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ABSTRACT
Motivation: Algorithmic and modeling advances in the area of
protein-protein interaction (PPI) network analysis could contribute to
the understanding of biological processes. Local structure of net-
works can be measured by the frequency distribution of graphlets,
small connected non-isomorphic induced subgraphs. This measure
of local structure has been used to show that high-confidence PPI
networks have local structure of geometric random graphs. Finding
graphlets exhaustively in a large network is computationally inten-
sive. More complete PPI networks, as well as PPI networks of higher
organisms, will thus require efficient heuristic approaches.
Results: We propose two efficient and scalable heuristics for finding
graphlets in high-confidence PPI networks. We show that both PPI
and their model geometric random networks, have defined bounda-
ries that are sparser than the “inner parts” of the networks. In addition,
these networks exhibit “uniformity” of local structure inside the net-
works. Our first heuristic exploits these two structural properties of
PPI and geometric random networks to find good estimates of gra-
phlet frequency distributions in these networks up to 690 times faster
than the exhaustive searches. Our second heuristic is a variant of a
more standard sampling technique and it produces accurate approxi-
mate results up to 377 times faster than the exhaustive searches. We
indicate how the combination of these approaches may result in an
even better heuristic.
Availability: Supplementary information is submitted together
with this manuscript; it will be available on our web site upon
acceptance. Software implementing the algorithms is available at
http://www.cs.toronto.edu/˜natasha/BIOINF-2005-0946/estimate grap-
hlets.html.
Contact: juris@cs.toronto.edu, natasha@ics.uci.edu

1 INTRODUCTION
Protein-protein interactions (PPIs) are commonly modeled by gra-
phs, where nodes represent proteins and edges represent physical
interactions between the corresponding proteins. To date several
large PPI networks have been accumulated for multiple organisms
(Ito et al., 2000; Uetz et al., 2000; Gavin et al., 2002; Ho et al.,
2002; Giot et al., 2003; Li et al., 2004). Modeling and understanding
the structure of these large networks is an important problem with
profound biological implications (Lappe and Holm, 2004), which
requires new mathematical and computational advances (de Aguiar
and Bar-Yam, 2005; Itzkovitz et al., 2005; Pržulj et al., 2004; Song
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et al., 2005; Stumpf et al., 2005). Global properties of these net-
works, such as their degree distribution, have been extensively
studied and PPI networks have been shown to have scale-free degree
distributions. However, since current PPI networks are still incom-
plete, and contain localized and biased biological experiments,
local approaches to analyzing the structure of these networks have
recently been proposed (Milo et al., 2002; Shen-Orr et al., 2002;
Pržulj et al., 2004). Small subgraphs that appear in a biological
network at significantly higher frequencies than expected in rando-
mized networks are called network motifs and they are believed to
represent significant evolutionary conserved modules (Milo et al.,
2002; Shen-Orr et al., 2002). However, this approach has recently
been criticized, since it is sensitive to the choice of network ran-
domization as a null hypothesis in testing statistical significance
(Artzy-Randrup et al., 2004). Also, it has been argued that global
structural features of networks, such as the clustering coefficient, are
intertwined with local structural properties (Vazquez et al., 2004).
Furthermore, there is a growing body of literature showing that
scale-free (Barabási and Albert, 1999) and hierarchical (Ravasz
et al., 2002) network models may be inadequate for PPI networks
(de Aguiar and Bar-Yam, 2005; Pržulj et al., 2004; Stumpf et al.,
2005; Han et al., 2005; Keller, 2005) and a new, geometric random
graph model, has been proposed for these networks (Pržulj et al.,
2004). Clearly, analyzing and modeling PPI networks has lately
become an active and contraversial research topic.

A different approach to studying local structural properties of
large networks, based on the assumption that it is equally import-
ant to understand infrequent as it is to understand frequent network
sub-patterns, has recently been proposed (Pržulj et al., 2004). Small
induced subgraphs (see section 2.1) of a large network, regardless
of whether or not they appear in the network at significantly hig-
her frequencies than expected in randomized networks, are called
graphlets; their frequency distribution in networks has been used
to define a new measure of similarity between large networks and
introduce a new, better fitting, geometric random graph model for
high-confidence PPI networks (Pržulj et al., 2004). Just as it was
shown that the scale-free model is inferior to the geometric random
graph model for high-confidence PPI networks, it is possible that
some other model will be shown to be superior to the geometric ran-
dom graph model. Regardless, graphlet frequency is a key measure
of networks (note that the scale-free model is based on the distri-
bution of the graphlet with two nodes and one edge), and it is fully
expected that graphlet information will likely play a major role in
subsequent PPI network modeling. Finding the occurrences of small
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subgraphs in large networks is computationally intensive and exhau-
stive searches become computationaly infeasible even when applied
to small, currently available PPI data. Thus, regardless of the spe-
cific model, heuristic algorithms must be available to analyze large
instances of observed data and one can only develop such algorithms
based on the currently accepted (perhaps not universally) models. In
this paper, we show that a sampling technique restricted to a specific
part of the graph gives a very good insight into the global structure,
at least as seen for the existing high-confidence data and the geome-
tric random model. Hopefully, this technique will be adaptable to
other, future, more sophisticated models than the geometric random
model.

Currently available PPI networks are largely incomplete and thus
represent just a small fraction of real, complete PPI networks. In
addition, PPI networks of higher organisms will be much larger.
For example, humans have less than ��� � ����� genes, each of which
can have 4-6 splice variants, and therefore, including more than �����
possible post-translational protein modifications, humans are expec-
ted to have at least hundreds of thousands of proteins and millions of
interactions between them. In addition, plant genome sizes are much
larger (Project, 2005; Arumuganathan and Earle, 1991). Anticipa-
ting the arrival of these large PPI networks, we need to make sure
that our algorithmic techniques are scalable and ready for proces-
sing them. Since exhaustive searches are already computationally
infeasible, it is important to find well fitting network models for
high-confidence PPI data and use these models to generate large
realistic networks on which we can develop and test new algorithms.

A heuristic random sampling approach for detection of network
motifs has been proposed by Kashtan et al. (Kashtan et al., 2004).
Their algorithm efficiently estimates subgraph concentrations in
networks with hubs; however, this algorithm is slower than the
exhaustive search algorithm for networks without hubs.

We propose two heuristic approaches for estimating graphlet
frequency distributions in high-confidence PPI networks and the
corresponding model networks. Since random, scale-free, and hier-
archical network models have been shown to inadequately model
PPI networks (de Aguiar and Bar-Yam, 2005; Pržulj et al., 2004;
Stumpf et al., 2005), we focus on a better fitting, geometric ran-
dom graph model of high-confidence PPI networks (Pržulj et al.,
2004). The first heuristic approach, called Targeted Node Pro-
cessing (TNP), uses the structure of PPI and geometric random
graphs to achieve accurate graphlet frequency distribution estima-
tes, ����������	�� times faster than the exhaustive searches. The second
approach, called Neighborhood Local Search (NLS), using a more
standard random sampling technique, produces accurate graphlet
frequency distribution estimates, 	�
��
����� times faster than the
exhaustive searches with surprisingly few samples. Importantly,
both of our heuristic approaches work well for high-confidence PPI
networks, which have scale-free degree distributions and contain
hubs, as well as for geometric random networks, which have Pois-
son degree distributions and lack hubs. Thus, it is not the presence or
absence of hubs that dictates the behavior of these heuristics, as was
the case in the Kashtan et al. algorithm (Kashtan et al., 2004), but
the local structure of the networks. This feature of our algorithms
is important because of an increasing evidence that degree distri-
butions of biological networks may not be scale-free (Pržulj, 2005;
Tanaka, 2005; Tanaka et al., 2005; Keller, 2005).

1.1 Background
Given graphs � and � , determining whether � contains a subgraph
isomorphic to � is NP-complete, since it includes problems such as
Hamiltonian path/cycle, and the maximum clique as special cases
(Garey and Johnson, 1979). If graph � on ��� nodes is input and
graph � on ��� is fixed, then the subgraph isomorphism can be
tested in polynomial time, ����� ����� ���� � � ��!��"

#$#
, by iterating through

all subsets of ��� nodes of � . However, such exhaustive searches are
computationally infeasible for large networks and thus heuristics are
needed.

Examples of efficient approximate subgraph counting algorithms
include sampling algorithms for counting classical graph structu-
res such as Hamiltonian cycles and spanning trees in graphs (Dyer
et al., 1994; Jerrum, 2003). An �����&%' ()' ()* �,+ ��� #$#

algorithm for
finding an approximate number of induced copies of � in � for
a given undirected labeled � -node graph � and each graph � in
a list of labeled - -node graphs was developed (Duke et al., 1995),
where + ��� #

is the time needed to square an �/.0� matrix with 0,
1-entries. This algorithm has strong constraints on the subgraph’s
size for a given size of � and it is limited to 3-node subgraphs on
a network with hundreds of thousands of nodes. Running times of
the above algorithms asymptotically depend on the network size,
which is impractical for large networks. A probabilistic random
sampling algorithm for estimating subgraph counts for small sub-
graphs, whose runtime does not asymptotically depend on network
size, has recently appeared (Kashtan et al., 2004).

2 METHODS

2.1 Definitions
A graph is denoted by 1 , or 13254�68739 , where 4 is the set of nodes and
7;:<4>=?4 is the set of edges of 1 . We use @ to represent the number
of nodes, A 4BA , and C to represent the number of edges, A 7DA . We use 4E251F9
to represent the set of nodes, and 7E2�1F9 to represent the set of edges of a
graph 1 . Nodes joined by an edge are called adjacent. A neighbor of a nodeG is a node adjacent to G . We denote by H�2 G 9 the set of neighbors of node G
(called the neighborhood of G ). The degree of a node is the number of edges
incident with the node.

A path in a graph is a sequence of nodes and edges, such that a node
belongs to the edges before and after it (except for the first and last node,
which only belong to the first and last edge, respectively) and no nodes are
repeated. A path with I nodes is denoted by J�K and its length is the number
of edges in the path. The shortest path length between nodes L and G is
the distance between L and G , denoted M�2NLO6 G 9 . The diameter of a graph
is the maximum of MP2QLO6 G 9 over all nodes L and G , denoted MSR5TUC�2�1F9BV
CWTUX)YPZ [U\ � M�2NLO6 G 9 . A graph is connected if there exists a path between each
pair of its nodes; otherwise, it is disconnected, and its diameter is equal to
the maximum diameter of its connected components.

The eccentricity of a node G in 1 is the maximum distance from G to other
nodes of 1 , i.e., ] � 2 G 9BV^CWTUX YP\P_a` ��b MP2QLO6 G 9 . The radius of 1 , is the
minimum of node eccentricities of 1 , i.e., cdTUMP251F9eV>CWR5@ YP\P_a` ��b ]�2QLf9 .
For all graphs 1 , cdTUMP251F9Wg<MdR�TUC�251F9Wg
heiScdTUM�2�1F9 . Note that for all
the networks that we study here, the diameter is significantly larger than the
radius. The center of graph 1 is the subgraph of 1 induced by the nodes
of minimum eccentricity. Thus, if the eccentricity of a node is close to the
radius of the network, the node is close to the center of the network; if the
eccentricity is close to the diameter of the network, the node is close to the
fringe of the network.

A subgraph of 1 is a graph whose nodes and edges belong to 1 . An
induced subgraph j of 1 , is a subgraph of 1 on 4E25jk9 nodes, such that
7E2�jW9 consists of all edges of 1 that connect nodes of 4B25jk9 . A graphlet
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is a small connected induced subgraph of a network (Pržulj et al., 2004). All
3-, 4-, and 5-node graphlets are presented in Supplementary Figure 1. We
focus on analyzing frequency distribution of these 29 graphlets.

2.2 Data and Model Networks
Our heuristic algorithms have been designed to work well on the high-
confidence PPI and geometric random networks. We used the two yeast S.
cerevisiae PPI networks described in (Pržulj et al., 2004,?; Pržulj, 2005): the
high-confidence PPI network (von Mering et al., 2002) and the PPI network
comprising the top ��������� interactions (von Mering et al., 2002). It has been
shown that both these networks are accurately modeled by geometric ran-
dom graphs (Pržulj et al., 2004). In addition, we tested the performance of
our heuristic on more noisy data (King et al., 2004; Pržulj et al., 2004): the
higher-confidence and the entire currently available fruitfly D. melanogaster
PPI networks (Giot et al., 2003).

We used a variant of geometric random graphs as in (Pržulj et al., 2004)
(denoted by GEO): nodes correspond to uniformly randomly distributed
points in bounded 2-, 3-, and 4-dimensional Euclidean space (denoted by
GEO-2D, GEO-3D, and GEO-4D, respectively) and two nodes in the graph
are adjacent if the corresponding points are close enough in the metric space,
where closeness is measured by the Euclidean distance norm. The geometric
random graph model networks corresponding to the PPI networks described
in (Pržulj et al., 2004) were used in this study. In addition to geometric ran-
dom graphs, we tested the performance of our algorithms on the following
model networks: (1) Erdös-Rényi random graphs (Erdös and Rényi, 1959,
1960) with the same scale-free degree distributions as the PPI networks
(denoted by ER-DD; these networks are also called random scale-free net-
works); (2) scale-free Barabási-Albert networks (Barabási and Albert, 1999)
(denoted by SF).

2.3 Algorithms
2.3.1 Targeted Node Processing (TNP). This heuristic approach
identifies a small part of the network in which graphlets can be quickly found
exhaustively, and then uses the obtained graphlet frequency distribution to
estimate the graphlet frequency distribution in the entire network.

Geometric random networks used to model PPI networks have a boun-
dary that is sparser than the rest of the network. Apart from the boundary,
the rest of a geometric random network has a uniform structure, since it cor-
responds to uniformly randomly distributed points in a bounded space. Also,
the diameters of these networks are almost twice their radii, indicating that
these networks are “stretched” as far as possible (see Supplementary Tables
10 and 15). The same stretched structure with a boundary is observed for the
yeast and fruitfly PPI networks that we studied (see Supplementary Table 5).
Therefore, we hypothesized that graphlets on the sparse boundary of these
networks could be quickly found exhaustively and, due to the uniformity
inside these networks, the graphlet frequency distributions obtained in this
way would be representative of graphlet frequency distributions of the entire
networks.

To test this, we performed the following experiments. We started by “pro-
cessing” nodes one at a time, as in the exhaustive search (Algorithm 1 in
Supplementary Information), i.e., looking for all induced subgraphs of size
3, 4, and 5 containing the node. However, in order to separate nodes that
are “easy to process” (i.e., for which we can find all graphlets that contain
that particular node in a reasonable amount of time) from the nodes that are
“hard to process,” we started with limiting the processing time given to each
node to get “finished,” or “processed”; by a “finished node”, or a “processed
node” we mean that for that node, it was possible to exhaustively find all
induced 3-, 4- and 5-node subgraphs containing it in the alloted amount of
time. The basics of a single node processing to detect all 3- and 4-node gra-
phlets containing the node are presented in Algorithm 2 in Supplementary
Information (see also Sections 1 and 3.1 in Supplementary Information).

If all subgraphs containing a node cannot be exhaustively found in the
alloted time, we declare the node “unfinished,” and discard all induced sub-
graphs that were found by the partial processing of that node. In the end, we

correct for over-counting, as in the exhaustive search algorithm (see Section
1 in Supplementary Information). After we processed all nodes of a large
network in this way, we compared the properties of the finished and unfi-
nished nodes. As expected, the finished nodes have low degree and are on
the periphery of the network, i.e., high-degree nodes deeper in the network
are harder to process (see Supplementary Tables 5, 6, and 10-16). Since this
approach is based on processing only the nodes that can be processed fast,
we call this heuristic approach the “Time-Limited Node Processing” (TLNP)
(see Section 3.1 in Supplementary Information).

Since low-degree nodes on the “edge” of a network can be processed
quickly, we first sort the nodes by increasing degree and then by decreasing
eccentricity. The top nodes in this list are of lowest degree and on the fringe
of the network. Examples showing degrees and eccentricities of the top h��
of nodes sorted in this way are presented in Supplementary Table 1. We pro-
cess the top X�� of nodes sorted in this way (i.e., we exhaustively search
for all 3-, 4-, and 5-node graphlets initiating the search at these nodes as
described in Algorithm 2 of Supplementary Information, without bounding
the search time) and add up the resulting graphlet frequencies correcting for
over-counting. The larger X is, the closer the estimated graphlet frequency
distribution is to the exact graphlet frequency distribution. Thus, the estima-
ted graphlet frequency distribution converges to the fully enumerated one.
The resulting estimated graphlet frequency distribution patterns are surpri-
singly close to the exact graphlet frequency distribution patterns for PPI and
geometric random networks even when X is very small, such as X��	�
�
(detailed results are presented in Section 3.1 below and in Section 3.1 of
Supplementary Information). Notice that this is not the case for SF and ER
networks (see Section 3.1 below and Section 3.1 of Supplementary Informa-
tion). Since for every heuristic, an example could be constructed on which it
would perform poorly, one has to focus on designing a heuristic for a particu-
lar application. In our case, since the problem is computationally expensive
in general, we focused on finding a heuristic that works well for PPI and
geometric random graphs. We exploit the structure of our data and geometric
random graph model networks to design such a heuristic.

This heuristic results only in the under-counting of graphlets as a type
of deviation from the exact number of graphlets. Since full, time unlimited
processing of selected nodes is performed by this heuristic approach, we call
this heuristic “Targeted Node Processing” (TNP).

2.3.2 Neighborhood Local Search (NLS). NLS randomly chooses a
seed node in a network and searches in its neighborhood for a specific gra-
phlet. While the TNP approach processes only the fringe of the network,
NLS randomly samples the network and each part of the network has the
same probability to be sampled (similar to the (Kashtan et al., 2004) algo-
rithm). However, unlike in the (Kashtan et al., 2004) algorithm, we do not
correct for non-uniform sampling caused by the existence of hubs. Thus, our
approach works well for PPI and geometric random networks, but not for
SF and ER-DD networks (details are below). We can adjust how “hard” we
search for a graphlet. Since we do not just randomly pick a subgraph, but
rather search in the neighborhood of a seed node for a specific graphlet, if
we choose an extensive search for a graphlet that rarely or never occurs in
the network, our NLS algorithm will have a large running time. However,
our NLS algorithm resulted in two interesting observations. First, correction
for non-uniform sampling is not needed in PPI and geometric random net-
works, but it is needed in Erdös-Rényi and Scale-Free networks (details are
presented in Section 3.2 below and Section 3.2 of Supplementary Informa-
tion). Second, taking as few as 100 samples per an @ -node, C -edge subgraph
was enough to get graphlet frequency distributions in PPI and the correspon-
ding geometric random networks that are very close to the exact graphlet
frequency distributions (the definition of “close” is described in Section 2.4).

The basics of the NLS approach are presented in Algorithm 3 of Supple-
mentary Information. NLS starts with a randomly chosen seed node G and
puts into a set of nodes called Neighbors the node G and the set of all nodes
at distance at most @��
� from G . Then it randomly selects a set called Sub-
nodes of @ connected nodes in Neighbors and checks if the subgraph 1�� of
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1 induced on Subnodes has C edges. If it does, it returns it and stops; other-
wise, it searches in the neighborhood of 1 � for a subgraph with @ nodes
that has closer to C edges than 1 � . It does this by executing a sequence of
NUM-MOVES moves. A move consist of swapping a random node in the set
H 2�1 � 9 of nodes in the neighborhood of 1�� and a node in 1 � if by doing
so the number of edges in 1 � gets closer to C . In this way, we are doing
a local search for an @ -node, C -edge subgraph of 1 . The total number of
moves is bounded by NUM-MOVES. To prevent local minima, NLS executes
diversification every DIV-FREQ

���
move; it swaps a node in 1 � with a node

in H�251 � 9 without asking for an improvement in the number of edges.
The whole procedure of searching for an @ -node, C -edge induced sub-

graph is repeated NUM-EXP times for each of the @ -node, C -edge subgraphs,

where C�����@ � �d6	�
��� 6 � ` �
��� b�
�
. If an @ -node, C -edge graphlet is found

in an experiment, we determine which graphlet it is isomorphic to (as in
Algorithms 1 and 2 of Supplementary Information) and increase the number
of found instances of that particular graphlet. If an @ -node, C -edge graphlet
is not found, we proceed to the next experiment in the sequence. Note that in
this way, we search NUM-EXP times for all @ -node, C -edge graphlets. For
example, there is one 3-node, 2-edge graphlet (a J�� ), one 3-node, 3-edge
graphlet (a triangle), but there are two 4-node, 3-edge graphlets (graphlets 3
and 4 in Supplementary Figure 1), three 5-node, 4-edge graphlets (graphlets
9-11 in Supplementary Figure 1), five 5-node, 6-edge graphlets (graphlets
17-21 in Supplementary Figure 1) etc. Thus, we do NUM-EXP experiments
to sample all of the five 5-node, 6-edge graphlets. This heuristic works well
for estimating graphlet frequency distributions in PPI and geometric random
networks. The description of the results and their dependence on the choice
of search parameters is presented in Section 3.2.

2.4 Distance Measure
We computed the distances between the results of the exhaustive and heu-
ristic graphlet searches by using the relative graphlet frequency distance
measure as in (Pržulj et al., 2004), �W25136 jk9aV�� ������

� A � � 2�1F9 ��� � 25jk9 A 6
where � � 251F90V ��� �"!P2�H � 2�1F9$#	% 2�1F9 9 , H � 2�1F9 is the exact number of
graphlets of type R ( R&�'� �d6	�
��� 6 h"( �

in network 1 (all h"( graphlets are
presented in Supplementary Figure 1), % 2�1F9FV)� ������

� H � 251F9 is the total
number of graphlets in 1 , � � 25jk9 V �*� �"!P25j � 2�1F9$#	% � 2�1F9 9 , j � 251F9 is the
number of graphlets of type R ( R+��� �d6��	�
� 68h"( �

in network 1 found by the
heuristic search algorithm, and % � 251F9�V,� ������

� j � 2�1F9 is the total number
of graphlets of 1 found by the heuristic search algorithm.

When we say that a distance is “low” or “high”, or that graphlet frequency
distributions are “close”, we use the following rule of thumb: graphlet fre-
quency distances of 50 or less are considered low (i.e., graphlet frequency
distributions are close) and those higher than 50 are considered high. The
motivation for this convention was the observed distances between the PPI
and the corresponding model networks (Pržulj et al., 2004). A more com-
plicated metric for evaluating the distance could be designed, perhaps as a
function of the percentage of processed nodes. For example, if a percentage
of unprocessed nodes is very low, such as below �
� , even otherwise low
distances of 25-50 indicate that the heuristic estimates are of low accuracy
and that a different heuristic approach needs to be sought (this happens for
SF and ER-DD networks; details are below and in Supplementary Table 19
and Supplementary Figures 12-16). However, the above rule of thumb works
well and therefore we leave the design of a new metric for future research.

3 RESULTS AND DISCUSSION
We present in-depth results and discussion of the TLNP and TNP
heuristics. Since NLS is based on a more standard random sampling
technique, we present its results in less detail for comparing it with
the TNP approach. In Section 4, we compare TNP and NLS approa-
ches and indicate how the two techniques could be merged into an
even better hybrid heuristic.

3.1 Time Limited and Targeted Node Processing
3.1.1 PPI Networks. Supplementary Figure 2 A-C presents the
graphlet frequency distributions resulting from the TLNP experi-
ments with different cut-off times applied to two high-confidence
yeast and a noisy fruitfly PPI networks (see also Section 3.1 of Sup-
plementary Information). Most graphlets in high-confidence yeast
PPI networks are uniformly under-counted by this heuristic. The
graphlets that are more severely under-counted in both yeast and
fruitfly PPI networks are graphlets 4, 10, 11, and 14 (the graphlet
numbering scheme is defined in (Pržulj et al., 2004) and presented
in Supplementary Figure 1). However, the under-counting of these
graphlets is more prominent in the fruitfly PPI networks, which are
noisier and thus of scale-free-like structure (Pržulj et al., 2004), than
in the yeast PPI networks.

All of these highly under-counted graphlets contain graphlet 4 (a
graphlet with a “central” node linked to 3 nodes of degree 1) as an
induced subgraph. This is expected, since, as we previously obser-
ved, high degree nodes, as well as nodes in dense neighborhoods,
get under-counted by this heuristic. Thus, this heuristic graphlet
search does not work well on network models with pronounced hub
nodes, such as scale-free networks (see Section 3.1.2 of Supple-
mentary Information). However, despite the presence of hubs in PPI
networks, it works surprisingly well for these networks. This further
supports previous observations that PPI networks have a different
local structure than scale-free networks (Pržulj et al., 2004).

All nodes unfinished by the TLNP experiments with all tested
cut-off times belong to the largest connected component of the cor-
responding PPI network. Most of them are of high degree and deep
inside, i.e., close to the center of the network (see Supplementary
Tables 5 and 6). Thus, in the TNP approach, we processed the top- �/. , ���/. , ���/. , 0��/. , and 
��/. of the nodes of the yeast high-
confidence PPI network ordered as described above, by a stable sort
first in increasing degree and then in decreasing eccentricity order.
That is, we did not initiate a search at 	��1. , 2��1. , ���/. , ���/. , and

��/. of the nodes in this PPI network, respectively. The resulting
graphlet frequency distributions and the CPU times taken to process
the selected nodes are presented in Supplementary Figure 2 D and
Supplementary Table 7, respectively. For the graphlet frequency dis-
tribution estimate obtained by TNP processing of ���1. of the nodes
in the yeast high-confidence PPI network, the ratio of the exhaustive
and heuristic search times is 35476986 "

: ��	�� and the distance bet-
ween the estimated and the exact graphlet counts is low at 45.91.
The large speedup factor of ��	�� of our algorithm is comparable to
the Kashtan et al. algorithm speedup factor of around 
���� (Kashtan
et al., 2004), although the two algorithms are designed to work on
different networks.

3.1.2 Geometric Random Graphs. We tested the TLNP approach
on geometric random graphs with sizes and densities comparable to
the sizes and densities of PPI networks (Pržulj et al., 2004) (see
Section 3.1.2 in Supplementary Information). In geometric random
networks, even when a very large percentage of nodes remains
unprocessed, the resulting graphlet distribution pattern is very close
to the exact one (Supplementary Figure 2 E). For example, even
when over 	/2/. of the nodes in these networks remain unprocessed,
the distance between the heuristic and exact graphlet distributions is
only between ���<; ��� and ���=; ��� (Supplementary Figure 9 and Sup-
plementary Table 8: 3 second TLNP for GEO-3D-6x graphs). Note
that the distance of 67.22 happens when we process only 2 out of
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988 nodes! The remaining four distances were between 32.76 and
40.60 and they resulted from processing only between 3 and 11 out
of 988 nodes of a network. If we process only

-/- ; 	 - �����
; � 0=. of the
nodes in these networks, the distance falls to

- 0 ; 2��W� - �<; 290 (Sup-
plementary Figure 9 and Supplementary Table 8: 30 second TLNP
for GEO-3D-6x graphs).

Due to uniform under-counting of graphlets in geometric random
networks, it is sufficient to process a very small fraction of nodes
to get a good estimate of the relative graphlet frequency distribution
patterns for these networks. That is, the graphlet frequency distri-
bution obtained by this heuristic multiplied by a constant gives a
good estimate of the exact graphlet frequency distribution in these
networks (see Section 3.1.2 in Supplementary Information).

Similar to PPI networks, the nodes that do not get processed in the
tested geometric random networks and with the tested TLNP cut-off
times are deeper in the network and of higher degree than the nodes
that get processed: as we increase the processing cut-off time and
allow more and more nodes to get processed, the average degree
of both processed nodes and unprocessed nodes grows, while the
average eccentricities fall (Supplementary Tables 10, 13, and 14).

A possible explanation of why TLNP works so well on geometric
random networks is the following. In this heuristic, we are starting
from the nodes on the fringe of the network and “grabbing” a sample
of graphlets that are up to depth 5 from the fringe of the network.
Since the structure of these networks is uniform inside the network
(note that the boundary has a different structure), it is enough to
sample the graphlets that are about 5-deep from the fringe of the
network to get the estimate of the distribution of graphlets in the
whole network. It can be argued that these networks are of small
diameter; thus going 5-deep into the network, we may be reaching
its center. However, sampling the center may not even be needed,
since the structure of these networks looks the same in all inner parts
of the network. This is further supported by the observation that this
approach approximates well the graphlet distributions of geometric
random networks with diameters of 52-53 (Supplementary Tables 9
and 15 and Supplementary Figure 6: GEO-2D networks).

The TNP accurately approximates the graphlet frequency dis-
tributions of geometric random networks. For example, the TNP
approach applied to the five 3-dimensional geometric random net-
works corresponding to the yeast high-confidence PPI network with
6 times as many edges as the PPI network (denoted by GEO-3D 6x)
(Pržulj et al., 2004) gave the following results. We selected the top- . and �/. of nodes of these networks ordered by increasing degree
and decreasing eccentricity and fully processed them. The resulting
heuristic graphlet frequency distributions accurately estimated the
results of the exhaustive search (see Supplementary Figure 2 F, Sup-
plementary Figure 11 and Supplementary Tables 17 and 18). Also,
the heuristic running times are orders of magnitude lower than the
running times of the exhaustive searches. For example, the ratio of
exhaustive and TNP heuristic CPU times for the GEO-3D-6x 1 net-
work with

- . processed nodes was 3 4 6 86 "
: ����� and the distance

of the heuristic from the exhaustive graphlet frequency distribution
was only 33.

3.1.3 SF and ER-DD Networks. The under-counting of graphlets
in the SF and ER-DD model networks is not uniform and it results in
higher graphlet distances between the exact and the estimated gra-
phlet counts, despite the small number of unprocessed nodes (see
Supplementary Information Table 19 and Figures 12-16). This is

caused by the highly frequent “hub-specific” graphlets, i.e., gra-
phlets with induced graphlet 4, in SF and ER-DD networks, that
get severely under-counted by the heuristic (see Section 3.1.2 in
Supplementary Information).

3.1.4 Limitations. More experimentation with a larger number
of networks is needed to determine better node selection criteria that
would further decrease the processing time and possibly increase the
quality of the estimated graphlet distributions. Also, the dependence
of graph density, node selection, and processing time needs to be
understood. Further investigation of the dependence of the “transla-
tion” of the estimated graphlet distributions (and their “alignments”
with the exact ones) on network properties is needed as well.

3.1.5 Conclusions and Future Directions. We have observed that
the TNP heuristic approach for estimating the graphlet frequency
distribution in a network works well for geometric random graphs
and not well for network models with hubs. However, it works sur-
prisingly well for PPI networks despite the fact that they have hubs.
Thus, if the true structure of PPI networks, once we obtain more
complete data on them, happens to be similar to the structure of a
geometric random graph as we expect, this heuristic approach will
be adequate for estimating the graphlet distribution patterns in PPI
networks and will result in uniform underestimation of the number
of graphlets in these networks. In addition, with a decreased frac-
tion of nodes that get processed and thus decreased processing time,
the accuracy of the graphlet distribution estimates hardly decreases,
which makes this approach very appealing.

As mentioned in section 1, PPI networks for higher organisms
will be much larger then the current yeast and fruitfly ones. Since
exhaustive processing of these network and finding their graphlet
frequency distributions will not be tractable, we need to use heuri-
stics. We applied the TLNP approach with various cut-off times to
a 3-dimensional geometric random graph with 100,000 nodes and
750,000 edges (this networks has 3 times as many edges as the
two yeast PPI networks that we analyzed). The resulting estima-
ted graphlet frequency distribution patterns were very close to those
obtained by exhaustive searches for other, smaller 3-dimensional
geometric random networks with similar edge densities (see Section
3.1.4 in Supplementary Information). As before, the nodes that got
finished by the TLNP experiments were of low degree and on the
fringe of the network. Also, as before, the running times of these
TLNP experiments were reasonably low even when we randomly
rewired as many as ���1. of the edges in this network. For the net-
works with added noise, resulting from random rewiring of edges
of this large geometric random network, with the increased amount
of noise, TLNP experiments yielded graphlet frequency distribution
patterns which were between the graphlet frequency distributions
observed for geometric random graphs and Erdös-Rényi networks,
as expected.

3.2 Neighborhood Local Search (NLS)
We analyzed the yeast high-confidence PPI network and the cor-
responding model networks using the NLS approach (described in
Section 2.3.2) with the following choice of search parameters: maxi-
mum number of experiments is � , maximum number of moves per
experiment is 
 , diversification frequency is � , and diversification
duration is

-
(i.e., every third move is random in the neighborhood

of the selected subgraph). We experimented with different numbers
of seed nodes: for each graph �k� � ��� #

processed by this heuristic,
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we performed experiments using � � � �92 , � � � � 0 , � � � ��� , � � � and ��� � �
seed nodes per � -node, � -edge graphlet (as described in Section
2.3.2), respectively. We performed

- � distinct runs of the algorithm
for each choice of the number of seed nodes for each graph. The
averages and standard deviations of estimated graphlet frequencies
were obtained for the

- � runs for the same graph and the same num-
ber of seed nodes; the standard deviations were several orders of
magnitude smaller than the corresponding averages.

The resulting pattern of averages of graphlet frequency distribu-
tion estimates for the PPI network and the corresponding geometric
random model networks is close to the pattern of the exact gra-
phlet frequency distributions for these networks (see Supplementary
Figure 21 A-D and Supplementary Table 27). However, this is not
the case for the ER-DD and SF model networks (Supplementary
Figure 22 E-F and Supplementary Table 27).

This heuristic approach works much better for the PPI and GEO
networks than for the ER-DD and SF networks because in PPI
and GEO networks the frequencies of different graphlets are much
more evenly distributed than in the ER-DD and SF networks. That
is, in ER-DD and SF networks, the number of sparse graphlets is
several orders of magnitude larger than the number of dense gra-
phlets. Thus, since the algorithm is always trying to sample the same
number of � -node, � -edge graphlets, the disproportionality of gra-
phlet counts in ER-DD and SF networks cannot be fully detected
by this heuristic algorithm. This is also why the (Kashtan et al.,
2004) algorithm had to analytically account for similar non-uniform
sampling.

Determining the number of required samples is well explored in
random sampling from databases (Chaudhuri et al., 1998; Flajolet
and Martin, 1985; Gibbons, 2001; Olken and Rotem, 1995) and esti-
mating statistics on sampled populations (Bunge and Fitzpatrick,
1993). It has been shown that there does not exist an estimator d̂
of the number d of distinct values in a value set

�
based on ran-

dom sampling, which can guarantee a reasonably small error with
any reasonable probability unless the sample size is very close to
the size of the database (Chaudhuri et al., 1998). This explains
why all known estimators give exceedingly large errors on at least
some of the datasets (Olken and Rotem, 1995). Note that we obtai-
ned accurate graphlet frequency distribution estimates with as few
as � _ �� samples per � -node, � -edge graphlet for the yeast high-
confidence PPI and the corresponding model networks with around- ����� nodes and � 0���� edges. This is a several orders of magnitude
smaller number of samples than the

- ��� samples that were required
by the (Kashtan et al., 2004) algorithm for much smaller E. coli tran-
scriptional and C. elegans neural networks. We are doing a limited,
5-move search in the neighborhood of a random graphlet rather than
selecting a random graphlet as in the (Kashtan et al., 2004) algo-
rithm; the (Kashtan et al., 2004) algorithm corrects for non-uniform
sampling by calculating probabilities to sample a random graphlet
instead. Currently, we are estimating only the graphlet frequencies
relative to one another; an analytical “translation” of the resulting
estimate should be easy to determine experimentally and is left for
future research.

The average processing times taken by these experiments are pre-
sented in Supplementary Tables 29 and 30. They are much smaller
than the exhaustive search processing times for PPI and geome-
tric random networks. For example, the ratio of the exhaustive
search time, �
	 , and the heuristic search time, � � , for yeast high-
confidence PPI network and � _ �� seed nodes is 3)4 6986 "

: 	�


while the distance is low at 46.46 (Supplementary Tables 28 and
30). Similarly, this ratio for the tested geometric random networks is
as high as ����� and the distances are low (Supplementary Tables 27-
30). However, the processing times of these experiments are much
higher for ER-DD and SF networks when compared to the results of
the exhaustive searches (Supplementary Tables 24, 25, 29 and 30).
This is due to the algorithm’s extensive searches for graphlets that
are very infrequent, or do not exist at all, in these networks; since
only the sparse graphlets are frequent in these networks, this results
in much wasted time as most of the graphlets, i.e. all of the denser
ones, are infrequent, or non-existent, in these networks. Thus, this
approach should not be used for ER-DD and SF networks.

As expected, the processing times increase with increased num-
bers of samples. However, it is interesting that by taking fewer
samples we do not lose accuracy of estimated graphlet frequency
distribution patterns for PPI and GEO networks. (The results of the
TNP heuristic approach behaved this way as well.) Also, with incre-
ased dimensionality and density of PPI networks, the processing
time grows as a result of larger local neighborhoods having to be
explored (the same is true for the TNP heuristic). Regardless, this
approach scales to large networks (see Section 3.2 of Supplementary
Information).

More details about the NLS heuristic are given in Section 3.2 of
Supplementary Information.

4 CONCLUSION
We have described two heuristic graphlet frequency estimation
approaches that work well for high-confidence PPI and geometric
random networks. They do not work well for ER-DD and SF net-
works both in terms of the resulting estimates and running times.
Note that both of these approaches work well for high-confidence
PPI networks, which have scale-free degree distributions and con-
tain hubs. They also work well for geometric random networks,
which have Poisson degree distributions and lack hubs. Thus, it
is not the presence or absence of hubs that dictates the behavior
of these heuristics, as was the case in the (Kashtan et al., 2004)
algorithm, but the local structure of the networks. Surprisingly few
samples were needed to produce very good estimates of graphlet
frequency distribution patterns in PPI and geometric random net-
works. However, unlike the (Kashtan et al., 2004) algorithm, for
both of our approaches, the processing time grows with the density
of the network as a result of larger local neighborhoods having to be
explored.

A sample comparison of the TNP and NLS performances for
PPI and geometric random networks is presented in Supplementary
Table 31. The TNP and NLS experiments with approximately the
same number of processed and seed nodes were chosen for the com-
parison. In this comparison, a slightly larger number of PPI network
nodes was processed by the TNP than by the NLS approach (Supple-
mentary Table 31). Also, slightly better distances were obtained by
the TNP than by the NLS approach for the PPI network. In addition,
much better running time ratios were obtained by the TNP heuristic
despite a larger number of nodes of the PPI network being processed
by it than by the NLS approach.

A similar situation was observed for the geometric random model
network. For this network, the graphlet frequency distribution esti-
mates obtained by the TNP approach were much better than those
obtained by the NLS approach, despite a much smaller number
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of nodes being processed by the TNP than by the NLS approach
(Supplementary Table 31). The running time ratios in these two
approaches applied to this model network were comparable, with
the NLS approach achieving a slightly better ratio.

From these comparisons it seems that the TNP approach performs
better than the NLS approach for estimating graphlet frequency dis-
tributions in PPI and geometric random networks. Also, these results
indicate that a combined TNP-NLS-based approach may give the
best performance: rather than sampling everywhere in the network
as we do in the NLS heuristic, we should only sample the fringe.
That is, rather than processing nodes on the fringe of a network
exhaustively, as we do in the TNP approach, we should sample
this part of the network as in the NLS approach. In this way, fast
and good estimates of graphlet frequency distributions in PPI and
geometric random networks will likely be obtained.

Although we have obtained accurate relative graphlet frequency
estimates, more experiments are needed to determine approaches
that would “translate” the estimated graphlet frequency distributions
closer to the exact one in absolute values. Also, a more detailed
theoretical explanation of the relationship between the structure of
the networks and the success of the heuristic approaches would be
beneficial. Our results give hope that similar approaches may be
used to distinguish between types of networks, or to elucidate the
structure-function relationship in PPI networks (Milo et al., 2002;
Pržulj et al., 2004). Implementation of these and the development of
other approaches that would efficiently detect larger graphlets is a
topic for future research.
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Pržulj, N., D. G. Corneil, and I. Jurisica (2004). Modeling interactome: Scale-free or
geometric? Bioinformatics 20(18), 3508–3515.
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