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Introduction

Clustering can be described as the partitioning of data into homogeneous
groups. The modern clustering approaches such as the EM algorithm or the
k-means are sensitive to initial values. In order to make the clustering
algorithm insensitive to starting values, we consider the data groupings as
an unobserved random variable and sample from its closed form posterior
distribution using an MCMC method such as the Gibbs sampler.

The Markov Chain samples are used to estimate the maximum a posteriori
(MAP) grouping after the chain has converged.

The space of groupings is a nominal finite state space. We propose a
quantitative convergence criterion for MCMC algorithms run on nominal
state spaces. More precisely, we define a one-dimensional statistic of fit
and present its distribution. This statistic is used to assess the convergence
of a Markov Chain via a formal statistical significance test.

We apply this clustering methodology to the genetic mutants of the
flowering plant Arabidopsis thaliana.

Bayesian Model for Clustering

In Bayesian clustering, the labeling of the observations is regarded as a

random variable and has a probability distribution. Therefore a Bayesian

model with a likelihood function and prior distribution is adopted for the

clusters. Let

ce{l,...,C} — cluster label p

T. — number of observations in cluster c and 7 = ZT, the total
number of observations =i

v € {1,...,V} — subscript of independent continuous variables

Yvet — data of clustering individual ¢ € {1,...,7.} incluster ¢ € {1,...,C}
from variable v € {1,...,V}

¢={ci}i— — isagrouping such that ¢; = ¢ € {1,...,C} if the ith

observation is allocated to cluster ¢

In order to impose uniqueness in cluster labeling, we assume that grouping
parameters in ¢ appear in an increasing order.

The state space of interest is that of all possible allocations under the marginal
posterior distribution r(¢l3) oc m(y]c)m(¢) where m(c) is the prior distribution

on the allocations and o
9= [{II II ntwlo.a}nelerao
~ =1 {t;cp=c}
We assume that, conditional on ¢ and the model parameters, the observations
are independent within and across clusters. This assumption allows us to derive

(]

a closed form for 7(]€). As a result, we can further compute 7(cly) up to a
constant and construct a Markov Chain of groupings using a reversible Gibbs
sampler. We estimate the MAP grouping by considering the most frequent

labeling in the sample.

Data Analysis

Messerli et al. (2007) study the metabolic pattern of 14 genetic mutants of the
plant Arabidopsis thaliana from measurements of 43 metabolites (mostly
sugars, sugar alcohols, amino acids and organic acids), obtained by the method
of gas chromatography mass spectrometry. Figure 1 presents the data, where
mutants are represented by integer labels, and four replicates are are available
for each mutant; exceptionally, for mutant 1 only 3 replicates exists.

In our analysis, for each mutant type we considered the mean of the
replicates. Also, we centered all the metabolite variables around the median.
The goal is to a perform metabolomic characterization of these mutants via
clustering.

We fit the following hierarchical Bayesian model. Given the data allocation
vector 7

Yoct ~ N(Oue + €vet, 07 +02) Oye ~ N(0,03) * €vet ~ N(0,07)
The subscripts v, ¢ and ; denote respectively variable, cluster and mutant in

cluster. ¢, represents the cluster mean and €, denotes the measurement

and experimental errors between mutants. We assume the uniform
multinomial-Dirichlet distribution as the prior:
Cc-n'n!...T.!
™) X o)
The MAP estimation using the Gibbs sampler after 50000 iterations yields the
grouping {1,8,11,12,13,14}, {6,7}, and {2,3,4,5,9,10} with the estimated

probability 7 — . 4092-
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Figure 1: Plot of the log spectra (solid lines) of the matabolite data. Different
colors indicate the category of the mutant: black for those defective in starch
biosynthesis, red for those defective in starch degradation, green for the
comparative plant, blue for the uncharacterized mutants, and magenta for
the wild types. The estimated MAP grouping is represented by three
different colors on the mutant labels.

Convergence Assessment

We can be more certain of the accuracy of our MAP estimation if we can assess if

our Markov Chain has actually converged.

We assess convergence to equilibrium through the ratio of the empirical pmf to

the true pmf known up to a normalizing constant. Averaged over states under

consideration, this gives an intuitive, variance-like, one-dimensional statistic of

fit. Under the hypothesis of stationarity, we expect this statistic to be small, so

we propose to reject the null hypothesis for large values. In practice, we estimate

the asymptotic variance by regenerative simulation.

{Xi}¢>1 — irreducible, aperiodic Markov chain with discrete space S, of
cardinality p7. The value of , is an integer that refers to a distinct grouping.

II = {II;,i € Sps} — the unique stationary distribution associated to { X } 1>,
assume I1; is known only up to a normalizing constant 7, i.e. II; = m\Z

X ={X;,t=1,...,n} — our finite length ergodic Markov chain

m < min(n, M) — the number of unique visited states by our Gibbs sampler

S — state space of X

#; — proportion of X; in the sample. Consistent estimator for IT;

The method of regenerative simulation identifies random times at which the
Markov chain probabilistically restarts itself. Let
R — the total number of regeneration tours in a chain of length n
Define the variance test statistic
_R 7\2
Vo= ;;(f, 5
where f; = @t;)\mjand f =m0 ¢ f;
* ForlargeR we expect f; ~ Z ' forall i € S
* For large R we have the approximation
R 12 R1 (0; — E;)?
Vam Z3 (-2 = oy

2 2
i€S w €S El

where O; = ni; and E; = nll; . Similar to Pearson goodness of fit statistic

Implementation of Regenerative Sampling

In order to improve the performance of the regenerative sampling, we restrict

our attention to k& high mass states and merge and rename all the remaining

states as the new state & + 1

1. Sett=n

2. Run the Gibbs sampler for ¢ iterations, and let i be the most frequently
visited state. Split the chain into R regeneration tours defined by return
visits to state ; .

3. Compute the statistic V; and the p-value p; . If at significance level «,
pe < a, reject the null hypothesis that the chain is in equilibrium. Continue

for further n iterations, i.e. set ¢ = ¢ 4+ n, and return to step 2.
If pr > a , there is no evidence against the null hypothesis that the chain is
in equilibrium by iteration ¢ .

Is Our Gibbs Markov Chain in Equilibrium?

Let k = 4, i.e. we relabel our chain {X;};>1 such that the top the top most 4
frequently visited states have lables 1 to 4 in a decreasing manner and all the
other states have label 5. At 0.95 confidence level, Figure 2 below suggest that
the Gibbs sampler has indeed converged
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Figure 2: Plot of the p-value of 1/, vs. the number of iterations 2. A horizontal line is drawn at 0.05 as a threshold
for the p-values. The samples are converged if the curve falls above the threshold.

: % Figure 3: Plot of 7; vs. i suggests that the
« sample Markov chain represents the groupings
‘ well.
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