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Abstract. A self-stabilizing algorithm that solves the problems of token
circulation and leader election on anonymous and uniform, unidirec-
tional, message passing rings of arbitrary, but known, size is developed.
From any initial configuration, the expected time to stabilization on a
ring of size n is in O(n log n). Furthermore, the size of the configu-
ration of the system remains constant throughout the execution; each
processor state and message state has size in O(log n). The correct-
ness of the algorithm relies upon a novel duality between messages and
processes.
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1 Introduction

Many protocols for distributed computing assume the existence of primitives
such as token circulation and leader election. Leader election requires that a
unique processor be identified as the leader, from a set of indistinguishable
processors. Anonymous networks use leader election as a first step in assigning
session specific identities to processors. The token circulation problem requires
that a token be circulated by all of the processors in some fair fashion. A token
circulation algorithm is often used as a basis for solving the mutual exclusion
problem.
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Such primitives should be able to withstand the transient faults to which
distributed systems are susceptible. To this end, Dijkstra [4] defined a dis-
tributed system to be self-stabilizing if, when started from an arbitrary con-
figuration, the system is guaranteed to reach a legitimate configuration, as
execution progresses. Algorithms with small stabilization times are desirable
because a system will make progress provided that the time between its faults
is longer than the time necessary for it to stabilize.

We present a self-stabilizing algorithm that solves the problems of token
circulation and leader election on anonymous, unidirectional, message passing
rings of arbitrary, but known, size. From any initial configuration, the expected
time until our algorithm stabilizes on a ring of size n is in O(n log n). (Hence-
forth, ring size is denoted by n.) Because, as noted by Gouda and Multari
[9], there can be no purely asynchronous self-stabilizing protocols for message
passing models, we augment our system with a time-out mechanism. In fact,
we present our algorithm in the synchronous model; however, it can be easily
adapted for an asynchronous model provided with a time-out mechanism that
detect deadlocks. Since it is impossible to deterministically break symmetry on
an anonymous ring [3] randomization is used. Randomization also allows us to
circumvent the deterministic lower bound of Dolev, Israeli, and Moran [7], who
show that the configuration size of any deterministic, self-stabilizing, message
driven protocol that solves a weak exclusion task (of which token passing is an
example) grows logarithmically with time. In our algorithm the size of each
processor state and message state is bounded by O(log n).

Self-stabilizing token circulation and leader election have been well studied.
Much of this research (see [10] for an extensive bibliography) has assumed
Dijkstra’s original composite atomicity ([5]) shared memory model, where an
atomic step may contain several reads and one write operation, and has focused
on various additional factors (such as graph topology, existence of identifiers,
type of scheduling deamon, use of randomization, and properties of the ring
size) and goals (minimizing state space and stabilization time). In contrast, for
these problems, fewer algorithms exist for the weaker read/write atomic shared
register model [5, 6, 8].

Although it has been established that self-stabilizing algorithms for the
atomic read/write shared memory model can be transformed to ones for mes-
sage passing models (see [15, 13, 14]), these transformations require either
bidirectional links or identifiers, (or both) or incur substantial overhead. This
leaves open the question of efficient, self-stabilizing token circulation and leader
election algorithms for anonymous unidirectional message-passing networks, al-
though a few papers address self-stabilizing solutions for some other problems
in the message passing model [7, 2, 9, 14, 1].

2 Model

We assume a synchronous, unidirectional ring consisting of n anonymous pro-
cessors. At each time step, a processor can send a message which, barring



any transient faults, will arrive at its successor in the next time step. Each
processor has access to a statistically independent random bit generator that
can produce one bit per processor per time step. It is convenient to think of
messages as being contained in envelopes that circulate around the ring. The
receiving processor may change the envelope contents prior to forwarding it in
the next step, or it may destroy the envelope (and its contents). Also, proces-
sors may create new envelopes, initialize their contents and add them to the
circulating collection of envelopes.

Since token circulation and leader election are closely related [16], it is not
surprising that one algorithm can solve both problems. At any point in our
algorithm, some processors may be producers. For leader election, the producers
are the candidate leaders; for token circulation, the envelopes are the tokens.
Eventually there will remain exactly one producer and exactly one circulating
envelope, thus solving both problems.

In the self-stabilizing model, an initial period, during which the problem
requirements are not met, is permitted, so long as there is a guarantee that
after a finite amount of time they will be met, and remain met. Therefore, for
the leader election (respectively, the token circulation) problem, there initially
may be system configurations with no producers or more than one producer
(respectively, no envelopes, or more than one envelope) but it must be guar-
anteed that eventually all succeeding configurations have exactly one producer
(respectively, envelope).

3 Self-Stabilizing Token Circulation

3.1 Intuition for SSTC

Our algorithm builds upon a randomized basic attrition protocol [11] for reliable
asynchronous message passing networks. When basic attrition is initiated by
any non-empty collection of processors, called producers, we are guaranteed
to eventually be left with exactly one producer, which continues to circulate
a single envelope around the ring. Unfortunately, basic attrition is not self-
stabilizing; we first describe basic attrition and then the enhancements required
to make it so.

During each turn, each producer independently tosses an unbiased coin,
sends the outcome to the next producer (via the intervening non-producers)
and waits to receive the coin toss generated by the preceding producer. A
producer becomes a non-producer for the remainder of basic attrition if and
only if it sent a tail and received a head. Otherwise it proceeds to its next turn.
If, in a fixed turn, all producers have the same flip, then each remains a producer
for the next turn; if not all flips are the same, then those that flipped heads are
guaranteed to be producers for another turn. Therefore, not all producers can
become non-producers. The probability that a given producer sends a tail and
receives a head is 1/4 so long as there is more than one producer. Hence, with
probability 1, the number of producers and envelopes decreases to exactly one.



Notice that every time a producer is eliminated, a circulating envelope is
also destroyed. Hence, basic attrition maintains a one-to-one correspondence
between envelopes and producers, which is crucial for its correctness. If initially
this correspondence does not hold, basic attrition will remove all envelopes or
all producers, whichever is initially fewer. Our enhancement of basic attrition
to make it self-stabilizing is to detect and correct configurations where there
are either no envelopes or no producers.

Unfortunately, the absence of envelopes cannot be detected on a purely
asynchronous message-driven system; that is why we focus our attention on
synchronous systems. Counters are added to both the processors and the mes-
sages in the envelopes. A message counter is set to n whenever a message is
sent by a producer, and is decremented by 1 each time the message is forwarded
by a non-producer. Hence, if a message’s counter ever reaches 1, the envelope
has not passed a producer for its entire journey around the ring. It therefore
causes the receiving processor to become a producer, ensuring that there is at
least one producer. Similarly, a producer sets its counter to n when it sends an
envelope, and decrements its counter each time step when it does not receive
an envelope. Hence, if a producer’s counter ever reaches 1, it has not received
an envelope during an interval long enough for the last one it sent to circulate
back to it. It therefore creates a new envelope, ensuring that there is at least
one. Finally, a non-producer behaves similarly to a producer except that it sets
its counter to 2n rather than n when it sends an envelope, which impedes any
non-producer from creating a new envelope and becoming a producer when a
producer already exists.

3.2 Specification of SSTC

Each processor on a ring of size n maintains a counter, and each producer stores
the result of a coin flip. Thus, a processor-state is a triple (Prod?, proc flip,
proc count). For processor α, the value of α.Prod? ∈ {true, false} is true
if and only if α is a producer. If α is a producer, the value of α.proc flip ∈
{heads, tails, ∗} is the current coin flip of α; if α is a non-producer, it is ∗.
The value of α.proc count ∈ Z is the value of the counter of α, which always
satisfies 1 ≤ α.proc count ≤ 2n; additionally, it satisfies 1 ≤ α.proc count ≤ n
if α is a producer.

Each envelope carries a message consisting of a coin flip and a counter.
Thus, a message-state is a pair (mess flip, mess count). For message m, the
value of m.mess flip ∈ {heads, tails} is the coin flip of m, and the value of
m.mess count ∈ Z is the counter value of m, which satisfies 1 ≤ m. mess count ≤
n.

At each time step the action of a processor α is determined by the value
of the pair (α.Prod?,α.Mess?), where Mess? is true if and only if α received
an envelope in the given time step. The function coin-flip returns a value cho-
sen randomly and independently from the uniform distribution over {heads,
tails}. The procedure set updates the processor-state. The procedure send
creates an envelope, inserts a message with the given state and sends it. Each



processor in the ring executes the algorithm SSTC .

Algorithm 1 SSTC

1 repeat for every time step:
2 let (Prod?, proc flip, proc count) be the current processor state
3 if a message is received
4 let (mess flip, mess count) be the state of the message
5 Mess? ← true
6 else Mess? ← false
7 case (Prod?, Mess?) of
8 (true, true)
9 {if not (mess flip=heads and proc flip=tails) . Prod & mess survive

10 flip←− coin-flip
11 set (true, flip, n) ; send (flip, n)
12 else . Producer & message killed

13 set (false, *, 2n)}
14 (false, true)
15 {if (mess count=1) . Message times-out

16 flip←− coin-flip
17 set (true, flip, n) ; send (flip, n)
18 else . Pass on Message

19 set (false, *, 2n) ; send (mess flip, mess count−1) }
20 (true, false)
21 {if (proc count=1) . Producer times-out

22 flip←− coin-flip
23 set (true, flip, n) ; send (flip, n)
24 else
25 set (true, proc flip, proc count−1) }
26 (false, false)
27 {if (proc count=1) . Non-producer times-out

28 flip←− coin-flip
29 set (true, flip, n) ; send (flip, n)
30 else
31 set (false, *, proc count−1)}

4 Correctness of SSTC

To prove the correctness of SSTC , we establish that the difference between
the number of producers and the number of envelopes never increases, and with
probability 1 decreases as time progresses, so long as the difference is greater
than zero. We next show that if the difference between the number of producers
and envelopes is zero, then with probability 1 the number of producers (and
thus number of envelopes) reaches one and remains at one for the remainder of
the execution. Due to space constraints, some proofs of lemmas are omitted.
All missing proofs are available in the full version of this paper [12].

For the purpose of the proof only, imagine that the processors are num-
bered from 1 to n. A configuration of the ring is given by a sequence of n



pairs, where the ith pair is a description of the state of processor i and the
state of the message at processor i, if there is one. (If there is no envelope
at a processor then the message-state is null, and since we are dealing with
synchronous systems we can assume that there is at most one message at each
processor.) Execution of SSTC starts from an arbitrary initial configuration
denoted by χ. Given χ and an infinite sequence of coin flips, E, the configura-
tion immediately following χ is determined by applying the repeat loop SSTC
once to each processor. If processor i requires a coin flip, it takes the value of
the ith bit of E. After the application, E is updated by removing its first n
bits. Given a initial configuration χ and an infinite sequence of coin flips, E,
the configuration that results after t time steps is determined by repeating the
above t times, and is denoted Config(χ,E, t).

The first three lemmas establish that within the first 3n time steps, regard-
less of E, a configuration is achieved such that each envelope has been sent by
a producer, and each processor has sent an envelope and non-producers will
henceforth only act as relays. This allows us to argue that there is a correlation
between some of the message and processor states after 3n time steps.

Lemma 4.1 For any initial configuration χ and any coin-flip sequence E and
for all r ≥ n, all envelopes in Config(χ,E, r) have been sent by a producer.

Lemma 4.2 For any initial configuration χ, and any coin-flip sequence E,
every processor has sent an envelope by time step 3n.

Say that a processor (respectively, envelope) times-out when its counter
reaches 1 and it does not receive an envelope (respectively, arrive at a producer).

Lemma 4.3 A non-producer cannot time-out after time 3n.

Given an execution from an initial configuration χ, and assuming some coin-
flip sequence E, let Prod(χ, r) denote the number of producers in Config(χ,E, r),
and let Env(χ, r) denote the number of envelopes in Config(χ,E, r).

Consider any configuration, χ, arising after time step 3n, and having at
least as many producers as envelopes. Lemma 4.4 shows that the next time-
out cannot be an envelope time-out. Only an envelope time-out, however,
can increase the number of producers while leaving the number of envelopes
unchanged. Thus the number of producers minus the number of envelopes
cannot increase. Furthermore, as established by Lemma 4.5, a configuration
with more envelopes than producers can never succeed χ.

Lemma 4.4 For every configuration χ and for every r ≥ 3n, if Prod(χ, r) ≥
Env(χ, r) then no envelopes time-out in the first round after r in which any
time-outs occur.

Lemma 4.5 For every configuration χ and for every r ≥ 3n, if Prod(χ, r) >
Env(χ, r) and the first time-out after r is at time T , then Prod(χ, T ) ≥ Env(χ, T ).



After the initial 3n steps when non-producers cease timing out, and act only
as relays, there is no substantial difference between the state and behaviour
of producers and that of messages. That is, the configuration that results
from interchanging the role of producers and messages and sending messages
backwards, is the same as that obtained from the original configuration and
sending messages forward. The next two lemmas are dual to the previous two
for the case when, at some time r, the number of envelopes is at least as big
as the number of producers, and their proofs can be derived as a consequence
of this duality between envelopes and producers. The theorem that establishes
this duality is proved in the appendix.

Lemma 4.6 For every configuration χ and for every r ≥ 3n, if Env(χ, r) ≥
Prod(χ, r) then no producers time-out in the first round after r in which any
time-outs occur.

Lemma 4.7 For every configuration χ and for every r ≥ 3n, if Env(χ, r) >
Prod(χ, r) and the first time-out after r is at time T , then Env(χ, T ) ≥ Prod(χ, T ).

The four lemmas 4.4, 4.5, 4.6, and 4.7 form the core of the proof of cor-
rectness of algorithm SSTC. They allow us to argue that as the computation
progresses, steps arise that either decrease the difference between the num-
ber of producers and envelopes or decrease the total number of producers and
envelopes until eventually exactly one producer with a matching envelope re-
mains.

A competition takes place when a producer receives an envelope. Call any
time-out or any competition a significant event, and call a time step t significant
if a significant event occurs at time t. Observe that the number of envelopes
or producers can change only at significant time steps. The proof of the next
lemma is obvious.

Lemma 4.8 For any initial configuration, significant events are guaranteed to
continually arise at intervals of at most 2n.

Let R0 = 3n, and let Ri be the ith significant time step after R0.

Lemma 4.9 If for some configuration χ and for some t ≥ 0, Prod(χ,Rt) =
Env(χ,Rt) then for every j ≥ t, Prod(χ,Rj) = Env(χ,Rj) and, with probability
1, there is a k such that for every l ≥ k Prod(χ,Rl) = Env(χ,Rl) = 1.

Proof: Consider step Rt+1. By Lemma 4.3 there cannot be a non-producer
time-out; by Lemma 4.6 there cannot be a producer time-out; by Lemma 4.4
there cannot be an envelope time-out. Therefore, the next significant event
must be a competition, and so there must be at least one producer and one
envelope. However, every competition that is won leaves the number of pro-
ducers and envelopes unchanged, and every competition that is lost removes
exactly one producer and one envelope. Hence, Prod(χ,Rt+1) = Env(χ,Rt+1).
It follows by induction that for every j ≥ t, Prod(χ,Rj) = Env(χ,Rj). Fur-
thermore, if Prod(χ,Rj) = Env(χ,Rj) = s ≥ 2 then, with probability at least



1/4, Prod(χ,Rj+1) < s. So with probability 1, eventually, say at time step Rk,
there will be one producer and one envelope. Every competition that follows
will be won, ensuring that for every l ≥ k, Prod(χ,Rl) = Env(χ, Rl) = 1.

Theorem 4.10 For any initial configuration χ, algorithm SSTC eventually
converges to (and henceforth remains in) a configuration with one envelope
and one producer.

Proof: There are three cases depending upon the relationship between
Prod(χ,R0) and Env(χ,R0). If Prod(χ,R0) = Env(χ,R0) then the theorem
follows from Lemma 4.9.

Suppose that Prod(χ,R0) > Env(χ, R0). We show that, with probability 1,
there is a k > 0 such that Prod(χ,Rk) = Env(χ,Rk). The theorem will then
follow from Lemma 4.9.

It follows from Lemmas 4.3, 4.4 and 4.5 that all time-outs after step R0 must
be producer time-outs. Hence, all significant events in the computation after
time R0 are either competitions or producer time-outs. Let δt = Prod(χ,Rt)−
Env(χ, Rt) and consider how δt changes over time. Each competition leaves δt

unchanged. Each producer time-out increases the number of envelopes by one
and leaves the number of producers unchanged, so each time-out reduces δt by
one. Furthermore, it follows from induction, Lemma 4.9 and Lemma 4.5, that
for all t, Prod(χ, Rt) ≥ Env(χ, Rt), so δt ≥ 0. Therefore, there can be at most
Prod(χ,R0)− Env(χ,R0) time-outs.

Each competition that is lost removes exactly one envelope and one pro-
ducer. So after any time Rt there can be at most Env(χ,Rt) lost competitions
before another producer time-out occurs. Since competitions are lost with prob-
ability 1/4 as long as there is more than one producer, there are a bounded
number of competitions expected before the next producer time-out as long as
Prod(χ,Rt) ≥ 2. Thus with probability 1 there will eventually be a k such that
δk = 0.

The proof for the final case when Env(χ,R0) > Prod(χ,R0) follows from
that of the previous case and the duality theorem.

5 Stabilization Complexity

Theorem 5.1 For any ring of size n, in any initial configuration, the expected
time until SSTC stabilizes to a configuration with exactly one producer and
one envelope is O(n log n).

Proof: Consider the number of producers and envelopes in the configuration
ψ that is achieved after the first 3n time steps.
CASE 1. Configuration ψ has at least as many envelopes as producers.

Let M = {m1,m2, ..., mk} be the set of envelopes in ψ. Because ψ occurs
after 3n time steps, it must contain at least one producer, and by assumption,
at most k. We assume that |M| ≥ 2, since otherwise the theorem holds trivially.



Let SSTC run for an additional 2n steps. Then partition M into two sets
A and B where A is the set of envelopes that did not have a competition during
the 2n steps, and B is the set that did.

Claim 5.2 For every envelope in A , there is a unique envelope in B that was
eliminated during the 2n time steps.

Proof: Any envelope m ∈ A cannot be received by a producer in the first
n steps, therefore it has timed-out at some processor α by step n, forcing α to
become a producer. However m cannot be received by any producer by step
2n, which implies that α is no longer a producer. The only way α could have
become a non-producer is through a lost competition with an envelope mα, in
which mα also would have been eliminated. So it suffices to show that mα ∈ B .
Because the 2n time steps were applied to configuration ψ, which arose after
SSTC had executed for 3n steps, we know by Lemmas 4.3, 4.6, and 4.7 that
non-producers and producers did not time out during the 2n time steps. Since
the only way to create a new envelope is by a processor time-out, there are no
new envelopes. Therefore mα existed in ψ and so mα ∈ B .

Corollary 5.3 |A | ≤ 1/2|M|.
To determine a lower bound on the expected number of envelopes eliminated

after the 2n steps, set xi to 1 if mi is in a lost competition in the 2n steps.
Otherwise set xi to 0. Thus x =

∑
i xi is the number of messages lost in

competitions during the 2n steps. Let RA be a random set, which contains
the messages that will be in A at the end of the 2n steps. Conditioned on
belonging to RA we assign probabilities to xi. Since every envelope in RA will
not have any competitions during the 2n steps, the probability of any of these
envelopes being in a lost competition is 0. Since |M| ≥ 2, the coin tosses of all
producers and envelopes holding competitions are independent. Thus, for each
mi /∈ RA , the probability of being in a lost competition is at least 1

4 . That is:

Pr[xi = 1|mi ∈ RA ] = 0 and Pr[xi = 1|mi /∈ RA ] ≥ 1
4

We now determine a lower bound on the expected value of x conditional on
RA , and use it to derive a lower bound on the expectation of x.

E [x|RA ] = E [
∑

i xi|RA ]

= E
[∑

mi∈RA xi|mi ∈ RA
]

+ E
[∑

mi /∈RA xi|mi /∈ RA
]

=
∑

mi∈RA
E [xi|mi ∈ RA ] +

∑

mi /∈RA
E [xi|mi /∈ RA ]

=
∑

mi∈RA
1 · Pr[xi = 1|mi ∈ RA ] +

∑

mi /∈RA
1 · Pr[xi = 1|mi /∈ RA ]

≥ 0 +
1
4
(|M \ RA |) =

1
4
(|M| − |RA |)



By Corollary 5.3 |RA | ≤ 1
2 |M|. Therefore, the expected value of x condi-

tioned on RA is bounded by E [x|RA ] ≥ 1
4 (|M| − |RA |) ≥ 1

8 |M| which is
independent of RA implying that E [x] ≥ 1

8 |M|.
Call each 2n steps a phase. It follows from Lemmas 4.6 and 4.7 that the

configuration resulting after the phase must also have at least as many envelopes
as producers and no new envelopes. Therefore the argument can be iterated,
reducing the number of remaining messages with each 2n time steps. Let Ψi

be the configuration at the end of phase i. Let Y i be the number of envelopes
in Ψi, and let Xi be the number of envelopes that have lost a competition
by the end of phase i. If M = |M| is the number of envelopes initially in ψ,
then Xi + Y i = M , and so, provided M ≥ 2,E

[
Y i+1|Y i = M

] ≤ 7
8M . This

inequality leads to E
[
Y i+1

]
< 7

8E
[
Y i

]
(see the full version of this paper for

details).
Since there are at most n envelopes in ψ, after at most log 8

7
n phases we

expect at most 2 envelopes to remain on the ring. Thus, after log 8
7

n phases
the probability that there are more than 4 envelopes remaining is less than 1/2.
Therefore, the expected number of phases until there are at most 4 envelopes
is c log n for a small constant c. It is easy to see that in an additional expected
O(1) phases the number of messages will reduce to 1. So in expected time
(2nc log n + O(n)) ∈ O(n log n) the number of messages will be reduced to 1,
and the ring will be stabilized.

CASE 2. There are at least as many producers as messages at time 3n.
This follows as a result of the duality theorem and the proof of CASE 1.
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7 Appendix: The Duality Theorem

In algorithm SSTC , there is a duality between the behaviour of messages and
producers after a small initial time interval. We first described and prove this
duality, and then exploit it to get simple proofs of Lemmas 4.6 and 4.7.



It is helpful to represent non-messages explicitly in order to highlight the
duality. Thus, we redefine a message-state as a triple (Mess?, mess flip,
mess count). For message m the value of m.Mess? ∈ { true, false } is true
if and only if m is a message. The value or m.mess flip ∈ { head, tail,∗}
is the current coin flip of m, if m is a message, and ∗ if it is not a message,
and the value or m.mess count ∈ Z ∪ {∗} is the current counter value of m,
1 ≤ m.mess count < n, if m is a message and is ∗ otherwise.

Also recall that after time 3n non-producers cannot time out (Lemma 4.3).
This means that after 3n steps, the counters of non-producers can be ignored
since they no longer will ever reach one and thus will not influence the behaviour
of the algorithm. Therefore, by eliminating non-producer counters and by
“sending” non-messages, algorithm SSTC can be rewritten (slightly), without
changing its behaviour for use after time 3n, as follows:

Algorithm 2 Dual-SSTC

1 repeat for every time step:
2 processor(Prod?,proc flip,proc count) receives message(Mess?,mess flip,mess count)
3 case (Prod?, Mess?)
4 (true, true)
5 {if not (mess flip=head and proc flip=tail)
6 flip← coin-flip
7 (new-proc, new-mess) ← ((true, flip, n), (true, flip, n))
8 else
9 (new-proc, new-mess) ←− ((false, *, *), (false, *, *)}
10 (false, true)
11 {if (mess count=1)
12 flip← coin-flip
13 (new-proc, new-mess) ← ((true, flip, n), (true, flip, n))
14 else
15 (new-proc, new-mess)← ((false, *, *), (true, mess flip, mess count−1))

}
16 (true, false)
17 {if (proc count=1)
18 flip← coin-flip
19 (new-proc, new-mess) ← ((true, flip, n), (true, flip, n))
20 else
21 (new-proc, new-mess)←((true, proc flip, proc count−1),(false,*,*))

}
22 (false, false)
23 { (new-proc, new-mess) ← ((false, *, *), (false, *, *)) }
24 processor-state ← new-proc; send (new-mess)

Define a local configuration of a processor, α, to be a pair (PS, MS) where
PS is the processor-state of α and MS is the message-state of the message at α.
(If there is no message at processor α then the message-state at α is represented
by (false, *,* ).) A configuration of the ring is given by a cyclic sequence of
n local configurations.

Let χ = (PS1, MS1), · · · , (PSn, MSn) be a ring configuration. Given χ,



one iteration of the repeat loop of Dual-SSTC determines the new ring-
configuration by updating each local configuration (PS,MS) in χ according to
which of the four possible boolean combinations holds for (PS.Proc?, MS.Mess?)
and then shifting each message component in the updated configuration one
position to the right. We capture these actions by defining:

The update function U by: U(χ) = U ((PS1, MS1), · · · , (PSn, MSn)) =
(u(PS1, MS1), · · · ,u(PSn, MSn)) . where u(PS, MS) produces the new lo-
cal configuration that results from applying the appropriate case from
the code of Dual-SSTC .

The shift function Sh by: Sh(χ) = ((PS1,MSn), · · · , (PSn, MSn−1)) .

Further, define:

The interchange function C by: C(χ) = (MS1, PS1), · · · , (MSn, PSn).

The reverse-shift function RSh by: RSh(χ) = (PS1, MS2), · · · , (PSn, MS1).

The inverse function Inv by: Inv(χ) = (PSn, MSn), · · · , (PS1, MS1).

For any configuration χ, let (f ◦ g)(χ) denote the function composition
f(g(χ)).

Claim 7.1 Let χ be any configuration, t be any time step greater than 3n,
and E be a fixed infinite sequence of coin tosses. Then Config(χ, E, t + 1) =
(Sh ◦ C ◦ U ◦ C)(Config(χ, E, t)).

Proof: Since t ≥ 3n, Config(χ,E, t + 1) can be computed using algo-
rithm Dual-SSTC . Therefore Config(χ,E, t + 1) = (Sh ◦ U)(Config(χ,E, t)).
The equality then follows by examining algorithm Dual-SSTC . For all cases
of (Prod?, Mess?), after one iteration beginning with processor-state PS and
message-state MS, (new-proc, new-mess) = u(PS, MS) = C(u(MS, PS)).

Let id denote the identity function. The following identities are immediate
from the definitions.

identity 1: id = Inv ◦ Inv

identity 2: id = C ◦ C

identity 3: Inv ◦ U = U ◦ Inv

identity 4: Inv ◦ C = C ◦ Inv

identity 5: Sh = Inv ◦ RSh ◦ Inv

identity 6: RSh = C ◦ Sh ◦ C

Theorem 7.2 Let χ be any configuration, t be any time step greater than 3n,
and E be a fixed infinite sequence of coin tosses. Then for every s ≥ 0

Config(χ, E, t + s) = (Inv ◦ C) (Config((C ◦ Inv)(Config(χ,E, t), E, s))) .1

1We assume that E always denotes the remaining sequence of coin-flips; the ones already
used are deleted from the front of the sequence.



Proof: The configuration s steps after Config(χ,E, t) is produced by s appli-
cations of (Sh ◦ U). That is Config(χ,E, t + s) = (Sh ◦ U)s(Config(χ,E, t)).
However,

Sh ◦ U = Inv ◦ RSh ◦ Inv ◦ C ◦ U ◦ C by identity 5 and claim 7.1
= Inv ◦ C ◦ Sh ◦ C ◦ Inv ◦ C ◦ U ◦ C by identity 6
= Inv ◦ C ◦ Sh ◦ Inv ◦ U ◦ C by identities 4 and 2
= Inv ◦ C ◦ Sh ◦ U ◦ C ◦ Inv by identities 3 and 4.

Therefore,

Config(χ,E, t + s) = (Sh ◦ U)s(Config(χ,E, t))
= (Inv ◦ C ◦ Sh ◦ U ◦ C ◦ Inv)s(Config(χ,E, t))
= (Inv ◦ C) ◦ (Sh ◦ U)s ◦ (C ◦ Inv)(Config(χ,E, t)))

by identities 1 and 2.
= (Inv ◦ C) (Config((C ◦ Inv)(Config(χ,E, t)), E, s)) .

Lemma 7.3 For every configuration χ and for every r > 3n, if Env(χ, r) ≥
Prod(χ, r) then no producers time-out in the first round after r in which any
time-outs occur.

Proof: Let χ be a configuration satisfying Env(χ, r) ≥ Prod(χ, r) for
r ≥ 3n, and suppose that the first time-out after r is at time r + s. Let
χ̂ = (C ◦ Inv)(Config(χ,E, r)). Note that Env(χ̂, 0) ≤ Prod(χ̂, 0). By Theorem
7.2, Config(χ,E, r + s) = (Inv ◦ C)(Config(χ̂, E, s)). Thus, if the time-out
at step r + s from χ is a producer, then there is a producer time-out for
(Inv ◦ C)(Config(χ̂, E, s)). implying that there is a message-time out at step
s from χ̂. Furthermore, this must be the first time-out for χ̂ since otherwise
there would have been a time-out earlier than s steps after r for χ. However,
by lemma 4.4, the first thing to time out for χ̂ cannot be a message, implying
that the time out for χ was not a producer.

Lemma 7.4 For every configuration and for every χ r ≥ 3n, if Env(χ, r) >
Prod(χ, r) and the first time-out after r is at time T , then Env(χ, T ) ≥ Prod(χ, T ).

Proof: Let χ be a configuration satisfying Env(χ, r) > Prod(χ, r) for
r ≥ 3n, and suppose that the first time out after r is at time r + t. Let
χ̂ = (C ◦ Inv)(Config(χ,E, r)). Note that Env(χ̂, 0) < Prod(χ̂, 0). By Theorem
7.2, Config(χ,E, r + t) = (Inv ◦ C)(Config(χ̂, E, t)). By Lemma 4.5, at the
first time-out, at time t̂, Env(χ̂, t̂) ≤ Prod(χ̂, t̂). Furthermore t̂ must equal t
because otherwise Theorem 7.2 implies there would have been an earlier time
out for χ. So Env(χ̂, t) ≤ Prod(χ̂, t) and thus the number of producers in
(Inv ◦ C)(Config(χ̂, E, t)) is less than or equal to the number of messages in
(Inv ◦ C)(Config(χ̂, E, t)). That is Env(χ, r + t) ≥ Prod(χ, r + t).


