . between b and z, that avoids the neighborhood of z. (Note that

no vertex in P, U Py, \ {2’} is adjacent to z since all paths in P, , UP, . are induced.)

45



46 CHAPTER 5. (1,2,2) GRAPHS

But now, vertices z, y, and z in H are all non-path-disjoint contradicting Theorem 26.

Therefore, there does not exist an edge from a to b in H.O

Corollary 12 For any a € Poy, \ {2',y} and any ¢ € P,, \{y,z}, if ac € E, then
cy € b.

Proof:  Assume to the contrary. Thus, ac € E, and cy ¢ FE. Since cy ¢ E, there
must exist a subpath of P, . from ¢ to y of length bigger than one. Let P, be the path
from y to z induced on P,, U {ac} U P.., where P,, is the subpath of P,, from y to a,
and P.. is the subpath of P, from ¢ to z. Since ¢y ¢ F, P,, and Py’7z have a common
vertex different from y. Consider graph H induced on Py, P, ., and P, .. This graph
is AT since P, , avoids the neighborhood of z, P, avoids the neighborhood of z, and
P, . avoids the neighborhood of y. Note that since ¢ is not adjacent to y in H, y is not
path-disjoint with respect to z,z in H. Now, H has two non-path-disjoint vertices, =
and y, and thus, by Theorem 26, is not an HDP graph which contradicts H being HDP.

Note that in the same way it can be proven that for any b € P, \ {2/, 2}, if bc € F,

then cz € E. O

The following claim describes one of the possible positions of DP vertices in (1,2,2)

graphs.

Claim 34 Let H be defined as in the paragraph preceding Claim 33. Also, let P, Py .,
and P, be defined as in the paragraph preceding Claim 33, and let («, 3) be a DP of H.
Ifa € H\C, where C is the connected component of H\ {z'} that contains y and z, and
if B € P,., then B is adjacent to both y and z.

Proof: Assume to the contrary. Thus, assume that 3 is not adjacent to z. Then, the
path from (3 to a that consists of the subpath of P, , between 3 and y, and the y, a-path
induced on P, U {a} does not hit z contradicting (e, 3) being a DP. O

The following claim establishes an interesting structural property of (1,2,2) graphs.

Claim 35 Let H, P,,, and P, . be defined as in the paragraph preceding Claim 33. All
paths in Py, are Ps’s.

Proof: Assume to the contrary. Let P, _ be a path in P, . that is of length bigger than
2. Let H be the subgraph of H induced on P,, U P, .U P, . Clearly, H is 1-disjoint



5.1. LONG-SIDED GRAPHS 47

w.r.t. x. Let (a,3) be a DP of H. One of o, 8 must be in {z,z'}, since otherwise the
path between them induced on V(H)\ {z,2'} would miss z. (Note that no vertices in
V(H)\ {z,2'} are adjacent to = since P,, and P, are induced, and P, . €P,..) By
Claim 10, 8 € P; .\ {y, 2} in H. Since P, . is not a P3, 3 is not adjacent to at least one
of y,z. W.lo.g. let By ¢ E. But now, the path induced on P, U P, ., where Ps, is the
subpath of P) . between 3 and z, is an a, 3-path missing y contradicting (a, 3) being a

DP of H. O

Remember that R, , is defined in Chapter 3 to be the set of all induced paths between
z and y that avoid N(z) such that VP € R,, 3Q € P,. such that 2’ € PN Q, 2’ # x.
Also, R, is defined to be the set of subpaths of paths in R, , between z’ and y. Similar
definitions hold for R, . and R,/ .. The following claim gives a structural property of
(1,2,2) graphs.

Claim 36 Let H be defined as in the paragraph preceding Claim 33. Let y' be the neighbor
of y on a path in Ry, and let 2’ be the neighbor of z on a path in Ry .. If deg(y') =
deg(z') =2 and 7N€I7y + 0+ ﬁzm then H is not HDP.

Proof:  Assume to the contrary. Let P, € 7N€$7y and let (); € 7N€$Z Let P, € Ry,
@2 € R, and let y' = P, N N(y) and 2’ = Q2 N N(z) be of degree 2. Let R be any
path in P, .. Let H be the subgraphs of H induced on P, U P, U ()1 U Q2 U R. However,
H\{{ve Plv ¢ {y,y,z}}U{ve Qv ¢ {z,2,2}}} has AT {z,y/, 2’} that contradicts

Theorem 26, in particular, both 3’ and 2’ are non-path-disjoint. O

Chapter 4 differentiated between two-long-sided and one-long-sided graphs. When
dealing with (1,2,2) graphs it is not necessary to have this distinction; instead, long sided
graphs, i.e., (1,2,2) graphs for which at least one path in R,/ , U R, . is of length bigger
than 2, are studied. In the study of such graphs, some simple structure of these graphs
that is forced by a particular placement of the DP vertices will be emphasized. Clearly,
every path between DP vertices must dominate the graph. This results in some edges

that will not be explicitly mentioned.

5.1 Long-Sided Graphs

As before, let 2 be non-path-disjoint w.r.t. y, z in an HDPNAT graph H with AT {z,y, 2},
and let 2’ be a significant neighbor of z. Let P, . be the set of all induced paths between
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y and z in H that avoid N(z). Let M be the set of midpoints of all paths in P, . Let
D(u,v) denote the set of vertices that intercept all u, v-paths.
Claims 37 and 38 describe some structure of long-sided (1,2,2) graphs.

Claim 37 Fvery non-neighbor of x’' in a long path in R, must be universal to M. By

symmelry, the same holds for R, , as well.

Proof:  Assume to the contrary. Thus, there exists a non-neighbor v of z’ on a long
path P, € R, that is not adjacent to a vertex m € M. Let H be the subgraph of
H induced on P, U{z} U P,. U P, where P, . is any path in Ry ., and m € P, .
Let (o, 3) be a DP of H. Since H is 1-disjoint w.r.t. z, by Claim 8, one DP vertex of H
is in H \ C and the other one is in C, where C' is the connected component of H \ {z'}
containing y,z. W.lo.g. assume o € H\ C = {z,2'} (note that since H is minimal, by
Claim 8, H\C = {z,z'}). Then, by Claims 10 and 35, 3 is the midpoint of P, . in H, i.e.,
B =m. Since v € Pp, \ {z',y}, by Claim 33 and the assumption that vz’ ¢ E, v is not
adjacent to any vertex in P, .. Now, the path from « to 3 induced on {3z} U P, U{z}
does not hit v contradicting (a, 3) being a DP of H. O

As before, let  be non-path-disjoint w.r.t. y,z with a significant neighbor z’ in an
HDPNAT graph H with AT {z,y,z}. Let R, be defined as in Chapter 3, and let R,
be the set of all induced paths between = and y that avoid N(z) and do not share vertices
with paths in R, , other than z and y. Similarly, let R, , be defined as in Chapter 3,
and let 7N€IZ be the set of all induced paths between = and z that avoid N(y) and do not
share vertices with paths in R, , other than z and z. Let P, , be defined as before to be
the set of all induced paths between y and z that avoid the neighborhood of .

Claim 38 Let H be defined as in the paragraph preceding this claim. If 7N€$7y # 0, or
7N€z7z # (0, then H is not 1-disjoint w.r.t. .

Proof: Let 7N€T7y #+ 0. Let P € 7N€Iy By definition of 7N€w7y, ' ¢ P, and therefore,
P € H\ {z'}. Thus, the connected component of H \ {z'} that contains y and z also

contains z, i.e. H is not 1-disjoint w.r.t. z. O

Denote by M the set of mid-points of all paths in P, ., by W) the set of mid-points of
all short paths in 7N€$7y, and by W the set of mid-points of all short paths in 7%9” Note
that Wi and W, might be empty.
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In H, paths ﬁxy and R;y share vertex v different from x and y contradicting
the definition of R X "

Figure 5.1:

vu isnot an edge, since otherwise H \{m} is(1,1,2) and therefore
not an HDP graph. That is, v does not belong to apathin Ry, i.e.,
H isnot (1,2,2).

Figure 5.2:

The following claim is one of the main results of this chapter. It describes the positions

of DP vertices in long-sided (1,2,2) graphs.

Claim 39 One DP vertex of a long-sided (1,2,2) graph H is in N[z] and the other one
is in M, or one DP vertex of H is in N[z| and the other one is in Wy, or one DP vertex

of H is in N[y| and the other one is in Wy. Fach of these three types of DPs can occur.

Proof: Denote by (a,3) a DP of H. By Lemma 5, o and 8 cannot both belong to
Py, cannot both belong to P, ., and cannot both belong to P, ..

By Lemma 6 (2), o and # cannot belong to the union of vertices of R,/ , and R,/ .,
where R,/ , and R,/ , are any paths in R,/ , and R, . respectively.

If 7N€r_7y # () and 7N€I7y has a long path, then it is not the case that one of a, 3 is equal

to z and the other one is an internal vertex of a long path ]N%Ly € ﬁm/ for the following
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R

H

Since ﬁxy shares avertex (namely x") different from x and y with a
pathin P, this contradicts the definition of Ry -

Figure 5.3:

reason. Assume to the contrary. Thus, w.l.o.g., a = z and § € fm’m, \ {z,y}. Take
the subgraph H of H induced on ]%Ly UR,.UP,., for any path R, ., € R, , and any
P,. € P, (such paths R, . and P, exist by definition of H). Now, the claim is that H
is a two-long-sided (2,2,2) graph containing o, 3, and thus, by Lemma 7 (a) and Claim
7, it is not the case that one of a, 3 is equal to z and the other one is an internal vertex
of R.,. To see that H is a (2,2,2) graph (and not (1,2,2)) various edges are inserted
and it 1s noticed how such insertions contradict certain definitions. These insertions are
illustrated in Figures 5.1, 5.2, 5.3, and 5.4. For example (see Figure 5.1), if v, a non-
neighbor of = on E)z,y € 7N€z7y, is adjacent to 2/, then this contradicts the definition of
]%z,ya since the path ]%z,y € 7N€$7y shares a vertex v different from = and y with the path
R, € Ry, induced on {zz'} U {z'v} U {vy}. Figure 5.2 deals with the case when v is
adjacent to a non-neighbor of z in R, ., i.e., to a vertex in R, \ {2/, z}. In Figures 5.3
and 5.4, 2", the neighbor of z in fx’r_’y, is adjacent to an internal vertex of R,/ . and to 2’

respectively.

If 7N€r_7y # () and it has a long path, then it is not the case that one of a,f3 is an
internal vertex of some long path fm’m, € 7N€I7y and the other one is an internal vertex of
some path R, , € R, . for the following reason. Assume to the contrary. Thus, w.l.o.g.,
o € Ryy\{z,y} and g € R,.\ {z,2}. Similar to the above, take the subgraph H of
H induced on éx,y UR;.UP,,, forany P,, € P,,. Now, His a two-long-sided (2,2,2)
graph containing «, 3, and thus, by Lemma 6 (1) and Claim 7, it is not the case that
one of «, 3 is an internal vertex of ér,y and the other one is an internal vertex of R, .,

contradicting our assumption.

If both 7%9571/ # () and 7%9” # (), and if both have long paths, then it is not the case
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R

H

x'x" edgeis allowed and His a(2,2,2) graph, since vertex x" does not
belongtoapathin R , . Note that the path induced on {xx"}U{x"x'}UR ,
isnotintheset R , sincethisisthe set of induced paths, but xx’ is an edge.

Figure 5.4:

VX" is not an edge, since otherwise x" would belong to the path in Ry induced on
{xx"}U{x"v} U{vy} contradicting the definition of R_, .

Figure 5.5:

that one of a, 3 1s an internal vertex of some long path E)o:,y € 7?%@, and the other one is
an internal vertex of some long path E’ZZ € 7N€rz for the following reason. Assume to the
contrary. Thus, w.l.o.g., o € R, \ {z,y} and 8 € R, \ {z,z}. Similar to the above,
take the subgraph H of H induced on R,, U R, .U P,,, for any P,. € P,.. Now, H is
a two-long-sided (2,2,2) graph containing «, 3, and thus, by Lemma 6 (1) and Claim 7,
it is not the case that one of «a, 3 is an internal vertex of fx’m/ and the other one is an
internal vertex of ELZ? contradicting our assumption; note that H cannot be (1,2,2) as
illustrated in Figure 5.5, where a non-neighbor v of z in fm’m, € 7N€$7y is adjacent to the
neighbor = of = in ]%xz € 7N€x2

The only options for DP vertices «, 3 are that either one of them is in N[z] and the
other one is in M, or that one of them is in N[z] and the other one is in Wi, or that one

of them is in N[y] and the other one is in W5.
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X X X
" W W W, W W,
Y m ¢ Y m z y m z
Figure 5.6:

Examples showing that each of these three types of DPs can occur are given in Figure

5.6. DP vertices are shaded in these examples. O

The structure of (1,2,2) graphs that have one DP vertex in N[z] and the other one in
Wi, or symmetrically, one DP vertex in N[y] and the other one in Wy, will be examined
in subsection 5.1.1. Here, only the structure of long-sided graphs with one DP vertex

equal to = and the other one in M is presented in the following claim.

Claim 40 Let (o, 3) be a DP of a long-sided (1,2,2) graph H, and let {a, 5} = {2, m},
for some m € M. If v is the vertex of distance i from x on a path R in 7N€$7y, foriv > 2,
then either vm € E, or v is adjacent to every neighbor of x in P, ,; in addilion, for any

P € ﬁz,y \ R, v has to be adjacent to a vertex on the shortest path between x and m
induced on P U{m}.

Proof: Let v be the vertex of distance ¢ from z on some path R € ﬁm/, for 1 > 2.
Assume to the contrary. Thus, vm ¢ K and v is not adjacent to the neighbor of x on
some path P € P, .. Note that, by Claim 15, v cannot be adjacent to any non-neighbor
of x on P. Therefore, the path from x to m induced on P U {zm} misses v.

If for some P € 7N€z7y \ R, v is not adjacent to any vertex on the shortest z, m-path Q
induced on P U {m}, then the xz, m-path induced on @) misses v. O

5.1.1 A Long Side Has a Short Path

There are two graph structures to consider here. One structure happens when there exists
a P;in R, UR, ., and the other one happens when there exists a P in 7N€x7y U7N€I7Z. All
the properties that the first structure satisfies have already been described for long-sided
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Figure 5.7:

(1,2,2) graphs. However, the second structure has some additional properties that will
be described in this subsection.

The following notation will be used in this subsection. Denote by M the set of mid-
vertices of all paths in P, . and by W; the set of mid-vertices of all Ps’s in ﬁx,y in a
long-sided (1,2,2) graph H where W; # ().

The following claim is one of the main results of this chapter. Tt describes the positions

of DP vertices in long-sided (1,2,2) graphs with a long side having a short path.

Claim 41 One DP vertex of H is in N[z]| and the other one is in M, or one DP vertex
is in N[z] and the other one is in Wi. FEach of these two types of DPs can occur. (Note
that the symmetric resull would hold if there was a Ps in ﬁ’,x,z .)

Proof: Follows the proof of Claim 39.
Examples showing that each of these two types of DPs can occur are given in Figure

5.7. DP vertices are shaded in these examples. O

The structure of long-sided graphs when one DP vertex is # and the other one is in
M was presented in Claim 40. The following claim will describe some of the structural
properties of these graphs in which one DP vertex is in N[z] \ {z,2'} and the other one
is in M. The reader is reminded that other edges may be forced to ensure that (a, 3) is
a DP.

Claim 42 Denote by (o, 3) a DP of H. If one of the DP vertices of H is in N[z]\{z,z'}
and the other one is in M, then:
(1) If {a, B} = {w,m}, for some w € Wy and some m € M, then:

(a) All vertices in P, , must be adjacent to m, or to w.
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(b) All vertices in long paths in R, must be adjacent to m, or to w.

(¢) All non-neighbors of y in 7N€T7y must be adjacent to m, or to w.

(2) If {a, 8} = {x,,m}, where z, is the neighbor of x on a long path E)z,y € 7N€z7y,
then the following claims must be satisfied:

(a) All non-neighbors of x, on E)z,y; if they exist, must be adjacent to m, or to all
netghbors of x in Py, .. If Px,y is a short path in 7NZI7y, then all non-neighbors of x, and y
on E)z,y; if they exist, that are not adjacent to the mid-vertex of PW/ must be adjacent to
m.

(b) Neighbors of x' on long paths in Ry, U Ry, must be adjacent to x,., or to all
we Wy UWs;, or tom.

Proof: (1) (a) Let v be a vertex in P, , that is not adjacent to m and is not adjacent
to w. Then the path between m and w induced on {my} U {yw} misses v.

(b) By Claim 37, all non-neighbors of z’ on long paths in R, , are adjacent to all
m € M. Now, prove the claim for neighbors of z’ on long paths in R, , (note that
the claim holds for 2’ by part (a) above). Let v be the neighbor of 2’ on a long path
Ry € Ry that is not adjacent to m, and is not adjacent to w. Then the path between
m and w induced on {my} U {yw} misses v; note that vy ¢ F, since vz’ € F and Ry,
is a long path.

(¢) Similarly, if v is a non-neighbor of y in 7N29_1_7y that is not adjacent to m, and is not
adjacent to w, then the path between m and w induced on {my} U {yw} misses v.

(2) Let {a, 3} = {z,,m}, where z, is the neighbor of z on a long path R,, € R,,.

(a) The first part is true, since otherwise the x,, m-path induced on {z,2}U P, .U{m}
would miss the non-neighbor v of z, that is not adjacent to the neighborof z on P, ., € P, .
and is not adjacent to m; note that by Claim 15, v can only be adjacent to neighbors of
zin P, ..

Note that by applying Claim 17 to the subgraph H of H induced on E)z,y U PW/ U
R, ,UP,,, forany R, , € R;, and m € P,, € P, ., all non-neighbors of z, on ]N%Ly are
adjacent to m. Note that since (1,2,2) graphs are being considered, the non-neighbor of
x, on E)z,y can be non-adjacent to m if it is adjacent to z’ (this can be proved by following
the proof of Claim 17). Therefore, all non-neighbors of z, on ]N%Ly are adjacent to z’ or
to m.

The proof of the second part is as follows. Assume that a non-neighbor p of z, and y

on fx’aw is not adjacent to m and is not adjacent to the mid-vertex of Pry (By the first
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path of this claim, pz’ € E.) Then the path from z, to m induced on {z,z}U px,y U{ym}
misses p.
b) W.l.o.g. assume that a neighbor z” of z’ on a long path in R, , is not adjacent
( g g gp W j
to z,,w, and m, for some w € W;. Then the path from z, to m induced on {z,z} U

{zw} U{wy} U {ym} misses . O

The following claim describes some structure of these graphs forced by one DP vertex

being in N[z] and the other one in Wj.

Claim 43 Let (o, 3) be a DP of a long-sided (1,2,2) graph H defined as in the second
paragraph of this subsection. If one DP vertex of H is in N|z] and the other one is in
W1, then the following conditions must be satisfied:

(1) Let {a, B} = {z,w} for some w € W.

(a) ' and all of its neighbors on long paths in Ry, U R, . must be adjacent to w, or
to allm e M.

(b) If 7%9” #£ (), then the neighbors of ' on paths in R, must be adjacent to w, or
to all neighbors of = in 7N€z2

(2) Let {a, 3} = {2, w}, where 2’ is the neighbor of z on a path Ry, € Ry ., or on
a path fm’zz € 7%9572, and w € W;y. Then:

(a) If 2’ belongs to a path in R, ., then all vertices v € N(2') on long paths in R,
must be adjacent to w, or universal to M.

(b) Let 2/ € Ry, € Ry .. Then, all non-neighbors of ' on Ry, must be adjacent to
w. Also, all non-neighbors of 2 on R, ., if they exist, must be adjacent to all m € M,
or tow.

(¢) Let ' € fizz € 7N€IZ Then, all non-neighbors of x on 7N2z7y musl be adjacent lo
w, or to all neighbors of x on Py ..

Note that the case when {a,3} = {m,w}, for some m € M and w € W is covered
in Claim 42.

Proof: (1) Let {o,3} = {2, w} for some w € Wj.

(a) Let v be either 2’ or the neighbor of 2’ on a long path in R,/ , U R, . that is not
adjacent to w, and is not adjacent to some m € M. Then the path from w to z induced
on {wy} U {ym} U {mz} misses v.

(b) Let 7%9” # () and let v be the neighbor of 2’ on a path in R, that is not adjacent

to w, and is not adjacent to some neighbor z” of x on ]%xz € 7?@2 Then the path between
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w and z induced on {wz} U fx’rz misses v; note that by Claim 15, v cannot be adjacent
to a non-neighbor of = on fx’xz

(2) Let {a, 8} = {&, w}.

(a) Let 2z’ belong to a path in R, .. Let v € N(z') be on a long path in R, that
is non-adjacent to some m € M and to w. Then the path from 2’ to w induced on
{z'z} U {zm} U {my} U {yw} misses v; note that v is not adjacent to any vertex in
Ra. \ {z'} by Claim 33.

(b) Let 2" € Ry .. Let v be a non-neighbor of z’ on R, , that is not adjacent to w.
Then the path from z’ to w induced on R, ., U {zw}, where R, ./ is the path between z
and 2’ induced on R, U {z'z}, misses v. (Note that, by Claim 33, there are no edges
between vertices on a path in R, , and vertices on a path in R, .; also, va ¢ E since all
paths in R, . are induced.)

Note that all non-neighbors of ' on R,/ , are adjacent to all m € M, by Claim 37. If
a neighbor z” of ' on R,/ , that is a non-neighbor of 2’, is not adjacent to w, and is not
adjacent to some m € M, then the 2/, w-path induced on {2'z} U {zm} U {my} U {yw}
misses x”.

(c) Similarly, let 2’ € Er,z € 7N€IZ Let v be a non-neighbor of = on 7?,“/ that is not
adjacent to w and is not adjacent to a neighbor of z on P, . € P, .. Then the path from
2" to w induced on {z'z} U P, . U {zw} misses v. (Note that, by Claims 15 and 33, there
are no edges between non-neighbors of z on a path in P, , and non-neighbors of z on a

path in P, ,.) O

5.1.2 A Long Side Has at Least Two Long Paths

Let H be a 2-long-sided, or a 1-long-sided (1,2,2) graph. There are three graph structures
to consider here. The first one is when a long side, say R, ,, has at least two long paths.
The second one is when in addition to the existence of a long path in R, ,, there also
exists a long path in ﬁry The third one is when in addition to the existence of a long
path in R, ,, there also exist at least two long paths in ﬁz,y- Some aspects of these three
structures will be described separately in this section.

The position of DPs in such graphs is explained in Claim 39 and it depends on whether
there are short paths in ﬁmﬂ and 733572, or not. The structure of these graphs depends on
the position of its DP vertices and most of it is described in Claims 42 and 43. The only
property of these graphs that is still unaddressed is the “interaction” between the long
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paths that belong to a long side. This will be addressed in the following three Facts, for

each of the structures mentioned in the previous paragraph separately.

Fact 1 For all P,(Q € Ry, thal are not Ps’s, Vy; € P\ N[2'], Vy2 € Q \ N[2'], y1 €
D(a',y2), or y2 € D(a', ).

Proof:  Similar to the proof of Claim 20. Assume to the contrary. Let P,Q) € R/,
that are not Ps’s, and let y; € P\ N[2/], yo € @ \ N[z'], such that y; ¢ D(2',y2), and
Y2 & D(2',y1). Let P, be any path in P, ., let m be the mid-vertex of P, ., and let P, .
be any path in R, .. Let H be the subgraph of H induced on PUQ U Po,UP, U{z}.
Now, H\ {y,m} does not have a DP any more, since {y1, ys, z} is an AT that contradicts
Claim 6, in particular 2’z ¢ E. (Note that no edges between y; and any vertex in P,
exist, by Claim 33, and that the same holds for vertex ys.) Therefore, for all P,Q € R,
that are not Ps’s, Vy; € P\ N[2'], Vy2 € Q@ \ N[2'], y1 € D(2',y2), or ya € D(z',y1).

By symmetry, for all P/, Q" € R, . that are not Ps’s, Vy; € P'\ N[2'], Yy, € Q'\ N['],
y1 € D(2',ys), or y2 € D(2',y;). O

Similar claims holds for long paths in R,/ , and 7%9571/.

Fact 2 Forall P € Ry, and Q € R,., that are not Ps’s, Yy, € P\ N[2'], Yy, € Q\ N|z]
such that yox' ¢ E, y1 € D(z,y2), or ys € D(z',y1).

Proof: Similar to the proof of Fact 1. O

Fact 3 For all P € 7N3I7y and ) € 7%”4 that are not P3’s, Vy; € P\ N[z] such thal
yiz' ¢ B, Vy, € Q \ N[z] such that yo2' ¢ E, y1 € D(x,y2), oryz2 € D(z,y1).

Proof: Similar to the proof of Fact 1. O

5.2 No-Long-Sided Graphs

Denote by M the set of mid-vertices of all paths in P, ., by U; the set of mid-vertices of
all paths in R,/ ,, and by U; the set of mid-vertices of all paths in R, .. Also, denote by
W1 the set of mid-vertices of all short paths in 7§,I7y, and by W; the set of mid-vertices
of all short paths in 7N€rz Note that W; and W5 can be empty, and that 7N€x7y and 7N€IZ
may have long paths.
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Figure 5.8:

The following claim is one of the main results of this chapter. It describes the positions
of DP vertices in no-long-sided (1,2,2) graphs. The two claims following it determine some

structural properties forced by different positions of DP vertices in these graphs.

Claim 44 One DP vertex of a no-long-sided graph H is in N[z| and the other one is in
M, or one DP vertex of H is in N[z] and the other one is in Wy, or one DP vertex of
H is in Ny] and the other one is in W,. Fach of these three types of DPs can occur.

Proof: Follows the same proof as Claim 39.
Examples showing that each of these three types of DPs can occur are given in Figure

5.8. DP vertices are shaded in these examples. O

Claim 45 Let one DP vertex of a no-long-sided graph H be in N[z| and the other one
in M. Denote by (o, 3) such a DP of H. Then:

(1) If {o, B} = {x,m}, for some m € M, then all non-neighbors of x on a path P in
Py must be adjacent to m, or lo all neighbors of x in P,,,.

(2) If {e, B} = {xp,m}, for some m € M and x, = PN N(x), where P is a long path
mn 7N€I7Z, then each vertex in Uy is adjacent to m.

(3) If {o, 3} = {wa,m}, for some m € M and some wy € Wy, then the internal
vertices of all paths in P, ,, and the internal vertices of all paths in ﬁzz that are not

neighbors of z, must be adjacent to wy, or to m.

Proof: (1) Otherwise, if there exists a vertex v that is a non-neighbor of x on a path P
in P, ., is not adjacent to m, and is not adjacent to some neighbor z” of z in P, , € Py,
then the path from z to m induced on P, , U {ym} does not hit v; note that v cannot be
adjacent to any vertex in P, , other than the neighbor of z, by Claims 15 and 33.
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(2) Let {o, 3} = {x,,m}. Let uy € U; be non-adjacent to m. Then, the path from x,
to m induced on {mz}U P\ {z} misses uy; note that, by Claim 15, u; cannot be adjacent
to any vertex on P other than z,, and also u;x, ¢ F since P is a long path in 7N€I7Z,
ie., if uyz, € I, then P would share vertex z, different from z and y with the path L
induced on {zz,} U{z,us} U{uy}, L € R,,, which means that P € R, _, contradicting
the assumption that P € ﬁrz

(3) Let {a,3} = {wy,m} and w.l.o.g. let v be an internal vertex of a path in P,
that is not adjacent to wy and is not adjacent to m. Then the path from w, to m induced

on {wyz} U {zm} misses v. O

Claim 46 Let one DP vertex of a no-long-sided graph H be in N[z] and the other one
in Wi. Denote by (a, 3) such a DP of H. Then:

(1) Let {a, B} = {z, w1}, for some wy € Wy. Then all internal vertices of Py, that
are not netghbors of y, and all internal vertices of P, , thal are nol neighbors of z, must
be adjacent to wy, or unwersal to M. Also, all non-neighbors of x in P, thal are nol
adjacent to wy must be adjacent to all neighbors of x in R, .; in addilion, if a neighbor
" of x on Ry, is adjacent to some non-neighbor of x in P, ., then all non-neighbors of
x in Py, must be adjacent to x", or to wy.

(2) Let {a, 8} = {wi, w2}, for some wy € Wi and some wy € Wy. Then, every
m € M, and every non-neighbor of x in Py, U P, ., must be adjacent to wy. or to ws,.

(3) Let {a, B} = {zp, w1}, where P is a long path in Ry and z, = PN N(z). Also,
let x, = PN N(z). Every non-neighbor of x on P, , must be adjacent to w;.

(4) Let {o, B} = {w1,uz}, for some wy € Wy and some uy € Uy. Let ugwy ¢ E. Then

all non-neighbors of x on 7N€x7y must be adjacent to wy, or to all m € M.

Proof: (1) Let v be an internal vertex of P, that is not a neighbor of y, or an internal
vertex of P, ., non-adjacent to z. If v is not adjacent to w;, and is also not adjacent to
some vertex m € M, then the path from z to w; induced on {zm} U {my} U {yw;} does
not hit v.

Now, let vy be some non-neighbor of z in P, , that is not adjacent to w;, and is not
adjacent to a neighbor vy of z in R, ,. Let v; € P € P, .. Then the path from z to w,
induced on P U {xw;} misses vy. (Again, by Claim 15, the only vertex on P that can be
adjacent to vy is ve.) Note as before, that no non-neighbor of z in P, , is adjacent to a

neighbor of z in 7N€rz by definition of 7N€IZ
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If a neighbor z” of  on R, is adjacent to some non-neighbor p of z in P, , € P, .,
and if a non-neighbor v of = in P, , is not adjacent to z” and is not adjacent to wy, then
the path from z to wy induced on P,, U {pz"} U {z"z} U {zw;} misses v, where P, is
the path between z and p induced on P, .. (In the case that v € R/, and p € R, ., by
Claim 33, vp' ¢ E.Vp' € P,,. Otherwise, by Claim 15, the only vertex on P, that v
can be adjacent to is the neighbor of z, i.e., again vp’ ¢ F,¥p' € P,,. Note again that a
neighbor of z in 7N€I7y cannot be adjacent to a non-neighbor of z in P, , by definition of
o)

(2) Let some v € M UP,, UP,.\ N[z] be non-adjacent to wy, and non-adjacent to
w;y. Then the path from w; to wy induced on {w;x} U {xw,} misses v.

(3) If some vertex v that is a non-neighbor of x on P, is not adjacent to w;, then
the path between z, and w; induced on P U {zw;} misses v; note that by Claim 15, v
cannot be adjacent to any vertex in P other than z,, and also v cannot be adjacent to
x, since P € 7N3IZ

(4) Note that by Claim 17, all vertices of distance ¢ from z, ¢ > 3, on 7N29_1_7y must be
universal to M. Let v be the second neighbor of = in 7N29_1_7y that is not adjacent to w; and to
some m € M. Then the path between uy and w; induced on {ugz}U{zm}U{my}U{yw,}

misses v. O



Chapter 6

Concluding Remarks

This thesis first gave an overview of the hierarchy of graph classes in the neighborhood
of HDP graphs, and known results about structural properties of AT-free and HDP
graphs. Then it established some new structural properties of HDP and minimal HDP
graphs. The positions of DP vertices in minimal HDP graphs were determined. Also,
the structural properties of a minimal HDP graph that are forced by the position of the

graph’s DP vertices were examined.

This thesis did not discuss the complexity of determining whether a graph is HDP,
which is an interesting topic for further research. The hereditary structure of HDP graphs
would make any brute force algorithm for determining whether a graph is HDP run in
exponential time. However, knowing the structure of HDP graphs might result in a new

algorithm that runs in polynomial time.

In AT-free graphs, there exists a simple linear time Lexicographic Breadth First
Search algorithm for finding a DP of a connected AT-free graph (Corneil, Olariu, and
Stewart 1999). Therefore, another interesting topic for future work is to see if there exists

a polynomial time algorithm that finds a DP in a connected HDP graph.

The full structure of HDP graphs remains unexplored. Results about HDP and mini-
mal HDP graphs established in this thesis could be a building block for discovering more
structure of HDP graphs. Also, it is not clear how to lift the structural properties of
AT-free graphs to HDP graphs. To illustrate this, the next section considers the Spine
property of AT-free graphs and tries to lift it to HDP graphs.

61
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Figure 6.1: (g counterexample to generalizing Spine theorem to HDPNAT graphs.
6.1 HDP Spine Property for HDP N AT Graphs

Corneil, Olariu, and Stewart (1997) established an elegant property of AT-free graphs
that allows for finding DP vertices of induced subgraphs of an AT-free graph that miss a
DP vertex. The property is called the Spine property, and it has already been defined in
Chapter 2. They also proved the Spine theorem (Theorem 14 from Chapter 2). It would
be nice if the Spine theorem would generalize to all HDP graphs, i.e., to HDP graphs
with asteroidal triples.

The first attempt to generalize the Spine theorem is motivated by Cs. Note that after
a DP vertex a is removed from Cg, neither (o', 3) nor (o, 3) are DPs of Cg \ {a} (see
Figure 6.1). This example suggests that perhaps a slightly different variation of the Spine
property would work for HDPNAT graphs. Therefore, the following conjecture seems at

the first glance to be reasonable.

Possible Conjecture 1 (The HDP Spine conjecture?) A graph G is HDP if and only
if every connected induced subgraph H of G satisfies the following:

for every nonadjacent dominating pair (o, 3) in H, either:

(i) 3o’ € N(a) N Cs such that (o/,3) is a DP of Cg, where Cg denotes the connected

component of G\ {a} containing 3; or
(it) 3o/, o € N(a) N Cyg such that (!, o) is a DP of Cj.

It is easy to see that the <= direction of the Possible Conjecture 1 is true, since if every
connected induced subgraph of G satisfies this property, that means that every connected
induced subgraph of G has a DP, which, by definition, means that G is HDP. However,
the other direction (i.e., =) does not hold. To see this, consider the counterexample
shown in Figure 6.2. It can be seen that neither (i) nor (ii) of Possible Conjecture 1
hold for G'\ a in Figure 6.2. But, the set of conditions can be extended to handle this

counterexample as follows.
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Figure 6.2: A counterexample to Possible Conjecture 1.

B

Figure 6.3: A counterexample to Possible Conjecture 2.

Possible Conjecture 2 (The HDP Spine conjecture?) A graph G is HDP if and only if
every connected induced subgraph H of G either satisfies one of the conditions of Possible
Conjecture 1, or the following:

(iii) for every nonadjacent dominating pair (o, 3) in H, there exvists a vertex v uni-

versal to N(a) such that ((3,7) is a DP of the connected component of G'\ {a} containing
3.

Unfortunately, even though this new Possible Conjecture 2 covers the example pre-
sented in Figure 6.2, it again fails to satisfy the = direction. This can be seen by the
counterexample in Figure 6.3. In this counterexample, when « is removed, no condition
from Possible Conjecture 2 is satisfied in G\ {a}. Therefore, Possible Conjecture 2 could
be further extended to deal with the example in Figure 6.3 as follows.

Conjecture 1 (The HDP Spine conjecture) A graph G is HDP if and only if every
connected induced subgraph H of G satisfies:

for every nonadjacent dominating pair (o, 3) in H, either:

(i) o' € N(a) N Cy such that (o/,3) is a DP of Cy, where Cyz denotes the connected
component of G\ {a} containing 3; or
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(i) o', " € N(a) N Cy such that (o', a") is a DP of Cg; or

(ii1) there exists a vertex v universal to N(«) such that (3,7) is a DP of the connected
component of G\ {a} containing 3; or

(iv) 36, 3" € N(B) such that (3',3") is a DP of the connected component of G\ {a}

containing (3.

Whether Conjecture 1 holds or not remains unexplored.

These examples illustrate that it is hard to lift the Spine property and the Spine
theorem from AT-free to HDP graphs. It seems that the position of the DP vertices in a
subgraph of an HDP graph G induced on V() \ {a} is not determined by the position
of the DP vertices a and 3 in (7, as was the case for AT-free graphs. Chapters 3, 4, and
5 suggest that perhaps the position of DP vertices in HDP graphs is determined by the
position of AT vertices. It might also be true that the position of AT vertices in an HDP
graph is determined by the position of DP vertices in the graph. These are interesting

topics for further research.
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