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Motivation: When studying the workings of a biological
cell, itis useful to be able to detect known and predict st |ntroduction
undiscovered protein complexes within the cell’s protein-

protein interaction (PPI) network. Such predictions Mg¥ecent developments in the rapidly-expanding fields of
be used as an inexpensive tool to direct biological expgsyyork biology and cell biology have resulted in a del-
|men'ts. The increasing amount of avallaple RPI data rEf‘g'e of protein-protein interaction (PPI) data with accom-
cessitates a fast, accurate approach to biological Compé%ying data on protein complexes related to these PPI

identification. _ _ networks (Uetzet al, 2000; Itoet al, 2000; Itoet al,
Results: We have developed the Restricted Ne|gthUé001. Giotet al. 2003: Liet al. 2004: Gaviret al. 2003:

hood Search Clustering Algorithm (RNSC) to efficiently,, o 51 2003). An inevitable consequence of this wealth

partition networks into clusters using a cost function. data is the need for efficient and accurate automated
applied this cost-based clustering algorithm to PPI ngfiy 1, identify and quantify significant portions of this

works of S. cerevisiae, D. melanogaster, andC. elegans gata Our method relies on modeling the PPI network with
to identify and predict protein complexes. We also ing

1 graph (defined below) and applying principles of both
vestigated functional and graph-theoretical properties &g ph ( ) PpYind P b

¢ , ph theory and gene ontology to identify likely protein
known complexes in the MIPS database, and by f'lted'émplexes with scalable accuracy.

ing clusters based on these properties, we attained a hig odeling PPI networks with simple graphs has been

matching rate between filtered clusters and true protvﬁigled for many applications, one of which is the predic-

complexes. tion of protein complexes within the PPI networks (Bader

Conclusions: Our application of the cost-based cluste[g—t Hogue, 2003; Paulj et al, 2004). Protein complexes

Ny tﬁlg(;)r't?rg Ft)rO\t’.'deS adscalag_let,. accurzattg, and eﬁl'c'%#@tnerally correspond to dense subgraphs in the PPI net-
method of delecting and predicling protein CompieXgg, 4 hat is, proteins in a given complex are highly in-

within a PPI network. . : .
el . teractive with one other (Bader & Hogue, 2003 2Hf
Ava!llalgllhty. The RNtSfC ant(:] dat?hprocessmg code & al, 2004). Previous approaches to graph-theoretic clus-
?:valta f .up.orérequttas r(:m € authars. ter prediction include simple clustering methods such as
Son ?C ' JUI’tIS CIS';J oror:_o.(?a Suool i data i identification ofk-cores (Bader & Hogue, 2003) and the
uppiementary -informa |qn. upplementary data IShighly connected subgraph approach (Hartuv & Shamir,

available on the web page: _ 2000: P2ulj et al, 2004).

http.//ww.cs.ut(_)ronto.c_a/”_juns/da_t /ppida/ . We have developed and applied the Restricted Neigh-
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a cost function that is assigned to each partitioning. Weg. This two step approach preserves only those clusters
then filtered the RNSC output so that only clusters whiethich have properties more likely present in true biologi-
share characteristics of known protein complexes are ceat complexes.

sidered. This method was applied to the same$were-  To evaluate how effective our algorithm is for detecting
visiae PPI networks discussed in @ij et al, 2004), as protein complexes, we compared the filtered clusters of
well as twoD. melanogastePPI networks (Gioet al, the yeast PPI networks with known protein complexes in
2003) and &C. elegan$?PI network (Liet al., 2004). Our the MIPS yeast complex database (Mewé¢sl, 2002).
criteria for filtering the clusters were cluster size, clughether or not a given cluster is deemed to match a given
ter density, and functional homogeneity, all of which andIPS complex depends on the matching criteria detailed
discussed later in this paper. We compared the resultdefow.

our method with known yeast protein complexes (Mewes

et al, 2002) and found that with appropriate choices for .

filter cutoff values, high matching rates along with Iargg-l Clustering

cluster sample sizes can be achieved. The bulk of the computation time was spent clustering the
For a deeper look at the application of graph theory b hetworks using RNSC algorithm, which is described

cellular biology, see (Baratsi & Oltvai, 2004; Newman, i, gection 2.6. Results included very small clusters and
2003; Albert & Baralasi, 2002; Strogatz, 2001; &dj, ¢j,sters which were either insufficiently dense, or whose
2004). The last one focuses specifically on PPI networlgmnonent proteins had too weak a concentration in a sin-
gle functional group. To achieve a high prediction rate, we
discarded these clusters. The appearance of these clusters
is not a problem with the algorithm, rather it is a product

f the fact that the networks are very sparse and that the

Igorithm partitions the network, and thus each protein
mustbe assigned to a cluster (see Section 2.6).

2 System and Methods

Our protein complex prediction method relies on mod

ing PPI data agraphs(or network$. A graphG = (V, E)

is a setV of nodes(or verticeg, representing proteins,
and a setF of links (or edge$, representing interactions
between pairs of proteins. Each edge joins two nodes. B& Cluster Size

also use7 (V) to denote the set of nodés of G (West, i i
2001). The notion that we want to discard small clusters comes

We used fourS. cerevisiaePPI networks originating from two iQeas: first, any overlap proportion betyveen a
from (von Meringet al, 2002) comprising 2,455, 11’0005_ma|| predicted complex and a known complex is more
45,000, and 78,390 interactions. We call these ndkely to be by chance than the same overlap propor-
works Yax, Yiix, Yase and Ysgs respectively, the small- tion involving a larger predicted complex; sgco_nd, small
est one containing high confidence interactions only af@OWn complexes frequently have low density in current
the larger ones having an increasing number of lowRP! networks anq are therefore Qn‘flcult to detect. using
confidence interactions. We used tilb melanogaster 2 Clustering algorithm. We experimentally determined a
PPI networks, one derived from the entire fruitfly nefower bound for a cluster size and discarded all predicted
work of interactions given in (Giagt al, 2003), and one COMplexes with size below this lower bound. The size
derived from those interactions with confidence greaf®und is dependent on the PPI network in question.
than 0.5; these have 20,007 and 4,637 interactions re-
spectively, and we call these networksy, andl*_]k_. We 2.3 Cluster Density
also used &. elegansPPI network, W5, consisting of
5,222 interactions (Lét al,, 2004) (also see (Kingt al, Protein complexes are wed to the ideal property that their
2004)). To analyze these networks, we first clustered th@noteins have high interaction rates with each other. We
using the RNSC algorithm, then we filtered the resultiserefore consider lower-density clusters to be less likely
based on cluster size, density, and functional homogeteeorrespond to known protein complexes. By discarding



clusters whose densities lie below a certain threshold, l@ege proportion of each protein (node) set overlaps, or if

can increase the prediction rate of our algorithm. the set of cluster nodes is nearly entirely contained within
a set of proteins in a complex. Having a large cluster con-
2.4 Functional Homogeneity taining a small complex is not as useful in application to

a lab setting, so we do not consider this case.
It has been observed that known protein complexes ofterFor a very large protein complex and a matching PPI
have high functional homogeneity (R al., 2003; PEulj network cluster, a given overlap proportion is more signif-
etal, 2004). That is, a large proportion of proteins withiitant than it would be in a small complex and a matching
a known complex likely belongs to a common functionaluster. For example, an overlap of five proteins between
group. This is also true for dense regions of PPI networkscomplex and a cluster each of size six is less signifi-
(Bu et al, 2003; Pzulj et al, 2004). The functional ho- cant (i.e., more likely to occur at random) than an overlap
mogeneityP-value is the probability that a given set obf fifty proteins between a complex and a cluster each of
proteins is enriched by a given functional group merely Byze sixty. Bearing this in mind, we consider a clugigr
chance, following the hypergeometric distribution. Th& match a complex’o by overlap if both
P-value for a cluste€” and a functional group’ is

P VI—IF ‘V<Cl) U V(CO)| > Pcluster (2)
S (S V(CDI = logyo(T+ [V (CT)])
p=1-Y s )
i=0 (|c\) and
whereC containsk proteins inF, and the entire PPI net- V{chuVv(Co) Peomplex 3)
work containgV’| proteins (also used in (Bet al, 2003; [V (Co)] ~ logo(7+ |V(Co)|)

Przulj et al, 2004)). We consider th&-value of a clus-
ter to be its smallesP-value over all functional groups.
Functional group data is derived from (von Meriegal.,
2002) for the yeast networks. [V (Cl) UV(Co)|

We discarded all clusters witR-value above a given, V(CD)| > Peontain (4)
experimentally derived threshold (see Section 3.1). Al-
though our model of functional homogeneity is very simfor these three equationBeuster Feomplexs and Peontain
ple, the fact that known protein complexes have IBw are all user-defined, experimentally derived proportions
values indicates that taking such an approach to evabetween) and1. Note that in matching analysis, we do
ate PPl network clusters as potentail protein complexast consider proteins in a given protein complex if they
will be effective. Sensible cutoffs for the clustBrvalues do not appear in the applicable PPI network. Adding 7
range fromL0~—2 to 10~ for the networks. For our match-to [V (C1)| in Equations 2 and 3 is done because it was
ing data, we chose a cutoff a3 for each network, empirically found to yield good thresholds. In fact, Equa-
because it offers a compromise between complex-clugiens 2 to 4 are entirely the result of empirical results: the
matching rate and a cluster passing rate, i.e., we can @gtiations generate sensible values such that a match is an
a large sample of clusters with high matching rates (seeerlap that represents high statistical significance with-
Section 3.2). out being too stringent a requirement (see Figure 1 and

Section 3.2).

are satisfied, and we consider a cluster to match a complex
by containment if

2.5 Matching Criteria _
We need to develop matching criteria to decide whethze'r6 The RNSC Algorithm

a given PPI network cluster matches a known biologicAl clustering of a networkG(V, E) is a decomposition
complex. From the standpoint of considering the practf the set of nodes/ into subsets of nodes that are
cality of our results, it makes sense to consider a predictédhly interconnected (i.e., these subsets of noides
cluster and a known protein complex to be matched ifdacedense subgraphs). Our clustering algorithm is the



Complex - Cluster Matching Requirements In addition, RNSC maintains a list of tabu (forbidden)
moves to prevent cycling back to the previously explored
partitioning. Since RNSC is randomized, different runs
on the same input data will result in different output clus-
terings.

The algorithm maintains a multitude of data structures
and incurs a large memory cost for the sake of time-
efficiency. Ordinarily, maintenance of the data structures
for such a search algorithm would present a prohibitive
cost in computation. However, there are many problem-
‘ ‘ ‘ ‘ ‘ specific properties related to both graph clustering and the
10, = max(oomplex sive, cluster size) chosen cost functions that allow RNSC to perform very

efficiently (a more detailed explanation of the RNSC al-

gorithm can be found on the supplementary information
Figure 1:The overlap requirements for a match betweena web page (Kinget al., 2004) and in (King, 2004)). Once
cluster and a complex. The z-axis is the larger of the com- RNSC outputs a clustering, we must filter the clusters so
plex size and the cluster size, and the y-axis is the overlap that we retain only those clusters which are very likely
size needed to consider the complex and the cluster to be to correspond to true protein complexes. We do this by
matched. The lines y = 0.5z and y = 0.7z are given for setting a maximun-value for functional homogeneity,
reference only. a minimum density, and a minimum size. The clusters
which fall within these criteria are our predicted protein

complexes.
Restricted Neighbourhood Search Clustering Algorithm

(RNSC), which is a cost-based local search algorithm
based loosely on the tabu search meta-heuristic (Glo\@r, Experiments and Results
1989). In the context of this algorithm, a clustering of
a networkG' = (V, E) is equivalent to a partitioning of Each network was clustered at least four times using the
the node set’. RNSC efficiently searches the space ®{NSC algorithm running under Linux. Each run took be-
partitionings ofV/, each of which is assigned a cost, fofiveen ten seconds and three hours on a 2.8GHz processor,
a clustering with low cost. The algorithm searches u&ith Y5, being the fastest anfl, being the most time
ing a simple integer-valued cost function (calledtiaéve consuming. We then took the lowest-cost clustering pro-
cost functiofas a preprocessor before it searches usind@ced by these runs for each network. These clusterings
more expressive (but less efficient) real-valued cost furgre available on the supplementary data page (Kira.,
tion (called thescaled cost functign The initial cluster- 2004).
ing is random or user-input. The values that we chose for the matching thresholds
RNSC searches for a low-cost clustering by first corare Puster = Peomplex = -7 and Peontain = .9. The thresh-
posing an initial random clustering, then iteratively mowlds for cluster size, density, and functional homogene-
ing one node from one cluster to another in a randomiziég are a matter of compromise: although increasing the
fashion to improve the clustering’s cost. A general mowrictness of the thresholds generally increased the pre-
is one that lowers the clustering cost by a near-optindittion rate, it also reduced the number of passing pre-
amount. The common problem among local search dietions (see Section 3.1). In the case where few protein
gorithms is their tendency to settle in poor local minimaomplexes are known for the PPl network (e.g. fruitfly
This problem can be largely avoided by using diversificand worm), this scalability is extremely useful: we can
tion and multiple experiments. Thus, our algorithm makesake the thresholds very strict to begin with, and relax
diversification moves, which shuffle the clustering by othem as we analyze the growing set of predicted protein
casionally dispersing the contents of a cluster at randoznmplexes (clusters).
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Network | Minimum Total Passing lp=——m——mmmm N 1r=——m—m= wo

size clusters  clusters e -

Yar 4 393 48 . :
\ \
Yiik 5 974 84 05 - 05 5
Yisk 7 1815 86 .
Yosk 8 1811 90 —— Matching —— Matching :
- - - Passing - - - Passing
o0 00

Table 1: Cluster size lower bounds for S. cerevisiae PPI
networks’ clusters, needed to pass through the filter. For
example, for Yz, network, out of 393 clusters in total, 48
were of size at least 4.

0.5 )
Y2k Cluster density

0.5 )
Yllk Cluster density

— Matching | "\ —— Matching
. o — Va
3.1 Filter Cutoffs 0; assing 0. ass:)ng

0.5 _
Y 45 Cluster density Y., Cluster density
All of the three filter cutoffs (for cluster size, density, and
functional homogeneity) were chosen to yield reasonabIY 2. . )
high sample sizes while ensuring that clusters passing'® 2:The proportion of RNSC clusters which pass the
through the filter had a good chance of matching knovﬂ'r'Ster density filter (i.e., cluster passing rate) and the pro-
complexes. In the case of the yeast networks, the miRgrtion of these passing clusters that match known com-
mum cluster size cutoff increased with the size of the n&{€*es (cluster matching rate) for yeast networks Yax, Y,
work accordingly. Table 1 shows the chosen size cutoffgr and Yas. These rates are for clusters that have al-
for the yeast PPI networks, along with the sizes of tﬁ%ady been filtered for size, but not for functional homo-
cluster sets that pass the size cutoff. geneity.

We imposed a lower bound on the density of predicted

complexes. As seen in Figure 2, a significant decrease3i?  Results
the passing rate of RNSC clusters occurs when the clu
density cutoff is betweer65 and.75. In general, known
complexes tend to have high density in the PPI netwo
but very few large complexes have density 1 (Ketal,,
2004). A density cutoff in the range af5 and.75 allows
a good compromise between passing sample size and
diction rate, but a cutoff closer t6 may give a very high
passing rate in a small sample size. For experimental
sults in the yeast networks, we used a cutoffiof

?\t/lee{tching rates for the yeast networks are shown in Table
for density> .7 and P < 1073, using the size cutoffs
ound to provide good passing sample sizes (described in
Table 1). The fact that all of the filter cutoffs can be ad-
j %t_ed means that there are countless samples of varying
Ize and matching rate. An example is presented in Fig-
jie 5, where each choice of filter cutoffs is represented as
a point. In spite of the noise, the results 1%, are the
best: for a given false positive rate, the true positive rate
As with cluster size and density, for functional homdor Yzs;. is the highest of the four. This may be because the
geneity (P-value) filtering we wish to maintain both alarger data set carries much more statistical significance,
reasonable sample size and a high matching rate amishgpite of it containing more noise.
passing clusters. Figure 3 shows the effect of changind-igure 6A shows an example of a predicted complex
thresholds for both density arfétvalue (after filtering for (i.e., a RNSC cluster) and the true protein complex from
size) inYzg;. Figure 4 shows the effect of these thresholddIPS that it matches in the yeast network;,. The
on the sample size ili;g;,. For our experimental clusterRNSC cluster has size 8, densit964, and P-value
passing rates, we chosePavalue cutoff of10~3. 3.98 x 10~8. The known cluster, COPI, has size 8, density
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Table 2: Matching data for density > .7 and P < 1072,

proportion of clusters matched

0.4+ . . . . .
Passing clusters are those that pass all filtering criteria,
0.2+ \Aé\“ and matching clusters are those passing clusters that sat-
0 1 isfy the matching criteria with at least one complex from
0 s o5 MIPS.
log, (P)  -10 T ‘
threshold -5 00 cluster density

threshold

.786, and P-value3.29 x 10~ !°, They share 7 proteins.
COPIl is a multimeric complex that contributes to the coat-
ing of membrane vesicles within the cell. Although the
protein Arfl, which is in COPI but not the predicted com-
plex, has the same gene ontological function as the rest
of the proteins in COPI, it is incident with only one edge
in the complex. Gpt2, which is contained in the predicted
complex but not the known complex, is incident with six
edges in the cluster. Gpt2 is glutamic pyruvate transami-
nase 2, and is responsible for transaminase and transferase
activity. Although Gpt2 is assigned a different functional
group by von Meringet al., according to MIPS, each of
these nine proteins is responsible for cellular transport,
transport facilitation, and transport routes (Mevetsl,,
2002; von Meringet al, 2002). This suggests that Gpt2
likely belongs to the COPI complex.
‘ Figure 6B shows an unmatched RNSC clusteYiiry,.
n“"ll“‘\ In_ fact, this cluster has no more than one protein shared
llll””f’[fﬁh’%"t‘l"‘) with any known complex. However, it exhibits all of the
III!!!%,{.%(#%?(«?O{0\941'\??\ properties that we are looking for: it has sufficient size,
Y i 7, and high density,810; its functional homogeneity-
value is9.31 x 1076, with six of its seven proteins con-
0g. (P) 5 ~0s tributing to energy production. This suggests that biolog-
threshold 00 cluster density ical validation of this set of proteins forming a protein
threshold complex may be worthwhile.

Figure 6C shows an RNSC cluster¥h,; that is con-
tained within a MIPS complex. This is a good example of
a containment match; note that the cluster contains most
of the edges within the complex. Indeed, the nodes of the
complex that are not included in the cluster do not exhibit
the ideal graph-theoretic properties of protein complexes
at all. They are sparsely connected and largely heteroge-

Figure 3: Proportion of passing clusters in Y7sx which
match a known complex from MIPS. The sample is the
set of clusters passing first the size restriction, then the P-
value restriction and density restriction. The P-value and
density restrictions are given on the z- and y-axes. We
chose .7 and 102 as our density and P-value cutoffs, re-
spectively.

Number of passing clusters vs. Iogm(P) and density thresholds

number of passing clusters

Figure 4:The effect of changing P-value and density cut-
offs on the sample size, i.e. the number of clusters that
pass the filter criteria for Y7s,. Clusters are first filtered by
size, then by P-value and density. We chose .7 and 1073
as our density and P-value cutoffs, respectively.
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Figure 6:Examples of matched and predicted protein complexes: (A) MIPS complex COPI in the yeast network Y71y
and the matching complex predicted by RNSC. Each has size 8, and their overlap is 7. (B) An unmatched cluster in the
yeast network Yi1,. The cluster has no overlap greater than one protein with any known complex. It passed through
the filter, and exhibits characteristics of a protein complex. (C) This RNSC cluster in Y1 is contained within a larger
MIPS complex. Note that the cluster contains most of the edges in the complex.



True positive vs. false positive rates for Yeast Cluster Filters The predicted Complexes are given in the Supp|ementary
il ' 7 data (Kinget al, 2004). ForFyy, there are only 5 pre-
dicted complexes, the largest of which has size 5. This

08r is due to the fact that the current fruitfly network is ex-
g tremely sparse. FaFs,, the less noisy data set for fruit-
206 fly, there are 42 predicted complexes, all of size 3 and 4.
g For W5, there are 32 predicted complexes, including 3
50-4’ of size> 10. In the future, more complete PPI data will
likely lead to a larger, more significant set of predicted

complexes for fly and worm.

0.2

0 0.2 0.4 06 0.8 1 3.3 Discussion

False positive rate
Protein complexes have a number of inherent graph-
theoretical and gene-ontological properties. As seen in
Figure 5: True positive rate vs. false positive rate for fil- the results, using size, density, and functional homogene-
tered yeast clusters: the proportion of matched clusters ity as filtering criteria for network clusters is a reason-
accepted by the filter vs. the proportion of unmatched clus- gp|e way to predict protein complexes. However, there
ters accepted by the filter. The points represent all tested gre some problems with the method. While protein com-
filter cutoffs for size, P-value, and denSity. Clusters of size plexes are usua”y expected to have h|gh density in PPI
less than two are ignored in this data. The curve y = /= networks, not all do. A related problem is the incomplete-
is given as a reference. ness of current PPl networks. The more complete and
accurate our PPI and known protein complexes data sets
are, the better we will be equipped to analyze the PPI net-
neous. This MIPS complex is responsible for transcrigsrks.
tion, DNA maintanance, and chromatin structure. Further, the functional homogeneity, while accurate for
As in (Pzulj et al, 2004), Rib1-5, Rib7 is a function-the most part, seems to be an incomplete, oversimplified
ally homogeneous cluster with denslty) in Y115. InYax,  model. Many known complexes show very low functional
however, only Rib1, Rib3, and Rib5 exist, and they mak@®mogeneity. Also, many proteins belong to multiple
up a cluster of density .67. W5, andYzs,, Rib1-5 and functional groups. In addition, many proteins are of un-
Rib7 have density.0 among themselves, but the proteingnown function.
are highly interactive with other proteins. The result is Even with such a simple filtering model and incomplete
that Rib1-5, Rib7 is not a cluster in either of these twgata, we managed to achieve vary high matching rates be-
PPI networks, in spite of the fact that they likely represefiteen PPI network clusters and known protein complexes
a complex; rather, the Rib proteins are divided among sg¥able 2). In comparison, Bader and Hogue generate a set
eral clusters. This is a case in which hierarchical clusigf209 predicted complexes, of which 54 match the MIPS
analysis may lend some insight, that is, considering gltabase in at leagd% of their proteins in a yeast PPI
four networks for yeast simultaneously. None of thesgtwork of some 15,000 interactions (Bader & Hogue,
proteins is represented in the MIPS data, so there is Zg03). In (Pkulj et al, 2004), a set of 31 predicted com-
match to be considered. plexes is given forY;,;, of which 27 were reported to
The results for the fly and worm networks are ledsmve high overlaps with MIPS complexes. Jansenl.
definitive. Because there are no comprehensive sourpesdict pairs of nodes to be in the same cluster; they, like
for complexes and functional classifications for these neis, achieve low error rates (as low@% for 5 predicted
works, we could neither construét-values for the clus- pairs) that increase with the sample size. However, their
ters nor compare them to a set of known complexes. findings cannot easily be applied to predicting entire com-
these networks, we filtered clusters for size and densjhjexes, but only interactions within them (Janssral,



2002). Our results complement these efforts to better W@ellular research will inevitably continue to be led by bio-

derstand protein complexes within networks or proteifegical experiments, but computational analysis methods,

protein interactions. such as ours, are likely to become indispensable for their
ability to identify areas of significance at an extremely low
cost.

4 Conclusions and Future Work
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