
Cryptographic Counters
and Applications to Electronic Voting

Jonathan Katz1, Steven Myers2, and Rafail Ostrovsky3

1 Telcordia Technologies and
Department of Computer Science, Columbia University.

jkatz@cs.columbia.edu
2 Department of Computer Science, University of Toronto†

myers@cs.toronto.edu
3 Telcordia Technologies, Inc., 445 South Street, Morristown, NJ 07960.

rafail@research.telcordia.com

Abstract. We formalize the notion of a cryptographic counter, which
allows a group of participants to increment and decrement a crypto-
graphic representation of a (hidden) numerical value privately and ro-
bustly. The value of the counter can only be determined by a trusted
authority (or group of authorities, which may include participants them-
selves), and participants cannot determine any information about the
increment/decrement operations performed by other parties.
Previous efficient implementations of such counters have relied on fully-
homomorphic encryption schemes; this is a relatively strong requirement
which not all encryption schemes satisfy. We provide an alternate ap-
proach, starting with any encryption scheme homomorphic over the ad-
ditive group Z2 (i.e., 1-bit xor). As our main result, we show a general
and efficient reduction from any such encryption scheme to a general
cryptographic counter. Our main reduction does not use additional as-
sumptions, is efficient, and gives a novel implementation of a general
counter. The result can also be viewed as an efficient construction of a
general n-bit cryptographic counter from any 1-bit counter which has
the additional property that counters can be added securely.
As an example of the applicability of our construction, we present a
cryptographic counter based on the quadratic residuosity assumption
and use it to construct an efficient voting scheme which satisfies universal
verifiability, privacy, and robustness.

1 Introduction

1.1 Cryptographic Counters

In this paper we present an efficient and secure protocol for calculating the sum
of integers, where each integer is held privately by a single participant. Although
it is clear that this can be achieved via the completeness results for multi-party
computation (see [14] for a complete review of multi-party computation and
† Work done while the author was at Telcordia Technologies.

B. Pfitzmann (Ed.): EUROCRYPT 2001, LNCS 2045, pp. 78–92, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Cryptographic Counters and Applications to Electronic Voting 79

related results), such constructions are only of theoretical interest as they are
too inefficient to be of practical use. In order to construct our secure addition
protocol, we introduce an abstraction we call a cryptographic counter that may
be of independent interest. In particular, such counters may have a variety of
applications, especially as subroutines in larger multi-party computations. We
give a formal definition of cryptographic counters, and provide a construction
based on any encryption scheme homomorphic over the additive group Z2.

Informally, a cryptographic counter is a public string which can be viewed as
an encryption of a value such that the value is hidden from all participants except
a trusted authority (who holds some secret key). Only the trusted authority can
decrypt and thereby determine the value of the counter, whereas all participants
have the ability to increment or decrement (update) the counter by an arbitrary
amount. Information about updates (e.g., whether the counter was incremented
or decremented) is kept hidden from all other participants. We also consider
restricted cryptographic counters for which the set of legal update operations is
constrained in some publicly-known way.

Previous constructions of cryptographic counters (in the context of voting
schemes) have relied on what we call fully-homomorphic encryption. Informally,
this is an encryption scheme for which, for any n0 > 0, there is some choice of
the security parameter such that the resulting encryption is homomorphic over
(the additive group) Zn, where n ≥ n0. It is clear how a cryptographic counter
can be constructed given this strong property (the difficult aspects of previous
constructions were providing efficient proofs of validity and achieving threshold
decryption). In this paper, we provide a construction of an n-bit cryptographic
counter based on any 1-bit cryptographic counter that also allows secure addition
(mod 2) of multiple counters. This immediately implies a construction from any
encryption scheme homomorphic over Z2. As a concrete example, we present an
efficient n-bit counter based only on the quadratic residuosity assumption.

Addition is a useful function to compute privately, as many of the currently-
proposed applications of secure multi-party computation rely heavily on sum-
ming secret values held by different individuals. It has particular relevance to the
problem of secure electronic voting, in which each participant holds a vote which
is either 0 or 1, and the participants wish to determine the tally without revealing
individual votes. As an example of the applicability of cryptographic counters, we
use them to build a secure voting scheme and compare it to previously-proposed
solutions. In particular, ours is the first efficient construction of a voting scheme
which is not based on fully-homomorphic encryption.

1.2 Secure Electronic Voting

An electronic voting scheme is a protocol allowing voters to cast a vote by
interacting with a set of authorities who collect the votes, tally them, and publish
the final result. There are a variety of properties which may be desired of an
electronic voting scheme; however, the cryptographic literature has traditionally
focused on the following three requirements:



80 Jonathan Katz, Steven Myers, and Rafail Ostrovsky

Privacy ensures that an individual’s vote is kept hidden from (any reasonably-
sized coalition of) other voters and even the authorities themselves.

Universal Verifiabilitymeans that any party, including a passive observer, can
be convinced that all votes cast were valid and that the final tally was computed
correctly.

Robustness guarantees that the final tally can be correctly computed even in
the presence of faulty behavior of a number of parties.

It is furthermore desirable to minimize the interaction between parties. In par-
ticular, voters should not have to interact with each other to cast a vote or
(ideally) to prove validity of votes, and the authorities should be able to remain
off-line until the election is concluded. Other features are not considered in the
present work. For example, information-theoretic privacy is sometimes required
[8], while we only require computational privacy. Receipt-freeness [2] and pre-
venting vote-duplication can be achieved by other means (see, for example, [17])
and are not considered here.

Many voting schemes meeting the above requirements have been proposed
[6,3,4,8,9,23,10]. However, all previously-known schemes achieving universal ver-
ifiability rely on fully-homomorphic encryption schemes, where the homomor-
phism is over additive group Zn and n is larger than the number of voters (our
use of the term “fully-homomorphic” is explained above). One typical paradigm
is as follows: say voter i wishes to cast vote vi, where, for a valid vote, we have
vi ∈ {0, 1}. To vote, voter i publicly posts1 Epk(vi), the encryption of vi under
some public key established by the set of authorities. When everyone has voted,
the authorities compute the product of the encryptions (which can be publicly
computed) and decrypt the result; this gives the correct final tally since:

Dsk (Epk(v1) · · · Epk(vN )) = v1 + · · ·+ vN ,

where equality holds by the homomorphic properties of the encryption scheme.
Depending on the level of trust in the authorities, they may also provide a (pub-
licly verifiable) proof that decryption was done correctly. In this way, everyone
is assured that all votes were correctly counted.

Many examples of fully-homomorphic encryption schemes are known (for ex-
ample: [12,6,21]). The voting schemes of [6,3,4] are based on the r-th residuosity
assumption, those of [8,9,23] are based on the discrete logarithm assumption in
prime groups, and the scheme of [10] is based on hardness of deciding residue
classes in Z

∗
N2 . Even so, it is interesting to determine the minimal assumptions

under which an efficient voting protocol can be constructed.
We show how privacy and universal verifiability can be achieved without

fully-homomorphic encryption. Our construction uses an n-bit counter which, in
turn, is constructed from any encryption scheme homomorphic over Z2 (i.e., the
1 This might be accompanied by a proof of validity, but for simplicity we focus here
on that portion of the protocol which relies on the homomorphic properties of the
encryption.



Cryptographic Counters and Applications to Electronic Voting 81

Table 1. Efficiency of some voting schemes. L is the number of voters,M is the number
of authorities, k1 is a security parameter, and 2−k2 is a bound on the probability of
cheating (in [8,9], the probability of cheating is 2−k1). Computation is measured in
bitwise operations, assuming multiplication of k-bit numbers requires O(k2) operations.

Size of Vote + Proof Voter Computation Authority Computation
[8] O(k1M) O(k3

1M) O(k3
1L)

[9] O(k1) O(k3
1) O(k3

1L)
Present work O(k1k2 logL) O(k2

1k2 logL) O(k2
1 logL+ L)

1-bit xor operation). Using as a specific example the well-studied encryption
scheme based on the hardness of deciding quadratic residuosity [16], we show
how to achieve robustness as well.

Often, basing a result on a weaker assumption results in an impractical
scheme. However, our resulting voting scheme is efficient enough to be practical.
A comparison of the efficiency of our construction with those of [8,9] appears in
Table 1. Our simplest solution, while being both size- and computation-efficient,
requires sequential execution and hence O(L) rounds (as compared with previ-
ous solutions which require O(1) rounds). We discuss ways of dealing with this
issue in Section 5.

2 Definitions

In this section we formalize the notion of a cryptographic counter. Although
related notions have been folklore in the cryptographic community (particularly
in the context of electronic voting), a formal definition has, to the best of our
knowledge, not previously appeared.

Counters. In order to more easily define a cryptographic counter, we first need
a formal definition of a counter.

Definition 1. An n-counter consists of a set S along with a pair of algorithms
(D,T ) in which:

– S = {s1, . . .} represents the set of states of the counter.
– D, the decoding algorithm, is a deterministic algorithm which takes as input

a state s ∈ S and returns a number i ∈ Zn. This defines a mapping from
states in S to numbers in the range [0, n− 1].

– T , the transition algorithm, is a probabilistic algorithm which takes as input
a state s ∈ S and an integer i ∈ Zn and returns a state s′ ∈ S. This function
defines legal update operations on the counter.

We require that for all s ∈ S and i ∈ Zn, if s′ ← T (s, i), then D(s′) = D(s) +
i mod n.

Note that subtraction of integer i can be done by simply computing the inverse
of i in Zn and adding −i using the transition algorithm.



82 Jonathan Katz, Steven Myers, and Rafail Ostrovsky

Cryptographic Counters. We now turn to the definition of a cryptographic
counter. We first define its components, and follow this with definitions of se-
curity against two types of adversaries: honest-but-curious and malicious. All
algorithms are assumed to run in time polynomial in the security parameter k,
and n is fixed independently of k.

Definition 2. A cryptographic n-counter is a triple of algorithms (G, D, T ) in
which:

– G, the key generation algorithm, is a probabilistic algorithm that on input
1k outputs a public key/secret key pair (pk,sk) and a string s0. The secret
key, in turn, implicitly defines2 an associated set of states Ssk. It is the case
that s0 ∈ Ssk.

– D, the decryption algorithm, is a deterministic algorithm that takes as input
a secret key sk and a string s. If s ∈ Ssk, then D outputs an integer i ∈ Zn.
Otherwise, D outputs ⊥.

– T , the transition algorithm, is a probabilistic algorithm that takes as input
the public key pk, a string s, and an integer i ∈ Zn and outputs a string s′.

For any (pk, sk) output by G(1k), define D′ = D(sk, ·) and T ′ = T (pk, ·, ·). Then
we require that the set Ssk along with algorithms (D′, T ′) define an n-counter.
Furthermore, we require that D′(s0) = 0 (this represents initialization of the
counter to 0).

Security (Honest-but-Curious). We briefly describe the attack scenario
before giving the formal definition. Adversary A is given the public key and the
initial state s0. The adversary then outputs3 a sequence of integers i1, . . . , i� ∈
Zn. The state is updated accordingly; that is, the transition algorithm T is run
� times, generating s1, . . . , s�. All intermediate states are given to the adversary,
who then outputs x0, x1 ∈ Zn. A bit b is selected at random, and the counter
is incremented by xb to give state s∗. The adversary, given s∗, must then guess
the value of b.

Definition 3. We say that cryptographic n-counter (G, D, T ) is secure against
honest-but-curious adversaries if, for all poly-time adversaries A, the following
is negligible (in k):∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr




(pk, sk, s0)← G(1k)
(i1, . . . , i�)← A(1k, pk, s0)
s1 ← T (pk, s0, i1); . . . ; s� ← T (pk, s�−1, i�)
(x0, x1)← A(s1, . . . , s�)
b← {0, 1}
s∗ ← T (pk, s�, xb)
b′ ← A(s∗)

: b′ = b



− 1/2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

2 Note that membership in Ssk may not be efficiently decidable when given only pk.
We require, however, that membership is efficiently decidable, given sk.

3 These integers may be chosen adaptively, but for simplicity we present the non-
adaptive case here. Note that the construction of Section 3.2 achieves security against
an adaptive adversary as well.



Cryptographic Counters and Applications to Electronic Voting 83

Security (Malicious). An honest-but-curious adversary is restricted to hav-
ing the increment operations (which he must distinguish between) performed
on a state distributed according to the output of the transition algorithm T . A
malicious adversary, in contrast, is allowed to select the state to be incremented
freely. In fact, we allow the adversary to select any string to be incremented
by T ; this allows us to deal with the case in which there is no efficient way to
determine whether a string s is a valid state (i.e., whether s ∈ Ssk).

Definition 4. We say that cryptographic n-counter (G, D, T ) is secure against
malicious adversaries if, for all poly-time adversaries A, the following is negli-
gible (in k):

∣∣∣∣∣∣∣∣∣∣
Pr




(pk, sk, s0)← G(1k)
(s, x0, x1)← A(1k, pk, s0)
b← {0, 1}
s∗ ← T (pk, s, xb)
b′ ← A(s∗)

: b′ = b


− 1/2

∣∣∣∣∣∣∣∣∣∣
.

Verifiable Counters. It may sometimes be useful to verify whether tran-
sitions were indeed computed correctly. For example, when using a counter for
voting, it should be publicly verifiable that each voter acted in a correct manner.
We therefore define the notion of a verifiable cryptographic counter as follows:

Definition 5. A verifiable cryptographic n-counter is a tuple (G, D, T, V ) such
that:

– (G, D, T ) is a cryptographic n-counter.
– V , the verification algorithm, is a probabilistic algorithm satisfying complete-

ness and soundness for all (pk, sk) output by G, as follows:
1. (Completeness) For all s ∈ Ssk, if s′ ← T (pk, s, i) for some i ∈ Zn, then:

V (pk, s, s′) = 1.

(Note that V does not require i as input.)
2. (Soundness) For all s and all strings s′ such that for all i, s′ is not in

the range of T (pk, s, i), the following probability is negligible (in k):

Pr[V (pk, s, s′) = 1].

Restricted Counters. Definitions 1, 2, and 5 may be modified to allow for the
possibility that although the counter can store values in Zn, update operations
are restricted to some subset of Zn. We call counters with this property restricted.
An illustrative example is a counter used in a voting scheme. Although the
counter needs to be able to store values up to L (the number of voters), it may
be required to restrict update operations to the set {0, 1} (representing a yes/no
vote). Modifications to the definitions are straightforward.



84 Jonathan Katz, Steven Myers, and Rafail Ostrovsky

Additive Counters. The transition algorithms described above take an old
state s and an integer i and output a new state s′ which represents the old value
incremented by i. However, definitions 1 and 2 may be modified such that the
transition algorithm takes an old state s and a second state s′ and then outputs a
new state s′′ which represents the old value incremented by the value stored in s′.
Such counters are termed additive. Note that additive cryptographic n-counters
include the case of homomorphic encryption over Zn; yet, the former are more
general since the transition algorithm need not be multiplication. Definitions 3
and 4 can be modified for the case of additive counters in the natural way.

3 Constructing Cryptographic Counters

In Sections 3.1 and 3.2, we describe the construction of a cryptographic n-counter
based on any 1-bit additive cryptographic counter. We also discuss the extension
to the case of verifiable cryptographic counters. In Section 3.4, using as a par-
ticular example the encryption scheme based on quadratic residuosity [16] (see
Appendix A), which is homomorphic over Z2, we give an efficient construction
of a verifiable cryptographic n-counter where update operations are restricted
to {0, 1}. This provides a natural foundation for a voting protocol; we discuss
this connection further in Section 4.

3.1 Linear Feedback Shift Registers

Before presenting our main result, we provide an introduction to the theory of
linear feedback shift registers; a more comprehensive treatment can be found
in [20,19]. Let r1, r2, . . . ∈ {0, 1} be a sequence of elements (called registers)
satisfying the k-th order linear recurrence relation:

rj+k = bkrj+k−1 + · · ·+ b1rj , (1)

where bi ∈ {0, 1} (throughout this section, addition is over the field Z2). The
sequence r1, r2, . . . is called a linear recurring sequence. Once the terms r1, . . . , rk

have been fixed, the rest of the sequence is uniquely determined. Define the j-
th state of this sequence to be the vector (rj , . . . , rj+k−1). Equation (1) defines
transitions between these states: given state s = (r1, . . . , rk), the next state
s′ = (r′

1, . . . , r
′
k) can be computed as follows:

r′
i =

{
ri+1 1 ≤ i < k
f(r1, . . . , rk) i = k

,

where the function f is given by (1) as:

f(r1, . . . , rk) = bkrk + · · ·+ b1r1.

This sequence of states defines a linear feedback shift register (LFSR). For the
present application, it is important to note that f can be computed using xor
operations only.



Cryptographic Counters and Applications to Electronic Voting 85

Since an LFSR has a finite set of states, the sequence of states eventually
repeats. The number of states which appear before the first state repeats (and
the sequence begins again) is called the period. Clearly, an LFSR with period n
can be used to count from 0 to n−1: choose an arbitrary initial state giving rise
to a sequence of period n, label this initial state “0”, and label every succeeding
state by one more than the label of its predecessor.

It is possible to associate with every LFSR (whose underlying recurrence
relation is given by Equation (1)) the characteristic polynomial g(x) = xk −
bkx

k−1 − · · · − b1. The period of an LFSR is related to the order of its charac-
teristic polynomial. In particular, if the characteristic polynomial of an LFSR is
primitive4, then the LFSR has maximum possible period 2k − 1 (assuming the
initial state of the LFSR is not the zero vector) [20,19]. Primitive polynomials
can be generated efficiently using a probabilistic algorithm [22]. It is thus pos-
sible to efficiently construct an LFSR which counts from 0 to n − 1 using the
minimum possible �log2 n� registers (each representing a single bit).

Given a state s of an LFSR (and assuming knowledge of the initial state),
it is easy to decode the state and determine the number it represents by either
counting down from s to the initial state, or counting up from the initial state
until state s is reached. This requires time O(n). This procedure is fast, however,
even for large5 n, since each state transition consists of only simple, bitwise
manipulations (shifts and xors). More efficient approaches are mentioned in
Section 3.3.

3.2 General Construction of a Cryptographic Counter

Theorem 1. An additive cryptographic 2-counter secure against honest-but-
curious (resp. malicious) adversaries implies the existence of a cryptographic
n-counter secure against honest-but-curious (resp. malicious) adversaries, for
all n of the form n = 2x − 1.

Sketch of Proof An encryption scheme homomorphic over (the additive
group) Z2 is an example of an additive cryptographic 2-counter secure against
honest-but-curious adversaries. For ease of exposition, we describe the construc-
tion of a cryptographic n-counter using an encryption scheme (G, E ,D) which is
homomorphic over Z2; it should be clear, however, that a substantially-similar
construction yields a cryptographic n-counter starting from any additive cryp-
tographic 2-counter.

We show how to use the encryption scheme as a building block to construct
a cryptographic n-counter. First, note that an LFSR (as described in Section
3.1) is an n-counter. The idea behind the construction is as follows: since only
xor operations are needed to effect transitions, the encryption scheme allows

4 A polynomial g ∈ Z2[x] of degree k is primitive if the smallest integer N for which
g|(xN − 1) is N = 2k − 1.

5 For a typical voting scheme, n will be on the order of the number of voters. So, even
for the U.S. election, we have n only (roughly) 108.



86 Jonathan Katz, Steven Myers, and Rafail Ostrovsky

a participant to change the counter without leaking any information about the
transition. Below is a complete description of the protocol (here, � = �log2 n�):
Key Generation Algorithm G′(1k):

1. Run G(1k) to generate public key pk0 and secret key sk0.
2. Generate a primitive polynomial g ∈ Z2[x] of degree � using [22].
3. Set r1 = Epk0

(1) and r2 = Epk0
(0), . . . , r� = Epk0

(0).
4. Set s0 = (r1, . . . , r�), sk = (sk0, g), and pk = (pk0, g). Output pk, sk, and

s0.

Transition Algorithm [defined for i ∈ Zn] T ((pk0, g), (r1, . . . , r�), i):

1. Polynomial g defines (nonzero) f(r1, . . . , r�) = b�r� + · · ·+ b1r1 (see Section
3.1).

2. Repeat the following procedure i times6:
(a) Set r′

1 = r2; . . . ; r′
�−1 = r�.

(b) Set r′
� =

∏�
i=1 r

bi
i .

(c) Set r1 = r′
1; . . . ; r� = r′

�.
3. Set r′

i = ri · Epk0
(0), for 1 ≤ i ≤ �. Output s′ = (r′

1, . . . , r
′
�).

Decryption Algorithm D(sk = (sk0, g), s = (r1, . . . , r�)):

1. Let r∗
i = Dsk0(ri), for 1 ≤ i ≤ �.

2. Let s∗ = (r∗
1 , . . . , r

∗
k)

3. Increment the LFSR defined by polynomial g, beginning with initial state
(1, 0, . . . , 0), until reaching state s∗. Let t be the number of transitions made.
Output t.

The protocol described above is a cryptographic n-counter secure against an
honest-but-curious adversary. To see this, fix n. The size of the LFSR, �, is thus
a constant (independent of the security parameter). A simple hybrid argument
shows that an adversary cannot distinguish between random representations of
any two states of the counter. Therefore, an adversary cannot gain any infor-
mation about the current value of the counter, nor about transitions made. We
leave a formal proof to the full version of the paper.

Note that if we start with a cryptographic 2-counter secure against malicious
adversaries, the above construction is also secure against malicious adversaries.
When using an arbitrary encryption scheme homomorphic over Z2, the above
construction is secure against malicious adversaries if it can be efficiently deter-
mined (given pk) whether a string represents a valid ciphertext7; in this case,
the transition algorithm must first check whether every register in s represents
a valid ciphertext before computing s′ (if this is not true, it aborts). ��
6 This algorithm can be made significantly more efficient to run in time polynomial
in log n. This is discussed briefly in Section 3.3.

7 For example, in the case of encryption using quadratic residuosity, it is possible to
tell whether a string C is a valid ciphertext by checking that the Jacobi symbol of
C is 1.



Cryptographic Counters and Applications to Electronic Voting 87

In order to make the above construction verifiable, only a few changes are
needed. First, we include a random string τ in the public key. Additionally, we
change the transition algorithm so that after s′ has been output, we append a
non-interactive zero-knowledge proof (NIZK) [5] using random string τ that the
transition from s to s′ was valid. The verification algorithm V runs the proof-
verification algorithm for the NIZK proof. If the proof verification succeeds, the
verification algorithm outputs 1; otherwise, it outputs 0. A verifiable, restricted
n-counter can be constructed in a similar way.

3.3 Observations on the Cryptographic Counter Construction

Linear feedback shift registers have an algebraic interpretation: the state of an
�-bit LFSR represents an element of GF ∗(2�). Incrementing the counter cor-
responds to multiplication of the state by a generator, g, of the multiplicative
group in GF ∗(2�). This allows for two important gains in efficiency, which are
highlighted below.

First, the counter may be efficiently updated by values larger than 1. In
particular, the counter may be incremented by value i in only O(�2 log i) steps,
as opposed to the O(� · i) steps used in the transition function of Section 3.2.

Next, note that the state of the LFSR can be viewed as an element of the
form gj in GF ∗(2�). Therefore, one can use algorithms for solving the discrete
logarithm problem to determine the value represented by the state of the LFSR,.
In particular, it is relatively straightforward to determine the value of an �-bit
LFSR in time

√
2�, and an algorithm due to Coppersmith [7] allows decoding in

time O(2�1/3(log2/3 �)).

3.4 An Efficient Cryptographic Counter

The well-known encryption scheme based on quadratic residuosity [16] (see Ap-
pendix A) is homomorphic over Z2. Application of Theorem 1 (see also foot-
note 7) shows that the construction outlined there results in a cryptographic
counter secure against malicious adversaries when instantiated with this encryp-
tion scheme. If we are interested in verifiability, however, the generic construction
of Section 3.2 will be impractical unless there exists an efficient NIZK proof that
the transition algorithm was executed correctly. In the case of quadratic resid-
uosity, we show that efficient NIZK proofs are possible. Since we are interested
in eventual applications to electronic voting, we focus on the case of a restricted
counter where transitions are limited to either no change in the counter (a 0
vote) or incrementing the counter by 1 (a 1 vote).

Consider the cryptographic counter protocol of Section 3.2, instantiated with
encryption based on quadratic residues. Let N be a Blum integer which is part
of the associated public key. The string s = (r1, . . . , r�) (with ri ∈ Z

+1
N ) is a

cryptographic representation of some state of the LFSR, but this underlying
state cannot be determined unless one knows the secret key. However, following
a transition to s′ = (r′

1, . . . , r
′
�), there are two possibilities: either

QRN (r′
i) = QRN (ri), for 1 ≤ i ≤ �, (2)



88 Jonathan Katz, Steven Myers, and Rafail Ostrovsky

Prover Verifier

r1, . . . , r� ∈R Z∗
N

s1, . . . , s� ∈R Z∗
N

b ∈R {0, 1}
t1 = r2

1X1, . . . , t� = r2
� X�

u1 = s2
1Y

b
1 , . . . , u� = s2

�Y
b

� ✲t1, . . . , t�, u1, . . . , u�

c ∈R {0, 1}
✛ c

b′ = b ⊕ c; b′′ = b′ ⊕ 1

z1 = r1x
b′′
1 , . . . , z� = r�x

b′′
� ✲z1, . . . , z�, s1, . . . , s�, b

′, b
b′ ⊕ b

?= c

z2
1Xb′

1
?= t1, . . .

s2
1Y

b
1

?= u1, . . .

Fig. 1. Proof of validity for a counter transition.

which represents a 0 vote, or

QRN (r′
i) = QRN (ri+1), for 1 ≤ i < � and QRN (r′

�) = QRN (
�∏

i=1

rbi
i ), (3)

(with bi as defined in Section 3.2), which represents a 1 vote. We seek an NIZK
proof that either condition (2) or condition (3) holds. Note that these conditions
are equivalent to the following: either

QRN (r′
i · ri) = 0, for 1 ≤ i ≤ �, (4)

or else

QRN (r′
i · ri+1) = 0, for 1 ≤ i < � and QRN (r′

� ·
�∏

i=1

rbi
i ) = 0. (5)

Therefore, an NIZK proof that one of (4) or (5) holds is sufficient.
In Figure 1 we describe a protocol which takes as input two sequences

X1, . . . , X� and Y1, . . . , Y�, and proves the following statement:

((QRN (X1)=0)∧ · · · ∧ (QRN (X�)=0))∨ ((QRN (Y1)=0)∧ · · · ∧ (QRN (Y�)=0)).
(6)

By the arguments of the previous paragraph, this is sufficient for our application.
The prover knows the square roots of every element of at least one of these
sequences8 (for someone who honestly increments the counter by either 0 or 1,
8 Without loss of generality, we assume the prover knows the square roots for the
first input sequence; thus, in Figure 1, we assume the prover knows {xi} such that
x2

i = Xi, for 1 ≤ i ≤ �.



Cryptographic Counters and Applications to Electronic Voting 89

this will be the case); these are the witnesses that these elements are quadratic
residues.

By repeating this protocol k2 times, the probability of cheating is reduced to
2−k2 . This protocol can be made non-interactive using the Fiat-Shamir heuristic
[13], by which the challenge of the verifier is replaced by applying a hash function
(viewed as a random oracle [1]) to the statement to be proved and the first
message of the prover. Let H be a suitable hash function. The prover need only
send z1, s1, . . . , z�, s�, b

′, b as his proof. The verifier can compute ti = z2i X
b′
i and

ui = s2iY
b
i and then verify whether b′ ⊕ b = H(X1, Y1, t1, u1, . . . , X�, Y�, t�, u�).

Theorem 2. Take the cryptographic counter as described in Theorem 1, instan-
tiated with encryption based on quadratic residuosity. An update of the counter
now includes a non-interactive proof (as outlined in Figure 1 and using the Fiat-
Shamir heuristic) for statement (6). This then constitutes a verifiable, restricted
cryptographic n-counter (for all n of the form n = 2x−1) which is secure against
malicious adversaries.

Sketch of Proof The protocol given in Figure 1 constitutes an honest-verifier
perfect zero knowledge proof with soundness probability 1/2. The proof of this
fact follows from techniques outlined in [11]; we refer the reader there for discus-
sion and a complete proof. Repeating the proof k2 times (non-interactively, using
the Fiat-Shamir heuristic) reduces the probability of cheating to 2−k2 , and is a
non-interactive zero-knowledge proof (in the random oracle model). The counter
is thus restricted in that updates are limited to adding an integer from {0, 1},
and verifiable in that updates can be publicly verified as being in this range.

The security of the construction against a malicious adversary follows from
Theorem 1 and the zero-knowledge properties of the above protocol. ��

3.5 Distributed Decryption of the Counter

We mention that robustness with respect to the trusted authorities can be
achieved via distributed generation of the secret key along with threshold decryp-
tion of the final counter (which can always be achieved via general multi-party
techniques [15]). For the particular case when encryption is done using quadratic
residuosity, we are able to achieve efficient distributed key generation and thresh-
old decryption [18]. As this is not the focus of this work, we defer a complete
discussion until the full version of the paper.

4 Voting with Cryptographic Counters

We briefly discuss the application of cryptographic counters to the problem of
electronic voting. The discussion will be kept as general as possible. For efficient
implementation, we have outlined above how it is possible to build an efficient
scheme using the encryption scheme based on quadratic residuosity.

We follow the model introduced by Benaloh, et al. [6,3,4]. The parties partic-
ipating in the election consist of a set of voters V1, . . . , VL and a set of authorities



90 Jonathan Katz, Steven Myers, and Rafail Ostrovsky

A1, . . . , AM , which need not be disjoint. We assume that everyone has access to
a bulletin board to which all voters will post their messages. Messages are au-
thenticated, and the identity of a sender cannot be forged, nor can messages to
the bulletin board be tampered with. Messages are listed in order of arrival (or,
equivalently, every message includes the time it was sent), and no one can erase
anything from the bulletin board once posted. Note that we do not assume any
private channels between voters and the authorities. We now give a high-level
description of a voting protocol based on a restricted cryptographic counter; this
proves the following theorem:

Theorem 3. A voting scheme satisfying universal verifiability, privacy, and ro-
bustness can be efficiently constructed from any (robust) verifiable, restricted
cryptographic counter secure against malicious adversaries (where votes are re-
stricted to the set {0, 1}).
Sketch of Proof We describe the voting protocol assuming the existence of a
verifiable, restricted cryptographic n-counter (where votes are restricted to the
set {0, 1}) secure against malicious adversaries. Robustness (with respect to the
authorities) follows if the counter itself is robust (as described in Section 3.5).

System Setup. The authorities run the key generation algorithm for the cryp-
tographic n-counter. Here, n is chosen to be equal to the total number of voters
(or an upper bound on the number of voters if the exact number is unknown). If
robustness is desired, and/or if some voters are also authorities, the key genera-
tion may be done in a robust manner as outlined in Section 3.5. The public key
pk and the initial state s0 are announced to all voters. The key generation step
may be the most expensive part of the entire protocol, but it is only a one-time
operation which can be done months before the election takes place.

Voting. The counter always holds the current vote total. The current counter
value is always defined as the most recently posted (valid) counter value. Denote
the counter after the ith vote by si. The (i+ 1)th vote is cast as follows: a voter
looks at the current counter and computes new state si+1 using the transition
function, the previous state si, the desired vote v ∈ {0, 1}, and the public key
pk. The voter publishes this updated state si+1 which then becomes the current
state (since it is the most recently posted counter). This proceeds for L rounds
until every voter has voted once (see Section 5 for ways to reduce the number of
rounds).

Universal verifiability (and hence vote correctness) follows from verifiability
of the counter, and voter privacy follows from the definition of security against
a malicious adversary. Robustness with respect to the authorities follows from
the (robust) distributed key generation and decryption.

Tallying. When the election is complete, the authorities determine the final
tally by decrypting the last (valid) counter. If there is more than one trusted
authority, threshold decryption (see Section 3.5) will be necessary. It may also
be desirable to have the authorities prove correctness of the decryption; note
that it is not acceptable to just publish the secret key, since this would allow



Cryptographic Counters and Applications to Electronic Voting 91

determination of every voter’s vote retroactively. In the particular case where
encryption is done via quadratic residues, the authorities can easily prove that
decryption was done correctly by publishing an x for each encrypted value y
such that y = ±x2. ��

5 Conclusion

For small-scale elections, the voting scheme outlined here (when based on the
encryption scheme using quadratic residuosity) is efficient enough to be practical
(cf. Table 1). The required computation and vote size are quite reasonable. One
drawback to this scheme is the number of rounds required for voting to take place.
When a single cryptographic counter is used, the number of rounds is equal to
the number of voters, L. However, by using k cryptographic counters, assigning
each voter to one of k groups, and allowing voting to take place in parallel, the
number of rounds can be reduced to L/k. Even in a national election, such an
approach may be acceptable; for example, by assigning a set of counters to each
voting district.

From a theoretical point of view, the approach outlined in this paper is
especially interesting since it was previously unclear whether voting could be
done efficiently without using fully-homomorphic encryption.

References

1. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for De-
signing Efficient Protocols. ACM CCCS 1993.

2. J. Benaloh and D. Tuinstra. Receipt-Free Secret-Ballot Elections. STOC 1994.
3. J. Benaloh and M. Yung. Distributing the Power of a Government to Enhance the
Privacy of Voters. PODC 1986.

4. J. Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Yale University, Depart-
ment of Computer Science, New Haven, CT, 1987.

5. M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero-Knowledge and its Ap-
plications. STOC 1988.

6. J. Cohen and M. Fischer. A Robust and Verifiable Cryptographically Secure Elec-
tion Scheme. FOCS 1985.

7. D. Coppersmith. Fast Evaluation of Logarithms in Fields of Characteristic Two.
IEEE Transactions on Information Theory, Vol. 30, pp. 587-594, 1984

8. R. Cramer, M. Franklin, B. Schoenmakers, and M. Yung. Multi-Authority Secret-
Ballot Elections with Linear Work. Eurocrypt 1996.

9. R. Cramer, R. Gennaro, and B. Schoenmakers. A Secure and Optimally Efficient
Multi-Authority Election Scheme. Eurocrypt 1997.

10. I. Damg̊ard and M. Jurik. Efficient Protocols Based on Probabilistic Encryption
Using Composite Degree Residue Classes. Manuscript, May 2000.

11. A. De Santis, G. Di Crescenzo, G. Persiano, and M. Yung. On Monotone Formula
Closure of SZK. FOCS 1994.

12. T. ElGamal. A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. IEEE Trans. Info. Theory, 31(4): 469–472, 1985.



92 Jonathan Katz, Steven Myers, and Rafail Ostrovsky

13. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identification
and Signature Problems. CRYPTO 1986.

14. O. Goldreich. Secure Multi-Party Computation (Working Draft, Version 1.1).
Manuscript, 1998.

15. O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game, or a
Completeness Theorem for Protocols with an Honest Majority. STOC ’87.

16. S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS 28(2): 270–299, 1984.
17. M. Hirt and K. Sako. Efficient Receipt-Free Voting Based on Homomorphic En-

cryption. Eurocrypt 2000.
18. J. Katz and M. Yung. Threshold Cryptosystems with Distributed Prime Factors.

Manuscript.
19. R. Lidl and H. Niederreiter. Introduction to Finite Fields and their Applications

(Revised Edition), Cambridge University Press, 1994.
20. R. Lidl and G. Pilz. Applied Abstract Algebra (Second Edition), Springer, 1997.
21. P. Pallier. Public-Key Cryptosystems Based on Composite Degree Residue Classes.

Eurocrypt 1999.
22. J. Rifa and J. Borrell. Improving the Time Complexity of the Computation of

Irreducible and Primitive Polynomials in Finite Fields. Applied Algebra, Algebraic
Algorithms, and Error-Correcting Codes, 1991.

23. B. Schoenmakers. A Simple Publicly Verifiable Secret Sharing Scheme and its
Application to Electronic Voting. CRYPTO 1999.

A The Quadratic Residuosity Assumption

These definitions are standard [16,11]. We say y ∈ Z
∗
N is a quadratic residue modulo

N iff there exists an x ∈ Z
∗
N such that y = x2 mod N ; otherwise, y is a quadratic non-

residue modulo N . Define the predicate QRN (y) to be 0 iff y is a quadratic residue
modulo N , and 1 otherwise. For p prime, the problem of deciding quadratic residuosity
is equivalent to computing the Legendre symbol. In fact, the Legendre symbol of y
modulo p is defined by Lp(y) = +1 iff y is a quadratic residue, and −1 otherwise.

Now, let p, q ≡ 3 mod 4 be primes and let N = pq (such N are known as Blum
integers). No efficient algorithm is known for deciding quadratic residuosity modulo
a Blum integer whose factorization is not known. Some information is given by the
Jacobi symbol, which extends the Legendre symbol as JN (y) = Lp(y)Lq(y). Despite
the way the Jacobi symbol is defined, it is well-known that it can be computed in
polynomial time without knowledge of the factors of N . Application of the Chinese
Remainder Theorem shows that if JN (y) = −1, then y cannot be a quadratic residue
modulo N . On the other hand, if JN (y) = +1, no polynomial-time algorithm is known
for computing QRN (y) if the factorization of N is unknown.

Define Z
+1
N as the set of elements of Z

∗
N with Jacobi symbol 1. It is easy to generate

a random y ∈ Z
+1
N which is a quadratic residue: choose random r ∈ Z

∗
N and set

y = r2 mod N . It is equally easy to generate a random quadratic non-residue: choose
random r ∈ Z

∗
N and set y = −r2 mod N . This suggests the following semantically

secure encryption scheme [16]: the public key is a Blum integer N , and the secret key
is the prime factors of N . To encrypt a 0, send a random quadratic residue; to encrypt
a 1, send a random quadratic non-residue. This can be extended to n-bit messages in
the obvious way, by concatenating n single-bit encryptions.

When y1, y2 ∈ Z
+1
N , it is easily verified that QRN (y1y2) = QRN (y1) ⊕ QRN (y2).

This shows that the above encryption scheme is homomorphic over addition in its
message space Z2.


	Introduction
	Cryptographic Counters
	Secure Electronic Voting 

	Definitions
	Constructing Cryptographic Counters
	Linear Feedback Shift Registers 
	General Construction of a Cryptographic Counter 
	Observations on the Cryptographic Counter Construction 
	An Efficient Cryptographic Counter 
	Distributed Decryption of the Counter 

	Voting with Cryptographic Counters 
	Conclusion 
	References
	The Quadratic Residuosity Assumption 

