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Abstract

Anasteroidal triple (AT) isaset of verticessuch that each pair of verticesisjoined by apath
that avoids the neighborhood of the third. Every AT-free graph contains a dominating pair,
apair of vertices such that for every path between them, every vertex of the graph is within
distance one of the path. We say that a graph is a hereditary dominating pair (HDP) graph if
each of itsconnected induced subgraphs contains adominating pair. In this paper weintroduce
the notion of frame HDP graphsin order to capture the structure of HDP graphs that contain

asteroidal triples. We also determine the maximum diameter of frame HDP graphs.

Keywords: hereditary dominating pair graphs, AT-free graphs, dominating pairs

1 Introduction

Anasteroidal triple (AT) isan independent set of vertices such that each pair of verticesisjoined by
apath that avoidsthe neighborhood of thethird. Lekkerkerker and Boland[8] introduced the class of
AT-free graphs, graphswithout asteroidal triples, intheir study of interval graphsand showed that a

graphisinterval if and only if itischorda and AT-free. Thus, the AT-free property seemsto impose

*Dept. of Computer Science, 10 King's College Rd., University of Toronto, Toronto, ON, M5S 3G4, Canada
E-mail: natasha@cs.toronto.edu

TDept. of Computer Science, 10 King's College Rd., University of Toronto, Toronto, ON, M5S 3G4, Canada.
E-mail: dgc@cs.toronto.edu

tSekr. MA 6-1, Institut fir Mathematik, Technische Universitat Berlin, 10623 Berlin, Germany. E-mail:
ekoehler@math.tu-berlin.de



a“linear” structure that a chordal graph must have in order to be interval. AT-free graphs contain
such families as cocomparability, trapezoid, permutation, interval, families that al exhibit some
form of linearity. The hope of finding structural propertiesthat capture such linearity led Corneil,
Olariu, and Stewart [1] to study the structure of AT-freegraphs. One of their most interesting results
is that every connected AT-free graph has a dominating pair, a pair of vertices such that for every
path between them, every vertex of the graph iseither on the path, or isat distance onefromit. We
say that agraphishereditary dominating pair (HDP) if all of its connected induced subgraphs have
dominating pairs. Clearly, AT-free graphs are HDP. However, there are graphs that are HDP, but
have asteroidal triples, such as, for example, Cs.

In this paper we study the structure of HDP graphs and determine whether various properties
of AT-free generalize to HDP graphs. We assume that all graphs are finite with no loops or mul-
tiple edges and use the standard graph-theoretic terminology compatible with [11]. A path is not
necessarily induced and standard definitions of the path length and the path size are used to denote
the number of edges and the number of vertices respectively. In addition, we say that a vertex v
intercepts apath P if v is adjacent to at least one vertex of P; otherwise, v misses P. For agraph
(G and apair of verticesz, y of G, D(x, y) representsthe set of verticesthat intercept al =, y-paths.
Note that (=, y) isadominating pair of G = (V, E) if andonly if D(z,y) = V.

As mentioned above, Corneil, Olariu, and Stewart [1] provided a common generalization of
interval, permutation, trapezoid, and cocomparability graphsin the sense that the linearity of their
structure is demonstrated by the existence of a dominating pair in every connected AT-free graph.

They aso showed the following interesting Polar Theorem for AT-free graphs.

Theorem 1 [1] Let G beaconnected AT-free graphwith diameter at least four. There exist nonempty,
digoint sets X and Y of verticesof (¢ such that (z, y) isadominating pair if and onlyif + € X and

yey.

Later, Deogun and Kratsch [3] studied weak dominating pair graphs, graphsthat contain domi-
nating pairs, but their subgraphsdo not necessarily have dominating pairs, and proved thefollowing

Polar Theorem.

Theorem 2 [3] Let G = (V, F) be any weak dominating pair graph with diameter at least five.



Then therearedigointsets X C V andY C V suchthat for all z,y € V: (z,y) isa dominating
pair of G ifandonlyifz € X andy € Y.

Later we will present asimilar type of polarity result for HDP graphs.

Consider the following operations on graphs. A graph G isajoin of graphs G; and G, if it
consists of the digoint union of graphs ¢; and GG, plustheedges {uv|u € V(G1),v € V(Gy)}. If
K; isacomplete graph on j vertices, a graph ¢ is obtained by K ;-bonding of graphs ¢, and G,
if vertices of a K; of (&, areidentified with the verticesof a K; of ;. We say that agraph ¢’ is
obtained by substituting a vertex « of a graph G by agraph U, if the neighborhood in G’ \ U of
each vertex of U/ isequa to the neighborhood of « in G. A graph G’ is obtained from graph ' by
contracting anedge uv € E(G), if |V(G")| = |V(G)| — 1 and the vertex w of G’ that is obtained
by identifying verticesu and v in G has N(w) = N(u) U N(v) \ {u,v}.

Itiseasy to seethat HDP graphsare closed under vertex substitution, join, and edge contraction.
They are not closed under complement and A’;-bonding, ;7 > 2. An example of a non-HDP graph

obtained by K',-bonding of two Cssis presented in Figure 1.

e

Figure 1: A non-HDP graph obtained by K',-bonding of two HDP graphs.

In this paper we first explore the structure of HDP graphs. Section 2 describes some impor-
tant structural propertiesof HDP graphsthat contain asteroidal triples. In Section 3 we study frame
HDP graphs, afamily of graphsthat capturethe structure of the pathsthat establish an AT inan HDP
graph. We determine the position of DP verticesin all frame HDP graphs, prove that the diameter
of aframe HDP graph is always less than or equal to 5, and give a Polar Lemmafor frame HDP
graphs. Finally, in Section 4 we examine the complexity of HDP and chordal HDP graph recogni-
tion, determinewhether various propertiesof AT-free graphsgeneralizeto HDP graphs, and suggest

directions for future work in this area.



2 Structureof HDP graphs

Since AT-free graphsare HDP and they have already been extensively studied, werestrict our atten-
tion to the structure of HDP graphs that contain asteroidal triples. We call these graphs HDPNAT
graphs.

LetP; , bedefined astheset of all induced paths betweenverticesa and b in agraph (7 that avoid
the neighborhood of avertex ¢ in G. Henceforth, in an HDPNAT graph H withan AT {z,y, 2z}, we
’Py

z,2!

will use P, ,, P.., and P, . to denote P

I7y’

H denotesan HDPNAT graphwithan AT {z,y, z},and P, ,, P, ., and P, . denotearbitrary induced
paths that establish the AT {z,y, 2z} in H.

and Py _ respectively. Indl claimsin thissection,

Definition 1 Let{z,y, z} bean AT ofan HDP graph H, andlet P, ,, and P.. . be defined as above.
An AT vertex « iscalled path-digoint with respect to y, = if for all paths P € P, , and for all paths
Q € P.., PNQ = {x}. An AT vertex z is called non-path-digoint if there exist paths P € P,
and @ € P,,suchthat PN Q D {z,2'}, where z # 2.

Note that if = is anon-path-digoint vertex of an AT {z.y, 2z} of an HDP graph (7, there may
exist vertices " # «' with the corresponding paths P” € P, , and Q" € P, ., suchthat P" N Q" =
{z,2"}. Also, there may exist paths P’ € P, and Q' € P, . suchthat P' N Q' = {z}.

Claim 1 Let = be a non-path-digoint vertex of # with respect toy, z, and let P, ,, P, ., P, . be
induced paths establishing the AT. If any =’ € P, , N P, ., where z’ # z, then zz’ isan edgein H.

Proof: Assumezz’isnotanedgein H, wherez’ isthefirst vertex on P, , inthe z toy direction
suchthat =’ € P, .. Let H' bethe subgraphof A inducedon P, , U P,/ ., where P, , isthe subpath
of P, . between z and z’. Denote by P, ,» the subpath of P, , between = and =’, and by P, , the
subpath of P, , between 2’ and y. Notethat len(P, ,») > 2 by assumption, len(P,.,) > 2, since
P, . avoids the neighborhood of y, and len( P, .) > 2, since P, , avoids the neighborhood of -.
Since H isHDP, H' has a DP. Denote by («, 3) aDP of H'. « and 3 cannot both bein P, ,,
since the path between them induced on P, , misses z, by definition of P, ,. They cannot both be
in P, ., since the path between them induced on P,, . misses y, by definition of P, .. If one of

a, A isin P, ., and the other oneisin P, ., then any path between them induced on P, .» U P, ,
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misses y; thisis because y cannot be adjacent to avertexin P, ,,, since P, ,» and P, , are subpaths
of an induced path P, , andlen(P,,) > 2, and aso y cannot be adjacent to avertex in P, ., since
P, isasubpath of P, . which avoids the neighborhood of y. Similarly, if one of o, 3 isin P, ,
and the other oneisin F,. ., then any path between them induced on P, , U P, , misses z, Since =
cannot be adjacent to avertex in P, ,, because P, , isan induced path, P, ,» and P, , are subpaths
of P,,, andlen(P, ) > 2, and smilarly « cannot be adjacent to avertex in P, , because P, , is
an induced path, P, . and P, , are subpathsof P, ., and len(P, ) > 2. Thus, H' doesnot have a
DP contradicting H being HDP. O

The following follows immediately from Claim 1.

Corollary 1 If G isan HDP graph, then there does not exist an AT {z, y, z} in G with paths P,. ,,
P..,and P, , establishing the AT {z, y, z}, such that all three paths have a common vertex w.

The following theorem is the main result of this section.

Theorem 3 If Gisan AT N HDP graph, then for any AT in (& at least two of its AT vertices are
path-digoint.

To prove this theorem, we first prove the following two claims.

We say that H isaframe HDP graph if for afixed AT {z,y, 2} of H, al verticesof H belong
toapathin?P, ,UP,.UP,.. Wesay that thisfixed AT {z, y, z} isthedefining AT of H. Notethat
aframe HDP graph may have other ATs as well. We study this subclass of HDP graphs because
they capture the difficulty of HDP graphswithout containing all the tedious, easier to handle cases

aswell.

Claim2 Let P, ,, P, ., P, . beinduced paths of / establishing the AT, suchthat =’ € P, , N P, .,
and 2’ # z. Let H \ {z'} be disconnected, and let C' denote the connected component of H \ {z'}
that contains y and z. Then, for every DP (a, 3) of H, oneof «, g isin H \ C and the other isin

C. Furthermore, if H isaframe HDP graph, then H \ C = {z, z'}.

Proof: Let /7 be the subgraph of H inducedon P, , U P,. U P,, U {a, 3} U S, where S isthe
set of verticesof H that induces a path between oo and P, , U P, ., U P, , and a path between 3 and
P,,UP,.UP,. (S canbeempty). Clearly, (a, 3) isaDPof H aswell.
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Suppose both o, 3 € €' N H. Since H is an induced subgraph of H, any path L from « to
BinC N Hisadsoin H. Every vertex v of L is non-adjacent to avertex in { H \ {z'}} \ C, for
the following reasons. Let z € {H \ {z'}} \ C. Sincev € L C C N H, weknow that v €
PoyUP,,UP,  U{SNC}\{z",z}. Ifv € {y,z}, thenve ¢ Ein H,since{z,y,z}isan
ATof H. If v € Ppy \ {z,2',y},orv € P, \ {z,2/,z}, thenvz ¢ Ein H, since P,, and
P, ., areinduced paths. If v € P, . \ {y,z}, thenvz ¢ E in H, sinceall vertices on the path 7, .
must miss = because paths P, ,,, P, ., P, . establishthe AT {z.y, z}. v cannot be equal to =, since
veCadz € {H\{2'}}\C. Ifv e SnC andvz € E then the connected component of
H \ {z'} that contains y and =z also contains x contradicting our assumption. Thus, every vertex of
L misses x. Assume now that = doesnot belongto {H \ {z'}} \ C,i.e, z € C. Since H \ {z'}
is disconnected, there must exist avertex x; such that =y # z, z'z; € E, and z; does not belong
to the connected component of H \ {z'} that contains y and z. If thisisthe case, then {z,y, z}
isaso an AT, so the above discussion for = holdsfor z; aswell, and thereforevz; ¢ FE for every
v € L. Therefore, every vertex of . missesavertexin{H \ {z'}} \ C, contradicting («, [3) being
aDPof H. Therefore, at least one of o, 3 mustbein H \ C.

Now, suppose«, 3 € H\ C. There hasto exist apath P between o and 5 suchthat P € H\ C
for the following reason. Assume to the contrary, i.e., let o and 3 belong to different connected
components C'; and C, of H \ C. Therefore, any path P between o and 3 must contain a vertex
v € C. But thismeans that at least one of o, 3 belongsto C' contradicting our assumption. Now,
any pathfroma to g in H \ C missesboth y and = contradicting (o, 3) beingaDP of H. Therefore,
not both o and 3 arein H \ C'.

It is proven that at least one DP vertex must bein H \ C, but not both of them arein H \ C.
Thus, oneof «, g isin H \ C and the other isin C'. An exampleis presented in Figure 2.

We now provethat if H isaframeHDP graph, then H \ C = {z,z'}. Let H be aframe HDP
graph. Assume that there existsavertex v in H \ C, suchthat  # v # z'. Let vz’ ¢ E. Since
H isconnected, vz € E. But now {v,y,z} isan AT of H withvz’ ¢ E contradicting Claim 1.
Therefore, vz’ € E. Now, either zv € F,orzv ¢ E. If zv € FE, then v belongs to a path in
P.., that is not an induced path, which contradicts the definition of P, ,. If zv ¢ £, then v does
not belong to any pathin P, , U P, .U P, ., which again contradicts the definition of aframe HDP

graph. O



Figure2: Anillustration of Claim 2.

Claim 3 If z isnon-path-digoint with respect to y, =, and y isnon-path-digoint with respect to z, =
inagraph H withan AT {z, vy, 2}, then H isnot an HDP graph.

Proof: Let = be non-path-digoint with respect to y, z, and y be non-path-digoint with respect
toz,zinH,andletz" € P,, N P,,andy’ € Q,, N F,.,z # 2’ andy # v, for some paths
Pry,Quy € Poy, Pio € Ppyand Py, € P, .. Assumethat P, # ), ,. Consider the subgraph
H' of H inducedon P, , U P, .U P, .. Note that the z’, y-path induced on P, , is of length at least
2, since P, , isinduced and y misses P, ,. Similarly, the z’, z-path induced on P, , and the y’, z-
path induced on P, . are both of length at least 2. Since H iSHDP, H' has a DP. Denote by («, 3)
aDPof H'. Whereare o and /3 positioned in H'? Aswe have seen in the second paragraph of the
proof of Claim 1, « and g cannot both be on P, ,,, cannot both be on P, ., and cannot both be on
P, .. If oneof o and 3 isan internal vertex of P, , and the other one is an internal vertex of P, .,
then we have the following. Without loss of generality let o be an internal vertex of P, ,, and let
(3 be aninternal vertex of P, .. Note that both o and 3 are different from =’, since otherwise they
would both be on P, ,, or they would both beon P, .. If ay € FE, then the o, 3-path induced on
{a} U P, U P, misses z contradicting («, ) beingaDPof H'. If ay ¢ F, then the o, 3-path
inducedon P, , U P, . missesy contradicting («, 7) beingaDPof H'. Thus, oneof « and 3 cannot
be an internal vertex of P, , while the other oneis an internal vertex of P, .. Similarly, one of «
and (# cannot be an internal vertex of P, , whilethe other oneisaninternal vertex of 7, ., and also
oneof a and 3 cannot be aninternal vertex of £, . while the other oneis aninternal vertex of P, ..
Therefore, H' does not have a DP contradicting # being HDP. Thus, we must have P, , = @, .
Anillustration is presented in Figure 3.

We now provethat if thereexistsz’ € P, , N P, ., 2’ # z, and thereexistsy’ € P, , N P, .,
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Figure 3: Anillustration for Claim 3.

y' # y, forsomepaths P, , € P, P.. € P..,and P,. € P, ., then H isnot an HDP graph.
Assume to the contrary. Thus, H isHDP. By Claim 1, zz’ and yy' are edgesin H. First note that
x' # y'. Thisisbecauseif 2’ = v/, then y intercepts path P, . in H contradicting the fact that
{z,y,z}isan AT in H.

Let /7 bethe subgraph of / inducedon P, ,U P,.U P, .. H isaframeHDP graph. Let (a, 3)
beaDPof /. By Clam2, i/ \ C, = {z,z'} containsa DP vertex, without loss of generality say
o € H\ C,, where C, isthe connected component of 77\ {z'} that containsy and z. By the same
reasoning, 3 € H\ C, = {y,y'}, where C, isthe connected component of /7 \ {y'} that contains
and z. Consider the path joining « and 3 that isinduced on {«, 5} U P, ,», where P, ,» isasubpath
of P, , between z’ and y'. Thispath misses z, since {x, y, z} isan AT, contradicting («, 3) being a
DPof H. O

Since Claim 3 shows that an AT of an HDP graph cannot have two non-path-digjoint vertices,
Theorem 3 followsdirectly fromit. From the definition of frame HDP graphs and thistheorem, we
can conclude that there exist only two types of frame HDP graphs: those with no non-path-digoint
vertices, and those with exactly one non-path-digoint vertex in their defining ATs. This motivates

the following definitions.

Definition 2 A frame HDP graphiscalled a {2,2,2} graph if itsdefining AT {z, y, 2} has no non-
path-digoint AT vertices. Aframe HDP graphiscalleda {1,2,2} graphif itsdefining AT {z,y, z }

has exactly one non-path-digoint AT vertex.

Henceforth we will assumethat ina {1, 2,2} graph with the defining AT {z,y, =}, vertex « is

non-path-digoint. The following section examines the structure of frame HDP graphs. We now
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state the last result of this section which is used to prove some structura propertiesof frame HDP

graphs.

Claim 4 Let («, 3) beaDP of an ATNHDP graph H. « and 3 cannot both belongto pathsin P, ,,
cannot both belong to pathsin P, ., and cannot both belong to pathsin P, ..

Proof: Without |oss of generality assumethat « and 3 both belongto P,, ,. Sincethe subgraphin-
duced on the verticesin P, , isconnected, thereis apath between them that misses z, contradicting
(o, 3) beingaDP. O

3 FrameHDP graphs

In this section wefirst establish resultscommonto {2, 2. 2} and {1, 2, 2} graphs. Then we describe
some structure of {2, 2,2} and {1, 2,2} graphswhich leadsto the description of the position of DP
verticesin frame HDP graphs. Finaly, we determine the diameter of frame HDP graphs and give
the Polar Lemma for frame HDP graphs.

The following definitions and notation are used throughout this section to describe frame HDP
graphsmore easily. We call apath of size bigger than 3 along path. Also, ina{1,2, 2} graph with
an AT {z,y, z} and anon-path-disoint AT vertex =, we define R ., C P.., to be the set of paths
P € P, such that there exists some path @ € P,. and P N Q 2 {z}. For afixed 2’ € N(z), we
let Rgfy C R, denotethe set of paths P € P, , such that there exists some path ) € P, . and
PNQ ={z,2'}. R, and RZ, aredefined similarly. We denote by R, the set of subpaths of
pathsin RZ, between «’ and y, and we define R ... similarly.

A {2,2,2} graphis called two-long-sided if it has long paths P,, € P,, and P,.. € P..;a
{1,2,2} graphiscalled two-long-sided if it haslong paths R/, € R, and R,/ . € R .. Simi-
larly, a{2, 2,2} graph iscalled one-long-sided if it has along path P,., € P, and both P, . and
P,.. consist of Pssonly; a{1,2,2} graphiscalled one-long-sidedif it hasalongpath R, , € R, ,
and both R, , and P, ., consist of P;sonly. A frame HDP graph is called long sided if it is either
one-long-sided, or two-long-sided. Finally, a {2, 2,2} graphis called no-long-sided if P, ,, P...
and P, . consist of Pssonly; a{l,2,2} graphiscalled no-long-sded if R,.,,, R, and P, . con-
sist of Pssonly.



Lemmal Let («,3) bea DP of aframe HDP graph H.

(1) If H isatwo-long-sided {2, 2, 2} graph with long paths P,., € P,., and P,.. € P,.., thenitis
not the case that one DP vertex of H isan internal vertex of P, , and the other oneisequal to .
By symmetry, it is not the case that one DP vertex of H isan internal vertex of 7, , and the other
oneisequal to y.

(2) If H isatwo-long-sided {2, 2,2} graph, then o and 3 cannot both belong to the union of the
internal verticesof P, , and P, ., where P, , and P, , arelong pathsin P, , and P, ., respectively.
(3) If Hisa{1,2,2} graph, then o and 3 cannot both belong to the union of the vertices of R, ,
and R, ., where R,, , and R, , are pathsin R, and R, . respectively.

Proof: Assume to the contrary.

(1) Without loss of generality assumethat o« = zand 3 € P, \ {z,y}. Since|P,,| > 3, # cannot
be adjacent to both = and y. If 2 ¢ FE, thenthe pathfrom« to 4 inducedon P, ., U P, 3 does not hit
x contradicting (o, 3) being a DP, where P, s is the subpath of P, , betweeny and 3. If 3y ¢ F,
then the path from o to 3 induced on P, . U P, 3 does not hit y contradicting («, 3) being a DP,
where P, 5 isthe subpath of P, , between z and 3.

(2) Without loss of generality let o be an internal vertex of P, , and let 5 be an internal vertex of
P, .. Notethat oo cannot be adjacent to both = and y, and that 5 cannot be adjacent to both = and
z,since |P,,| > 3 and |P,.| > 3. Ifay € F and 3z € F, then the path from « to 3 induced on
{ay} U P, , U {3z} doesnot hit = contradicting («, 3) beingaDP of H, where P, , isany pathin
P,... If one of these two edges ay and 3z does not exist, i.e. without loss of generality if ay ¢ F,
then the path from « to 3 induced on P, . U P, s does not hit y contradicting («, 3) being a DP,
where P, .. is the subpath of P, , between a and z, and P, s is the subpath of P, . between x and
3. Therefore, oo and 3 do not both belong to the union of the internal verticesof P, , and P, ..

(3) Without loss of generality let o € R, and 3 € R, .. Clearly, either 3 = 2/, 0r 3 € R,.\{z'}.
If 3 =2'(and o € R, ,), then both « and 3 belong to P, , contradicting Claim 4. If 3 € R, . \
{z'}, then we have the following cases:

(i) if & = 2’, then both o and 3 belong to P,. . contradicting Claim 4.

(i) if « € Ry, \ {2'}, then the path between oo and 3 induced on P, , U P, . U P, 5 doesnot hit z,
where P, , isthe path between oo and y induced on R, ,, P. s isthe path between = and 5 induced

10



on R, .,and P, . isany pathin P, .; notethat no vertex on 7, , and no vertex of P, ; is adjacent

to z, since R, , and R,/ , areinduced paths. O
Claim 5 All pathsin P, . of atwo-long-sided {2, 2, 2} graph are Pss.

Proof: Assumetothecontrary. Thus, thereexists P, ., € P, . suchthat |P, .| > 3. So,

Pyyl > 3,
|P,.| >3,|P,.| >3forsomeP,, € P,,and P,. € P,.. Let H bethe subgraph of H induced
onP,,UP,.UP,..Let(a,3)beany DPof H. Wherecould o and 3 be positioned?

By Lemmal (2), « and 3 do not both belong to the union of the internal verticesof P, ,, P, .,
and P, .. Therefore, one of o, 3 must bein {z,y, z}. Without loss of generality let o« = x. Then
by Claim4, 5 ¢ P.,U P,.. Therefore, 3 € P,. \ {y, z}.

3 cannot be adjacent to both y and z, since | P, .| > 3. Without loss of generality assume that
Bz ¢ E. Now the path between o and 3 induced on P, 5 U P, , does not hit = contradicting («, 3)
being a DP, where P, 5 is the subpath of P, . between y and 3. Thus, H does not have a DP con-
tradicting H being HDP. O

Inthefollowingclaim, let H bea{1, 2,2} graphwithan AT {z, y, z }, anon-path-digoint vertex
z,and avertex 2’ € P, N P, ,, v # 2/, forsome P, , € P,, and P, . € P, .. Let P, , bethe
subpath of P, , between =’ and y, P, . the subpath of P, ., between z’ and z, and let P, , be any
pathinP, ..

Clam6 Ina{l,2,2} graph H,foranya € P, \ {z'} andanyb € P, \ {z'}, ab ¢ E.

Proof: Assumeto thecontrary. Takeasubgraph  of H inducedon P, , U P, .. Notethat H also
has an AT because the path P, , avoids the neighborhood of z, P, . avoids the neighborhood of v,
and the path from y to z induced on P, , U {ab} U P, ., where P, , isthe subpath of P, , betweeny
and a, and P, . isthe subpath of P, , between b and z, avoids the neighborhood of =. (Notethat no
vertexin P, U P, \ {2’} isadjacent to » since dl pathsin P, , U P, . areinduced.) But now,

vertices z, y, and z in H areall non-path-disjoint contradicting Theorem 3. O

Thefollowingclaimisused in theproof of Claim 8, theanalogue of Claim5for {1, 2, 2} graphs.
Let H bean HDPNAT graphwith an AT {z, y, z} and anon-path-digoint vertex z. Letz’ € P, , N
P,.,x # 2’ for someinduced paths P, , € P, and P, . € P,... If H\ {2’} isdisconnected into
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a connected component containing y and = and not containing z, and some other connected com-
ponents, then we say that H is 1-digoint with respect to =. Let C' denote the connected component
of H \ {z'} containing y and z. Then it is easy to see that the following holdsfor H.

Claim 7 Let (o, 3) beaDPof H. Ifa ¢ C,theng ¢ P,, U P, . for anypath P, € P,.,, and
any path ;. € Py...

Claim 8 All pathsinP, . of a{l,2,2} graph H are Pss.

Proof: Assume to the contrary. Let P, . beapathin P, . that isof length bigger than 2. Let H
be the subgraph of # inducedon P, ,U P, .U P, ., forsome P, , € P, and P, ., € P, . suchthat
P,, N P,. = {z,2'}. Clearly, H is 1-digoint with respect to z. Let (a, 3) beaDP of H. One of
o, f must bein {z, '}, since otherwise the path between them induced on V(i) \ {z, 2’} would
missz. (Notethat noverticesin V' (H)\ {z, 2’} areadjacent to =, since H is 1-digjoint with respect
toz.) By Clam7,3 € P,.\ {y,z}in H. Sinceby assumption P, . isnot a Ps, 3 is not adjacent to
at least oneof y, z. Without loss of generality let 3y ¢ F. But now, thepathinducedon Pg .U P, .,
where P; . isthe subpath of P, . between 5 and z, is an «, #-path missing y contradicting (., 3)

beingaDPof H. O

The following claim will be used to prove Claim 10 below, which explains the relationship be-

tween long pathsin atwo-long-sided {2, 2,2} graph.

Claim 9 Inatwo-long-sided {2, 2,2} graph H, a vertex of distance: > 2 fromz on P, , € P,.,,

cannot be adjacent to a vertex of distance ; > 2 fromzon P, , € P, ..

Proof: Assumeto the contrary. Denote by « avertex of distance: fromz on P, ,, for: > 2, and
by v avertex of distance j fromz on P, ., for j > 2, withuv € E. Notethat v # y, because
otherwise u could not be adjacent to any vertex on P, ., Since y isan AT vertex. Similarly, v # z.
Consider the subgraph H of H induced on P.,UP,.. Sinceuv € F, H hasan AT {z,y, z} with

AT vertices y and ~ non-path-digoint, contradicting Theorem 3. O

Claim 10 For all paths P, € P, , that arelong paths of atwo-long-sided {2, 2, 2} graph H, and
forall v, € P\ {z,z,} andfor all v, € @\ {z,z,}, wherez, = N(z)n Pandz, = N(z) N Q,
v1 € D(z,v2),0r vg € D(z,v1).
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Proof: Assume to the contrary. Let P, . be any long path in P, ., and let =, be the neighbor of
zonP,,. Letvy, € P\ {z,z,},ve € Q\ {z,z,} besuchthat v; ¢ D(z,vy) and vy ¢ D(z,vy).
Notethat viz, ¢ F andvez, ¢ F since H isa{2,2,2} graph; that is, if vz, € F, then z would
not be path-digoint. Let A be the subgraph of H inducedon P U Q U P ..

Consider the graph H. {vy,v,,z} isan AT of H for the following reasons. The path from v,
to v, induced on P, , U P,, , misses z, where P, , is the path between v, and y induced on P,
and P,, , isthe path between v, and y induced on ; thisistrue by the definition of P, ,. The path
between z and v, inducedon P, .U P, ,, misseswv,, where P, ,, isthe path between v, and = induced
on P; thisistrue because vy ¢ D(z,v1), vex, ¢ F (Since H is{2,2,2}), and aso, by Clam 9, v,
is not adjacent to any non-neighbor of = on P, .. Similarly, the path between = and v, induced on
P, .UP,,, missesv;, where P, ,, isthepath between v, and = induced on ). Therefore, {vy, v, 2}
isan AT of [/ and zz ¢ I, contradicting Claim 1. O

Other claims similar to the above claim hold for {1, 2,2} graphsaswell [10].

From the above we can see that frame HDP graphs have arich and interesting structure. This
structure enables usto determine the position of dominating pair verticesin al frame HDP graphs,

as described in the following two theorems.

Theorem 4 Let M,, M,, M5 be the sets of mid-pointsof P;sof P,. ., P, . and P,. , respectively of a
{2,2,2} graph H. Notethat either or both of M; and M5 could be empty. DP vertices of H satisfy
the following. Either:

(a) one DP vertex isin N[z] and the other oneisin M,, or

(b) one DP vertex isin N[y] and the other oneisin M,, or

(c) one DP vertexisin N[z] and the other oneisin Ms;.

Each of these three types of DPs can occur.

Proof: Let(a,3)beaDPof H. First assumethat / isatwo-long-sided {2, 2,2} graph with all
pathsin P, , and all pathsin P, , being long. Let P, , beany pathin P, ,, let P, . beany pathin
P.., andlet P, . beany pathinP, . of H.

By Claim 4, oo and 3 cannot both belong to P, ,,, cannot both belong to P, ., and cannot both

belongto P, .. By Lemmal (2), o and 3 cannot belong to the union of theinternal verticesof P, ,,
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and P, .. Let 2’ = P,, N N(z). Itisnot the case that one of «, 3 (Say «) istheinternal vertex of
P, . and the other one (namely ) belongsto P, , \ {z, ', y} since the path from « to 3 induced
on {ay} U P,z does not hit = contradicting («, 3) being a DP, where P, ; is the subpath of P, ,
between 5 and y. Similarly, it is not the case that one of «, 3 isin P, . \ {y, z} and the other one
belongsto P, . \ {z,z", 2}, wherez” = P, , N N(z). By Lemmal (1), it is not the case that one
of a, 8 isequal to = and the other one belongsto P, , \ {z,y}. Similarly, it is not the case that one
of o and 3 isequal to y and the other one belongsto P, . \ {z,z}. Therefore, the only possible
position for («, 3) isthat one of themisin N[z] and the other oneisin M,.

Next we assume that H istwo-long-sided with ashort path in along side. Without loss of gen-
erality, let P, , contain ashort path. Following the above argument, we conclude that the only two
options for positions of « and 3 are that one of them isin N[z] and the other oneisin M,, or that
one of themisin N[z] and the other oneisin M5. Similar arguments prove the theorem for one-
long-sided and no-long-sided {2, 2, 2} graphs.

Examples showing that each of these three types of DPs can occur are givenin Figure 4. O

r=u«w T T

mg=au«

m1=,3

y my=f3 z y 2=/ y=a z

Figure4: Examples of positions of dominating pairs of {2, 2,2} graphs. « and 3 are DP vertices.

Ina{1,2,2} graph, denote by ﬁz,y the set of all induced paths between = and y that avoid V(z)
and do not share vertices with pathsin R ,.,. Define R,... similarly. We use the following smple

observation in the proof the next theorem.

Observation 1 For any HDP graph ' and any of its DPs («, 3), if H is an induced connected
subgraph of ¢ containing o and (3, then (a, 3) isa DP of H.

Proof: Assume that (o, 5) isnot aDP of H. Then, since H is connected, there exists a path P
from « to 3 in H that misses avertex w € H. However, P aso belongsto G and misses w in G,
contradicting («, #) beingaDP of G. O
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Theorem 5 Let M, M,, M5 bethesetsof mid-pointsof Pssof R, ., P,.. and R, , respectively of a
{1,2,2} graph H. Notethat either or both of M, and M5 could be empty. DP vertices of H satisfy
the following. Either:

(a) one DP vertex isin N[z] and the other oneisin M,, or

(b) one DP vertex isin N[y]| and the other oneisin M;, or

(c) one DP vertexisin N[z] and the other oneisin Ms;.

Each of these three types of DPs can occur.

Proof: Denoteby («,3) aDP of H. By Claim 4, « and 3 cannot both belong to P, ,, cannot
both belong to P, ., and cannot both belong to P, .. By Lemma 1 (3), o and # cannot both belong
to the union of verticesof R, , and R, ., where R, , and R, . are any pathsin R, , and R, .
respectively.

If R,, # 0 and R, has along path, then it is not the case that one of o, 3 (say «) is equal
to z and the other one (namely $3) is an interna vertex of along path R,, € R,,. To seethis
consider the subgraph A of H induced on R, , U R,. U P,., for any path R, . € R, and any
P,. € P,. (such paths R,.. and P, . exist by definition of H). Now, H isa connected two-long-
sded {2,2,2} graph with an AT {z,y, 2z} containing «, 3, and thus, by Observation 1, Lemma 1
(1) is contradicted. It is easy to seethat / isa{2,2,2} graph, since no internal vertex of &, , can
be adjacent to an internal vertex of R, . (otherwise we would have a contradiction with definitions
of R,, and R,.., or H would not be HDP).

If ﬁz,y # () and it has along path, then it is not the case that one of «, 3 (say «) isan internal
vertex of some long path R,., € R.., and the other one (namely 3) is an internal vertex of some
path R, . € R.... for thefollowing reason. Similar to the above, take the subgraph A of H induced
onR,,UR,.UP,, forany P,. € P,.. Now, H isaconnected two-long-sided {2, 2, 2} graph
containing «, (3, and thus, by Observation 1, Lemmal (2) is contradicted.

If both R,.,, # 0 and R,.. # 0, and if both have long paths, then it is not the case that one of
o, (3 (say ) isaninternal vertex of somelong path R,., € R, and the other one (namely 3) isan
internal vertex of somelong path %,.. € R... for the following reason. Similar to the above, take
thesubgraph A of H inducedon R, ,UR, .UP, ., forany P, € P, .. Now, H isaconnected two-
long-sided (2,2,2) graph containing «, 3, and thus, by Observation 1, Lemma1 (2) is contradicted.
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Similar to the proof of Theorem 4, it is not the case that one of «, 3 isin M, and the other one
isin non-neighborhood of = onalong pathinP,.,, or inP,. ., itisnot the case that one of «, 3 isin
M, and the other one isin non-neighborhood of y on along pathin P, ,, and it is not the case that
oneof a, 3 isin M3 and the other one isin non-neighborhood of =z on along pathin P, ..

The only optionsfor DP vertices «, 3 arethat either one of themisin N [z] and the other oneis
in My, or that one of them isin N[z] and the other oneisin Ms5, or that one of themisin N[y] and
the other oneisin M;.

Examples showing that each of these three types of DPs can occur are givenin Figure 5. O

=«

y my=f3 z y z2=f y=a z

Figure 5: Examples of positions of dominating pairsof {1, 2,2} graphs. « and 3 are DP vertices.

Also, if wefix the position of DP verticesin aframe HDP graph, their position determinesthe
structure of the graph [10]. For example, it is easy to see that in a no-long-sided {2, 2,2} graph
withan AT {z,y, 2}, aDP («, ), and sets M;,: € {1,2,3} of mid-verticesof P,.,, P,.. and P, .
respectively, if « € M; and 3 € M;, where: # jandi,j € {1,2,3}, then every vertex in M, for
ke {1,2,3}\ {7, 7}, must either be adjacent to « or to 3.

We now turn to proving that the diameter of aframe HDP graph is less than or equal to 5. To

prove this, wefirst establish the following two clams and two lemmas.

Claim 11 In atwo-long-sided {2, 2,2} graph H, all vertices of distance: > 3 fromz on P, ,, if
they exist, must be adjacent to all verticesin M, where M isthe set of mid-vertices of all pathsin

P,.. of H. By symmetry, the same holds for the vertices of distance: fromz on P, ..

Proof: Assume to the contrary. Thus, there exists a vertex « of distance: from = on P, ,, where
1 > 3, that is not adjacent to avertex v € M. Note that « is not adjacent to x’, where 2’ is the

neighbor of  on P, ., and P, . isalong path in P, ., which exists since H is atwo-long-sided
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{2,2,2} graph. Let P, . € P, . bethe path that containsv. Consider the subgraph H of H induced
onP,,UP,.UP,.. Denoteby (a,3) aDPof f. From Theorem 4, oneof {a, 3} isin N[z] and
the other oneisin M in H.

It is not the case that one of o and 3 is equal to v and the other one belongsto {z, =}, since
otherwise the path between them induced on {vz} U P,., would miss«. Similarly, it isnot the case
that one of o and 3 isequal to v and the other one belongsto P, , N N () for the following reason.
Assume to the contrary. Thus, without loss of generality assumethat « = vand g € P, , N N(z).
Since 3z € E, the path from o to 8 induced on {vz} U P, . U {3} misses u. Thus, H does not
have a DP contradicting H being HDP. O

Claim 12 Ina{1,2,2} graph H, every non-neighbor of =’ inalong pathinR .. , must be universal

to M. By symmetry, the same holdsfor R .. ..

Proof: Assumeto the contrary. Thus, there exists a non-neighbor v of =’ on along path P, ,
R, that is not adjacent to avertex m € M. Let [ bethe subgraph of H induced on P, , U{z} U
P,.U P, where P, . isany pathinR,..,andm € P, .. Let (o, 3) beaDPof [. Since H is
1-digioint with respect to z, by Claim 2, one DP vertex of /7 isin /1 \ C and the other oneisin C,
where C' isthe connected component of /7 \ {z'} containing y, z. Without loss of generality assume
o € H\ C = {z,2'} (notethat since i is aframe HDP graph, by Claim 2, H \ C = {z,z'}).
Then, by Claims 7 and 8, 3 isthe midpoint of P, . in H,i.e., 3 = m. Sincev € P, \ {«',y}, by
Claim 6 and the assumption that vz’ ¢ F, v is not adjacent to any vertex in P, .. Now, the path

from o to 8 induced on {3z} U P,. . U {z} does not hit v contradicting (., 3) beingaDP of H. O
Lemma2 Let G bea{2,2,2} graph. Then diam(G) < 5.

Proof: By Clam5, P, , consist of Pssonly. Let P = xg,24,... ,2, beapathinP,, U P, .,
where zg = z.

By Claim 11, all vertices z;, for: > 3 areadjacent to all mid-verticesm of pathsin P, .. Hence,
d(z;,m) < 4 foradl z; of P. Thisimpliesd(z;,z;) < 5for ;,z; in P.

Now consider any other path @) = z¢, zi,... , 2z}, InP, ,UP, ., wherez| = z. All that remains

to be shown isthat d(z;,«}) < 5 for dl z;, z; contained in P, Q correspondingly. By Claim 11,
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d(z;, %) < 5fori > 1,57 > 2,aswel asfor: > 2,57 > 1. Sincexzq = z|, = z, d(zo,z") < 5,
J 0 J

d(z(,z;) < 5fordl j,and d(zq,2]) < 2. Consequently, diam(G) < 5. 0

Anexample of a{2, 2,2} graph with diameter 5 is presented in Figure 6.

X

y m z

Figure6: Anexampleof a{2, 2,2} graph with diameter 5 and diametral points = and y.

Lemma3 Let G bea{l,2,2} graph. Then diam(G) < 5.

Proof: Similar to the proof of Lemma 2, using Claim 8 and Claim 12. O

Anexampleof a{1,2,2} graph with diameter 5 is presented in Figure 7.

y m z

Figure 7: Anexampleof a{1, 2,2} graph with diameter 5 and the diametral points = and y.

Theorem 6 The diameter of a frame HDP graph isless than or equal to 5.

Proof: Followsdirectly fromLemmas?2 and 3. O

Deogun and Kratsch’s Polar Theorem holds only for weak dominating pair graphswith diameter
a least 5 [3]. Since we have shown that the diameter of a frame HDP graph is always less than
or equal to 5, their Polar Theorem works only for those frame HDP graphs with diameter 5. The
following holds for all frame HDP graphs.
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Lemma 4 (Polar Lemma) Let ¢ be a frame HDP graph of diameter at least 3, and let Z be the
set of all dominating pairs of G with V,, being the set of all vertices of Z. There exists a partition

of V into sets P and ) such that (p, ¢) € Z impliesp € P and g € Q.

Proof: Let{z,y,z}beanAT of (. Denoteby M, the set of mid-verticesof al PssinP, ., by M;
the set of mid-verticesof all P;sinP, ., and by M; the set of mid-verticesof all PssinP, . The
only way the above partition would not be possibleisif {(a,b), (b, ¢),(c,a)} C Z. This can never
happen in frame HDP graphs of diameter at least 3 for the following reasons. From Theorems 4
and 5 we know that in frame HDP graphs for each DP either one DP vertex isin N[z] and the other
oneisin M, or oneisin N[y] and the other oneisin M, or oneisin N|z] and the other oneisin
Ms. Assumethat {(a,b), (b, ¢),(c,a)} C Z. Without loss of generality let « € N[z]and b € M.
By Theorems4 and 5since (b, ¢) € Z andsinceb € M, weknow that ¢ must bein N |[z]. But now
weseethat (¢,a) € Z and ¢, a both belong to N[z] contradicting Theorems 4 and 5; note that V||

does not dominate since diam(G) > 3. O

The other direction of Lemma 4 does not hold for frame HDP graphs of diameter smaller than
5. An exampleis presented in Figure 8, where 7 = {(x, m), (y, w2), (we,m)}, P = {m,y}, Q =
{z,wa}, and (y,z) ¢ Z.

Figure 8: A counter example for the reverse of Lemma4.

4 Further Resultsand FutureDirections

We now describe some open problems in this area, and also study whether various properties of
AT-free graphs generalize to HDP graphs.

Notice that HDP graph recognitionisin coNP. It is easy to find a short proof that agraph G =
(V, E') isnot HDP by showing that a particular induced subgraph has the property that for every
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pair of vertices u, v, there is some other vertex w and a v, v-path missing w. The complexity of

HDP graph recognition is one of the topicsfor future research; possibly it is coNP-complete.

Deogun and Kratsch [3] characterized chordal HDP graphs in the following way.

Theorem 7 [3] A chordal graph G is HDP if and only if it does not contain the graphs A; and
B,(n > 1) asinduced subgraphs (see Fig. 9).

A, Bn

Figure 9: Forbidden induced subgraphs for chordal HDP graphs.

We use this characterization to find a polynomial time algorithm for recognizing chordal HDP

graphs.
Theorem 8 Chordal HDP graphs can be recognized in polynomial time.

Proof: A polynomia time algorithm for recognizing chordal HDP graphs first determines if a
graph G = (V, F) is chorda by using Rose, Tarjan, and Lueker’s linear time algorithm [4]. If G
is chordal, then the algorithm checks in time O(|V'|") if G contains a subgraph A, from Theorem
7. If G doesnot contain asubgraph A, then the algorithm determinesin polynomial time, whether
(= contains asubgraph B;, for: > 1. Thisisdone asfollows. First all ATs of G are determined.
Then for each AT and each ordering {z, y, z } of the AT verticesaset S = N(z)\ (N(y)UN(z)) is
determined. Foreachs € SasetC' = N(s)\(N[z]U(N(y)NN(z))) isdefined. Now, itischecked
whether y and = are in the same connected component of the graph induced by C'U{y. z} in G and,
if thisis the case, a corresponding y, z-path P is determined. It follows by the construction, that
the graph induced by P, s, x forms an induced subgraph B; of (. Reversaly, if (G containsa B;, it
follows immediately that the algorithm will find it. If the agorithm exhausts all ATs {z.y, 2} and
all AT verticesfailing to find a B,,, then G is a chordal HDP graph. An example illustrating this
Algorithmis presented in Figure 10. O
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Figure 10: An exampleillustrating the B,,(n > 1) recognition algorithm.

4.1 AT-freeresultsthat do not extend to HDPs

In addition to proving the existence of adominating pair and characterizing AT-freegraphs, Corneil,
Olariu, and Stewart [1] showed how to augment an arbitrary AT-free graph to obtain a new AT-free
graph. They called a vertex pendant if it is of degree one, and they said that a vertex v of an AT-
free graph ¢ pokableif the graph G’ obtained from ' by adding a pendant vertex adjacent to v is
AT-free. They referred to adominating pair («, 3) as pokableif both « and 3 are pokable vertices,
and they proved that every connected AT-free graph contains a pokable dominating pair, and that
every connected AT-free graph which is not a clique contains a nonadjacent pokable dominating
pair. They used thisresult to provethe Composition Theorem for AT-free graphs, which saysthat for
any two AT-free graphs 7, and (&, with pokabledominating pairs (z1, y; ) and (z», y2) respectively,
thegraph (¢ constructed from (&, and 7, by identifyingverticesz, and =, isAT-free. Unfortunately,
thisisnot truefor HDP graphs. Figure 11 gives an example of an HDP graph with no pokable DPs.
Part (a) of the figure shows agraph G with its DP vertices o and 3, and parts (b) and (c) show that
the addition of apendant vertex « to o makes G non-HDP, since the deletion of vertices 3, vs, vg, v7
from G U {u} yieldsanon-HDP graph, and that the addition of a pendant vertex « to 3 makes GG
non-HDP, since the deletion of vertices o, vg, v; from G U {w} yields anon-HDP graph.

Notice that even when pokable DP vertices of HDP graphs exist, such as degree 2 vertices of
3-suns, their identification does not yield an HDP graph (see Figure 12). Thus, our intuition isthat
the structure of frame HDP graphsis very close to that of HDP graphs. However, this remains a
major open question.

Recently, Corneil, Olariu, and Stewart discovered alinear timea gorithm for finding dominating
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Figure11: A counter example to pokability of DP vertices of an HDP graph.

G,
(HDPgraph) _

G => X
b c
G, G\{1,2,3}
(HDP graph) (non-HDP graph)

Figure12: A counter exampleto the Composition Conjecture of HDP graphs; by removing vertices
1,2 and 3 from G wegeta{l,2,2} graphwithan AT {a, b, ¢}, anon-path digoint vertex «, and ax
is not an edge, contradicting Claim 1.

pairsin AT-free graphs[2]. Their algorithm is based on two sweeps of the lexicographic breadth-
first search (LBFS) algorithm: let y be the last vertex of an arbitrary LBFS, and let = be the last
vertex of any LBFS starting at y; then (y, =) isapokable DP of 7. In addition, they described how
to use thisagorithm to find in linear time al dominating pairsin a connected AT-free graph with
diameter grester than or equal to three, even though there may be O(|V'|?) dominating pairs. To
see why this algorithm does not work for HDP graphs, first recall Gallai’s definition of a knotting
graph of GG [5].

Definition 3 For agivengraphG = (V, F), thecorresponding knottinggraphis K[G] = (Vik, Fx),

where Vi and Ex are defined as follows. For each vertex v of (7, there are copies vy, v, ..., v;, in
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Vi, where ¢, is the number of connected components of NV (v), the complement of the graph in-
duced by N(v). For each edge vw of E thereis an edge v;w; in Ex, where w is contained in the

+*" connected component of N (v) and v is contained in the ;™ connected component of N (w).

Using this definition, Kohler characterized a dominating pair of agraph G asapair of vertices
(a,b) of GG such that each common neighbor = of @ and bin ¢ hastwo different copiesinthe knotting
Graph K[(7] that are adjacent to acopy of « and b, correspondingly [7]. We usethis characterization
to first prove that there exists an infinite family of HDP graphs with all of their DPs adjacent, and
then to show that there exists an infinite family of HDP graphs with a non-adjacent DP for which
the 2-sweep LBFS algorithm does not find DP vertices. To prove thiswe defineagraph At in the
following way. Consider a circular order of the vertices of K,,. A graph that consistsof a ', and
an independent set I/ of n vertices each of which is adjacent to n — 2 consecutive vertices of the
K, and no two vertices of U/ are adjacent to the same n — 2 consecutive verticesof K, iscaled a
K+ graph, wheren > 3. Examplesof a K graphsfor n = 4,5 aregivenin Figure 13. Noticethat

K isHDP and that itsonly DPs are (o, 3) and (&, 3), which are both adjacent DPs. Also, notice
that K3 isnot HDP.

Figure13: K and K graphs.

Claim 13 Kt graphs, for n > 4, are HDP and all of their DPs are adjacent.

Proof: Consider thecircular order of the K, verticesin K. Every two non-consecutive vertices
onthecycleof K, in K are DP vertices, and these are all the DP vertices of KF. Thisisbecause
the knotting Graph K [K *] condsts of a K, and an independent set of vertices (an example for
n = 6 ispresented in Figure 14), and therefore, by Kohler’s[7] characterization of DPs, these are

al the DP verticesof Kf.
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Now we provethat K graphs, for n > 4 areHDP, i.e., that al connected induced subgraphs of
K areHDP Sincetheonly DPverticesof K+ arethe non-consecutive vertices of the cliquecycle,
if these verticesare present in an induced subgraph H of K, they are DPverticesof H. Therefore,
we only need to prove that induced subgraphs of K that contain either 0 vertices of the clique, or
1 vertex of the clique, or 2 consecutive vertices of thecliquecycle, aeHDP. Clearly, KT\ K, isan
independent set and therefore an HDP. If an induced subgraph H of KT contains only one vertex
of theclique, then H isastar K ,,_, whichisHDP. If aninduced subgraph H of K containstwo
consecutive vertices of the clique cycle, then H is equal to one of the following graphs:

(a) paths P,, P, Py,

(b) aset of 1 ton — 3 triangles with acommon edge,

(c) asetof 1 ton — 3 triangleswith acommon edge and one extravertex adjacent to avertex of the
common edge,

(d) aset of 1 ton — 3 triangles with a common edge and two extra vertices, one adjacent to one
vertex of the common edge and the other vertex adjacent to the other vertex of the common edge.

All of the graphs (8)-(d) are AT-free and therefore HDP. Therefore, every K+, for n > 4, isHDP.

O

Figure 14: The knotting graph K[K7].

Claim 14 There exists an infinite family of HDP graphs with a non-adjacent DP for which the 2-

sweep LBFS algorithm does not find DP vertices.

Proof: Consider graph K, n > 4, with an extra vertex u universal to all vertices of U, and call
such agraph K7¥. Denoteby 1,2, 3,...,n theverticesonthecycleof K, in K, and by a,b, ¢, ...
vertices of the independent set U of K*. Using the knotting graph technique, we determine that all

DPs of K: consist of the vertex v and a vertex of the cycle of K, i.e, al DPsof K are (u, 1),
(u,2), (u,3), ..., (u,n).
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To provethat K*, n > 4, are HDP, we need to prove that all connected induced subgraphs of
K} haveDPs. Since(u, 1), (u,2),(u,3),...,(u,n)areal DPsof K, itisenoughto consider only
connected induced subgraphs of KA that do not contain these DPs. That is, we need to determine
that the subgraphs A7 \ {u}, K:\ {1,2,...,n},and K3\ {1,2,...,n,u} of K are HDP. Clearly,
Kx\ {u} = K[, and therefore they are HDP, by Claim 13. K \ {1,2,...,n} isastar K, , and
thereforeisHDP. Also, K\ {1, 2, ...,n,u} = U whichisan independent set and thereforeisHDP.
Therefore, all K, n > 4, are HDP.

Clearly, every LBFS that starts at avertex v € U and first visits the neighbors of v that are
the clique vertices, i.e, in {1,2,...,n}, ends a avertex in U/ which cannot be a DP vertex of K*.
Therefore, a 2-sweep LBFS cannot be used to find DPsof K, forn > 4. That is, there exists an
infinite family of HDP graphsthat have a non-adjacent DP for which the 2-sweep LBFS algorithm

does not find DP vertices. O

Note that for agraph GG that iseithera K't,ora K*, n > 4, and foraDP {a, 3} of GG, N[a] U
N[B] = V(). Sincefor these graphs the 2-sweep LBFS algorithm did not find DPs, the question
iswhether the 2-sweep LBFS algorithm finds DPsfor HDP graphsfor which N[a|U N[5] # V(G),
for al DPs {«, 3}. However, it can be seen that adding a clone w of the vertex v in K*, n > 4,
creates an infinite family of HDP graphsfor which all DPsare non-adjacent, N[o]U N3] # V(G)
for all DPs {«, 5}, and still the 2-sweep LBFS does not find DPs.

4.2 A hierarchy above per mutation graphs

It was mentioned before that HDP graphs are not closed under complements. An exampleis C;
which is not HDP, but whose complement is AT-free, and therefore HDP. This motivates the defi-
nition of coHDP graphs, the complements of HDP graphs. Notice that HDP N coHDP +# {}, since
both C's and C's are HDP, and therefore,{Cs, Cs} C coHDP. Remember that permutation graphs
are those graphs which are at the same time comparability and cocomparability [9] and that C’5 is
not a permutation graph. Also, if we call coAT-free the complements of AT-free graphs, we know
that AT-free graphs strictly contain cocomparability graphs [6], cOAT-free graphs strictly contain
comparability graphs, and s belongs to AT-free N coAT-free, while C's does not. Clearly, AT-free
C HDP and coAT-free ¢ coHDP, and we have seen that C's € HDP N coHDP. Thus, it might be
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interesting to look into the hierarchy of graph classes in the intersections AT-free N coAT-free, and
HDP N coHDP (see Figure 15).

coHDP HDP

HDP n coHDP
(¢6)

COAT-free AT-free

AT-free n COAT-free
(c5)

comparahility cocomparability

permutation

Figure 15: A hierarchy of graph classes around HDP and coHDP graphs.
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