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ABSTRACT
Many areas of study, such as information retrieval, collabo-
rative filtering, and social choice face the preference aggre-
gation problem, in which multiple preferences over objects
must be combined into a consensus ranking. Preferences
over items can be expressed in a variety of forms, which
makes the aggregation problem difficult. In this work we
formulate a flexible probabilistic model over pairwise com-
parisons that can accommodate all these forms. Inference
in the model is very fast, making it applicable to problems
with hundreds of thousands of preferences. Experiments on
benchmark datasets demonstrate superior performance to
existing methods.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models; I.2.6 [Artificial
Intelligence]: Learning

General Terms
Algorithms, Experimentation, Theory

Keywords
Preference Aggregation, Meta Search, Collaborative Filter-
ing

1. INTRODUCTION
Preference aggregation is the problem of combining multi-

ple preferences over objects into a single consensus ranking.
This problem is crucially important in many applications,
such as information retrieval, collaborative filtering and so-
cial choice. Across various domains, the preferences over
objects are expressed in several different ways, ranging from
full and partial rankings to arbitrary comparisons. For in-
stance, in meta-search an issued query is sent to several
search engines and the (often partial) rankings returned by
them are aggregated to generate more comprehensive rank-
ing results. On the other hand, in online gaming the goal is
typically to estimate the rank/skill of the players that partic-
ipate in 1-on-1 games as well as tournaments. The resulting
evidence of players’ skill thus comes in the form of pairwise
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comparisons as well as partial tournament rankings, with
many observations of the form ”a beat b” and ”b beat a”.

Given the underlying correspondence between ranking and
permutation, considerable work in machine learning has ex-
ploited probabilistic models on permutations, many of which
originate in statistics and psychology. Mallows [18] and
Plackett-Luce [22, 17] are particularly popular models, each
with many extensions [9, 23, 16]. However, research has
largely concentrated on learning a consensus ranking based
on a set of observed full, or partial rankings. These mod-
els are thus inadequate for problems where preferences are
expressed in other forms, and where inconsistencies exist in
the observed preferences, such as ”a beat b”, ”b beat c”, and
”c beat a”.

In this paper we address this problem by developing a flex-
ible probabilistic model over pairwise comparisons. Pairwise
comparisons are the building blocks of almost all forms of
evidence about preference and subsume the most general
models of evidence proposed in literature. Our model can
thus be applied to a wide spectrum of preference aggregation
problems and does not impose any restrictions on the type
of evidence. The score-based approach that we adopt allows
for rapid learning and inference, which makes the model ap-
plicable to large-scale problems with hundreds of thousands
of preferences. Experiments on a meta-search task with Mi-
crosoft’s LETOR4.0 [14] data sets show that our model out-
performs existing state-of-the-art methods designed specifi-
cally for this task.

2. FRAMEWORK
We assume a set of M items X = {x1, ..., xM} and a

set of N agents. Each agent n generates a list of prefer-
ences for items in X. The preferences can be in the form
of full or partial rankings, ratings, relative item compar-
isons, or combinations of these. All of these forms can be
converted to a set of partial pairwise preferences, which in
most cases will be neither complete nor consistent. We use
{xi � xj} to denote the preference of xi over xj . We allow
the same pairwise preferences to occur multiple times, and
use the pairwise count matrix Cn(i, j) : M ×M to count the
number of times preference {xi � xj} is produced by the
agent n, with Cn(i, j) = 0 if {xi � xj} is not expressed by
n. The most straightforward way to convert rankings into
pairwise preferences is through binary comparisons. Given
two rankings rni and rnj assigned by n to xi and xj we set
Cn(i, j) = I [rni < rnj ] where I is an indicator function, sim-
ilarly Cn(j, i) = I [rni > rnj ]. This representation, however,
completely ignores the strength of preference expressed by



the magnitude of the rankings. For example, the partial
ranking {1, 200, 300} will have the same count matrix as the
ranking {1, 2, 3}, but the first ranking expresses significantly
more confidence about the ordering of the items than the
second one. To account for this we instead use Cn(i, j) =
(rnj −rni)I [rni < rnj ] and Cn(j, i) = (rni−rnj)I [rni > rnj ].
In this form we assume that ranking {rni = 1, rnj = 200}
is equivalent to observing the pairwise preference {xi � xj}
199 times, whereas ranking {rni = 1, rnj = 2} is equivalent
to observing {xi � xj} only once. This method of account-
ing for preference strength is not new and the reader can re-
fer to [8, 11] for more extensive treatment of this and other
approaches for converting rankings to pairwise matrices.

A ranking of items in X can be represented as a permuta-
tion of X. A permutation π is a bijection π : X → {1, ..., M}
mapping each item xi to its rank π(i), and xi = π−1(i).
Given the observed (partial) preference instance consisting
of count matrices {C1, ..., CN} the goal is to come up with a
single ranking π of items in X that maximally satisfies this
instance.

Most preference aggregation problems fit this framework.
For instance in meta-search X is the set of documents re-
trieved for a given query. Each search engine n generates
either partial or complete ranking of the documents in X.
As before we can let Cn(i, j) = (rnj − rni)I [rni < rnj ] if
documents xi and xj are both ranked by the search engine
n and set Cn(i, j) = 0 otherwise. In collaborative filtering
X is the set of movies/songs/books etc., and an instance of
the rank aggregation problem aims to infer the consensus
ranking of movies given the (partial) ratings of N users [8,
9]. The pairwise approach provides a natural way to model
this problem. We can define Cn(i, j) = (lni− lnj)I [lni > lnj ]
where lni and lnj are the ratings assigned to movies xi and
xj by user n. If n did not rate either xi or xj we set Cn(i, j)
to 0.

Finally, we note that in some settings, there are multiple
preference aggregation problems. In meta-search for exam-
ple, the same set of N search engines are the agents for multi-
ple queries, returning a set of partial rankings of the M docu-

ments for each query. We use S(�) and C(�) = {C(�)
1 , ..., C

(�)
N }

to denote the scores and pairwise counts for each query �.

3. RELATED WORK
Relevant previous work in this area can be divided into

two categories: permutation based and score based. In this
section we briefly describe both types of models.

3.1 Permutation Based Models
Permutation based models work directly in the permuta-

tion space. The most common and well explored such model
is the Mallows [18] model. Mallows defines a distribution
over permutations and is typically parametrized by a cen-
tral permutation σ and a dispersion parameter φ ∈ (0, 1];
the probability of a permutation π is given by:

P (π|φ, σ) =
1

Z(φ, σ)
φ−d(π,σ) (1)

where d(π, σ) is a distance between π and σ. For rank
aggregation problems inference in this model amounts to
finding the permutation σ that maximizes the likelihood of
the observed rankings. For some distance metrics, such as
Kendall’s tau (the difference between the proportion of item

pairs in the correct versus incorrect order w.r.t. σ), the par-
tition function Z(φ, σ) can be found exactly. However, find-
ing the central permutation σ that maximizes the likelihood
is typically very difficult and in many cases is intractable
[21].

Recent work extends the Mallows model to define distri-
butions over partial rankings [16]. Under partial rankings
the partition function can no longer be computed exactly, so
these authors introduced a new sampling approach to esti-
mate it. When M is large, however, this sampling approach
is typically very slow, which makes the model impractical
for many large scale online problems such as meta-search
where aggregation has to be done very quickly. Further-
more, both the proposed pairwise model and the sampling
approach rely on the assumption that all pairwise prefer-
ences are consistent, which is often violated in real-world
preference aggregation problems.

Several other generalizations of the Mallows model such
as the CPS model [23], the Aggregation model [12] and
the Cranking model [13] have recently been explored. Due
to space limitations we only discuss the CPS model here.
CPS defines a sequential generative process, similar to the
Plackett-Luce model described below, which draws the items
without replacement to form a permutation; the probability
of a given permutation π is:

P (π|σ, φ) =
MY

i=1

exp(−φ
P

r∈Ωπ1:i
d(r, σ))

Z(i, π)
(2)

where Ωπ1:i is a set of permutations where the first i posi-
tions are fixed to π; Z(i, π)’s are the normalizing constants
that ensure that

P
π P (π|σ, φ) = 1. For several distance

metrics such as Spearman’s rank correlation and footrule
as well as Kendall’s tau, the summation

P
r∈Ωπ1:i

d(r, σ)

over (M − i)! elements, can be found in O(M2), allowing
the normalizing constants Z(i, π) to be computed in polyno-
mial time. However, during inference one must still consider
nearly all of the M ! possible permutations to find an optimal
σ. A greedy approximation avoids this search, which reduces
the complexity to O(M2), but provides no guarantee with
respect to the optimal solution.

In general, due to the extremely large search space (typi-
cally M ! for M items) and the discontinuity of functions over
permutations, exact inference in permutation based models
is often intractable. Thus one must resort to approximate
inference methods, such as sampling or greedy approaches,
often without guarantees on how close the approximate so-
lution will be to the target optimal one. As the number
of items grows, the cost of finding a good approximation
increases significantly, which makes the majority of these
models impractical for real world applications where data
collections are extremely large. The score based approach
described in the next section avoids this problem by working
with real valued scores instead.

3.2 Score Based Models
In score based approaches the goal is to learn a set of

real valued scores (one per item) S = {s1, ..., sM} which are
then used to sort the items. Working with scores avoids the
discontinuity problems of the permutation space.

Early score based methods for rank aggregation in meta
search are heuristic based. For example, BordaCount [1]
and median rank aggregation [7] derive the item scores by



averaging ranks across the agents or counting the number
of pairwise wins. In statistics a very popular pairwise score
model is the Bradley-Terry [3] model:

P (Cn|S) =
Y
i�=j

„
exp(si)

exp(si) + exp(sj)

«Cn(i,j)

(3)

where exp(si)
exp(si)+exp(sj)

can be interpreted as the probability

that item xi beats xj in the pairwise contest. In logistic
form the Bradley-Terry model is very similar to another
popular pairwise model, the Thurstone model [25]. Exten-
sions of these models include the Elo Chess rating system [6],
adopted by the World Chess Federation FIDE in 1970, and
Microsoft’s TrueSkill [5] rating system for player matching
in online games, used extensively in Halo and other games.
Furthermore, the popular learning-to-rank model RankNet
[4] is also based on this approach.

The key assumption behind the Bradley-Terry model is
that the pairwise probabilities are completely independent
of the items not included in the pair. A problem that arises
from this assumption is that if a given item xi has won
all pairwise contests, the likelihood becomes larger as si be-
comes larger. It follows that a maximum likelihood estimate
for si is ∞ [20]. As a consequence the model will always
produce a tie amongst all undefeated items. Often this is an
unsatisfactory solution because the contests that the unde-
feated items participated in, and their opponents’ strengths,
could be significantly different.

To avoid some of these drawbacks, the Bradley-Terry model
was generalized by Plackett and Luce [22, 17] to a model for
permutations:

P (π|s) =
MY

i=1

exp(sπ−1(i))PM
j=i exp(sπ−1(j))

(4)

The generative process behind the Plackett-Luce model as-
sumes that items are selected sequentially without replace-
ment. Initially item π−1(1) is selected from the set of M
items and placed first, then item π−1(2) is selected from the
remaining M −1 items and placed second and so on until all
M items are placed. Note that here inference can be done
quickly by doing simple gradient descent on scores, which
is a clear advantage over most permutation based models.
The Plackett-Luce generalization relaxes the independence
assumption of the Bradley-Terry model but this model is
only applicable to consistent full or partial rankings (or con-
sistent pairwise preferences) which significantly limits its ap-
plication.

Recently several score based approaches have been devel-
oped to model the joint pairwise matrix [8, 11]. In these
methods the preferences expressed by each of the N agents
are combined into a single preference matrix Y : M × M ,
which is then factorized by a low rank factorization such as:

Y = SeT − eST

The resulting scores S are then used to rank the items. The
main drawback of this approach is that by combining all
preferences into a single Y the individual user information
is lost. Consequently outlier agents with preferences sub-
stantially deviating from the consensus can significantly in-
fluence both Y and the resulting scores.

A supervised score based rank aggregation approach was
also recently introduced [15]. In this model the ground truth

(a) (b)

Figure 1: Figure 1(a) displays the count matrix with
the contests won by each of the 3 items x1, x2 and x3

after their ranking {r1 = 1, r2 = 2, r3 = 3} is converted
to pairwise counts using the rank difference method.
A count is displayed in each (xi, xj) entry if ri <
rj, and the size of the square represents the count
magnitude. Figure 1(b) shows the same matrix for
the ranking {r1 = 30, r2 = 20, r3 = 1}.

preferences are used to create a pairwise constraint matrix,
and the scoring functions is then optimized to satisfy as
many of these constraints as possible. The scoring func-
tion is based on a Markov Chain which makes the resulting
constrained optimization problem non-convex. To solve it
the authors employ a number of approximations transform-
ing the problem into a semidefinite programming problem
(SDP), which is solved using an SDP solver. The main
drawback of this approach is that it is computationally very
intensive and requires expensive operations such as matrix
inverse and constrained optimization.

4. MULTINOMIAL PREFERENCE MODEL
In this section we develop a new score based model for

pairwise preferences, the Multinomial Preference Model (MPM).
A key motivating idea behind our approach is that when ab-
solute preferences such as rankings are converted into pair-
wise counts using the rank difference approach described
above, we interpret the resulting counts as conveying two
forms of information: a binary preference, simply based on
which item is ranked higher, and a confidence, based on
the magnitude of the rank difference. Consider for exam-
ple three items x1, x2 and x3 with ranks r1 = 1, r2 = 2
and r3 = 3 respectively. Figure 1(a) shows the resulting
count matrix after these ranks are converted to pairwise
preferences. Item x1 is preferred to both x2 and x3 with
C(1, 2) = r2 − r1 = 1 and C(1, 3) = r3 − r1 = 2, x2 is
preferred only to x3 with C(2, 3) = r3 − r2 = 1, and x3 is
not preferred to any item. Note that preference {x1 � x3}
where both items are at the extremes of the ranking has the
largest rank difference and consequently the biggest count.

Now consider the second example with partial ranking
r1 = 30, r2 = 20 and r3 = 1 yielding the pairwise count ma-
trix shown in Figure 1(b). Comparing this with the previous
example we see that the preference {x3 � x1} with items at
the extremes of the ranking also has the highest count, how-
ever in this case we are significantly more certain of it. The
count C(3, 1) = 29 is considerably higher than the highest
count from the previous example, strongly indicating that x3

should be placed above x1. The two examples demonstrate



how large values of C(i, j) may be interpreted as providing
more evidence to conclude that xi � xj is correct.

In MPM we model the count matrix C as an outcome of
multiple draws from the joint consensus distribution Q over
pairwise preferences defined by the scores. For instance in
the second example above after observing C we can infer
that P (x3 � x1) should have the most mass under Q. We use
B to denote the random variable distributed as Q. A draw
from Q can be represented as a vector bij of length M ∗(M−
1) (all possible pairs), with 1 on the entry corresponding to
preference {xi � xj} and zeros everywhere else, i.e., a one-
hot encoding. Given S we define the consensus distribution
as follows:

Definition 1. The consensus distribution Q = {P (B =
bij |S)}i�=j is a collection of pairwise probabilities P (B =

bij |S), where P (B = bij |S) =
exp(si−sj)

P
k �=l exp(sk−sl)

.

Q defines a multinomial distribution over pairwise prefer-
ences. Parametrization through S controls the shape of Q,
lending considerable flexibility in distributions over prefer-
ences, which can be tailored to many different problems.
To generate the observed aggregated counts C we assume
that T independent samples are drawn from Q where T =P

i�=j C(i, j) so that:

C(i, j) =
TX

t=1

I [B = b
(t)
ij ]

where I [B = b
(t)
ij ] is 1 if preference {xi � xj} was sampled

on the t’th draw and 0 otherwise. Under this model the
probability of the observed counts is given by:

P (C|S) =
T !Q

i�=j C(i, j)!

Y
i�=j

P (B = bij |S)C(i,j)

=
T !Q

i�=j C(i, j)!

Y
i�=j

 
exp(si − sj)P

k �=l exp(sk − sl)

!C(i,j) (5)

Note that in MPM the pairwise probabilities depend on the
entire item set X and the observed counts matrix is modeled
jointly. The magnitude of the score si is directly related to
the count C(i, j). When the scores are fitted via maximum
likelihood the gradient of the log probability with respect to
si is given by:

∂ log(P (C|S))

∂si
=0

@X
j

C(i, j) −
X

j

C(j, i)

1
A− T

 
∂ log(

P
k �=l esk−sl)

∂si

! (6)

Note that when xi is strongly preferred to other items the
first term in Equation 6 will be large leading to an increase
in si. This will in turn raise the probability of preferences
where xi beats the other items. Raising the probability
for some preferences must simultaneously lower it for others
since the probabilities always sum to 1. The second term,
the derivative of the partition function, accounts for this.
The scores thus compete with each other and the ones with
the most positive/negative evidence get pushed to the ex-
tremes. This is exactly the effect we wanted to achieve be-
cause it will allow us to accurately model the count matrices
as illustrated by the toy examples above. In contrast with

(a) (b)

Figure 2: Graphical model representation of MPM
and its θ extension.

MPM, in the Bradley-Terry model there is no joint interac-
tion amongst scores and pairs are modeled independently so
a single preference is sufficient to push the score to infinity.

4.1 Incorporating Prediction Confidence
In the base MPM model it is difficult to judge the model’s

confidence for a given score combination. Aside from the rel-
ative score magnitudes, it is hard to measure the uncertainty
associated with the score assigned to each item and the ag-
gregate ranking that the scores impose. Such a measure can
be very useful during inference and can influence the decision
process. For instance, it can be used to further filter and/or
reorder the items in the aggregate ranking. Moreover, for
problems where the accuracy is extremely important, the
recommender system can inform the user if the produced
ranking has high/low degree of uncertainty.

To address this problem we introduce a set of ”variance”
parameters Γ = {γ1, ..., γM}, γi > 0 ∀i. Each γi models the
uncertainty associated with the score si inferred for the item
xi. The consensus distribution now becomes:

P (B = bij |S, Γ) =
exp((si − sj)/(γi + γj))P

k �=l exp((sk − sl)/(γk + γl))
(7)

Note that the probability of xi beating xj decreases (in-
creases) if the variance for either xi or xj increases (de-
creases). Through Γ we can effectively express the variance
over the preferences for each item xi and translate this vari-
ance into uncertainty over pairwise probabilities. Moreover,
measures such as the average γ, γ̄ = 1

M

PM
i=1 γi, can be

used to infer the variance for the entire aggregate ranking
produced by the model.

In this setting γ’s can either be learned in combination
with scores via maximum likelihood or set using some update
rule. The generative process for MPM with both S and Γ
parameters is shown in Figure 2(a).

4.2 Modeling Deviations from the Consensus
The assumption in MPM that the preferences generated

by the N agents are independent and identically distributed
is likely to be false in many domains. Often one would ex-
pect to find preferences which either completely or partially
deviate from the general consensus. For example in collabo-
rative filtering most people tend to like popular movies such
as Harry Potter and Forrest Gump, but in almost all cases
one can find a number of outlier users who would give these
movies low ratings. Assuming that the preferences of the
outliers have the same distribution as the consensus, as is



done in the base MPM model, can skew the aggregation
especially if the outliers are severe.

To introduce the notion of outliers into our model we de-
fine an additional set of ”adherence”parameters Θ = {θ1, ..., θN},
θn ∈ [0, 1]. Here we assume that each agent n has its
own distribution over preferences Qn whose adherence to
the global consensus distribution Q (see Definition 1) is de-
scribed by θn. Associated with each agent n is a random
variable Bn ∼ Qn, where we define Qn as:

Qn = {P (Bn = bij |S, Γ, θn)}i�=j

P (Bn = bij |S, Γ, θn) =
exp(θn(si − sj)/(γi + γj))P

k �=l exp(θn(si − sj)/(γi + γj))

(8)
Note that if θn = 0, Qn becomes a uniform distribution in-
dicating that the preferences of the n’th agent deviate com-
pletely from the consensus (is an outlier), and will not be
modeled by it. Values between 0 and 1 indicate different de-
grees of agreement, with θn = 1 indicating complete agree-
ment. Hence, by introducing θn we make the model robust,
allowing it to control the extent to which each agent’s prefer-
ences are modeled by the scores, effectively eliminating the
outliers.

In the generative process we now assume that at each of
the T draws an agent n is picked at random and a preference
is generated from Qn; Figure 2(b) demonstrates this process.
Under this process the probability of the observed instance
C = {C1, ..., CN} is given by:

P (C|S, Γ, Θ) =

=
NY

n=1

2
4 Tn!Q

i�=j Cn(i, j)!

Y
i�=j

P (Bn = bij |S, Γ, θn)Cn(i,j)

3
5

=
NY

n=1

2
4 Tn!Q

i�=j Cn(i, j)!

Y
i�=j

 
eθn(si−sj)/(γi+γj)P

k �=l eθn(sk−sl)/(γk+γl)

!Cn(i,j)
3
5

(9)

where Tn =
P

i�=j Cn(i, j) is the total number of preferences
generated by agent n. The preferences are modeled by a
mixture of N multinomials that share the same score vector
S but differ in the adherence parameter θn. Both S and Θ
can be efficiently learned by maximizing the log likelihood,
and the consensus ranking can then be obtained by sorting
the scores.

As noted above, in many preference aggregation problems
the input typically consists of several preference instances
{C(�)}, and the goal is to infer a separate set of scores S(�)

and variances Γ(�) for each instance �. The log likelihood of
the entire corpus under the model is given by:

L({C(�)}|{S(�)}, {Γ(�)}, Θ) =

log
Y
�

NY
n=1

2
4 T

(�)
n !Q

i�=j C
(�)
n (i, j)!

Y
i�=j

P (B
(�)
n = bij |S(�), Γ(�), θn)C

(�)
n (i,j)

3
5

(10)

Here Θ is shared across the instances and the original MPM
model is recovered by setting Θ ≡ 1. When two of the three
parameters {S(�), Γ(�), Θ} are fixed it is not difficult to show
that L is concave with respect to third parameter. There-
fore simple gradient descent can be used to efficiently find
globally optimal setting. Furthermore, even though joint op-
timization is no longer convex, in the experiments we found

that by using gradient descent jointly good local optimum
solutions can still be found very efficiently.

4.3 Supervised Learning of Adherence Param-
eters

The above problem can be considered unsupervised, as
the adherence parameters Θ, the consensus scores and the
variances are inferred from the observed preferences. This
produces a predicted ranking for a given set of observed
preferences by sorting the inferred scores, without ever uti-
lizing any known consensus rankings or relevance labels in
the data.

For problems such as meta search we often have access
to labeled training instances {C(�)} for which we have the

ground-truth orderings {L(�)} of the items {X(�)}. In this
section we describe an approach to incorporate this infor-
mation into the Multinomial Preference Model. Each θn

models the adherence of the n’th agent to the consensus.
For the labeled examples the consensus is explicitly given
by L(�). This allows us to exactly compute the adherence
of each agent to the consensus based on the match between
the preferences given by the agent and the ground truth
rankings. Using this we can set θn to the average distance
between the preferences of n’th agent and the ground truth
labels:

θn =
1

|{C(�)}|
X

�

1 −D(L(�), C(�)
n ) (11)

where D is a normalized distance metric between prefer-
ences, such as Kendall’s tau. Note that as above, θn →
1(→ 0) indicates that the preferences of agent n agree with
(deviate from) the consensus across the training examples.

When training examples are available the inference pro-
ceeds as follows: first training examples are used to set Θ;
then keeping Θ fixed the scores and the variances are opti-
mized on the test examples by maximizing the log likelihood.

5. META SEARCH EXPERIMENTS
For meta search aggregation problem we use the LETOR

[14] benchmark datasets. These data sets were chosen be-
cause they are publicly available, include several baseline
results, and provide evaluation tools to ensure accurate com-
parison between methods. In LETOR4.0 there are two meta
search data sets, MQ2007-agg and MQ2008-agg.

MQ2007-agg contains 1692 queries with 69623 documents
and MQ2008-agg contains 784 queries and a total of 15211
documents. Each query contains several lists of partial rank-
ings of the documents under that query. There are 21 such
lists in MQ2007-agg and 25 in MQ2008-agg. These are the
outputs of the search engines to which the query was sub-
mitted. In addition, in both data sets, each document is
assigned one of three relevance levels: 2 = highly relevant, 1
= relevant and 0 = irrelevant. Finally, each dataset comes
with five precomputed folds with 60/20/20 splits for train-
ing/validation/testing. The results shown for each model
are the averages of the test set results for the five folds.

The MQ2007-agg dataset is approximately 35% sparse,
meaning that for an average query the partial ranking matrix
of documents by search engines will be missing 35% of its
entries. MQ2008-agg is significantly more sparse with the
sparsity factor of approximately 65%.



Table 1: MQ2008-agg and MQ2007-agg results; statistically significant results are underlined.

NDCG Precision

N@1 N@2 N@3 N@4 N@5 P@1 P@2 P@3 P@4 P@5 MAP

MQ2008
BordaCount 23.68 28.06 30.80 34.32 37.13 29.72 30.42 29.38 29.75 29.03 39.45
CPS-best 26.52 31.38 34.59 37.63 40.04 31.63 32.27 32.27 31.66 30.64 41.02
SVP 32.49 36.20 38.62 40.17 41.85 38.52 36.42 34.65 32.01 30.23 43.61
Bradley-Terry 38.05 39.24 40.77 41.79 42.62 44.77 39.73 36.26 33.19 30.28 44.35
Plackett-Luce 35.20 38.49 39.70 40.49 41.55 41.32 38.96 35.33 32.02 29.62 42.20
θ-MPM 38.17 40.57 42.19 43.07 43.99 44.89 41.13 37.67 33.80 31.17 44.71

MQ2007
BordaCount 19.02 20.14 20.81 21.28 21.88 24.88 25.24 25.69 25.80 25.97 32.52
CPS-best 31.96 33.18 33.86 34.09 34.76 38.65 38.65 38.14 37.19 37.02 40.69
SVP 35.82 35.91 36.53 37.16 37.50 41.61 40.28 39.50 38.88 38.10 42.73
Bradley-Terry 39.88 39.86 40.40 40.60 40.91 46.34 44.65 43.48 41.98 40.95 43.98
Plackett-Luce 40.63 40.39 40.26 40.71 40.96 46.93 45.10 43.09 42.32 41.09 43.64
θ-MPM 41.77 41.91 41.92 42.34 42.79 48.35 46.64 44.53 43.52 42.72 45.71

The goal is to use the rank lists to infer an aggregate rank-
ing of the documents for each query which maximally agrees
with the held-out relevance levels. To evaluate this agree-
ment we use standard information retrieval metrics: Nor-
malized Discounted Cumulative Gain (N@K) [10], Precision
(P@K) and Mean Average Precision (MAP) [2]. Given an
aggregate ranking π, and relevance levels L, NDCG is de-
fined as:

NDCG(π, L)@K =
1

GK(L)

KX
i=1

2L(π−1(i)) − 1

log(i + 1)
(12)

where L(π−1(i)) is the relevance level of the document with
rank i in π, and GK(L) is a normalizing constant that en-
sures that a perfect ordering has an NDCG value of 1. The
normalizing constant allows an NDCG measure averaged
over multiple queries with different numbers of documents
to be meaningful. Furthermore, K is a truncation constant
and is generally set to a small value to emphasize the utmost
importance of getting the top ranked documents correct.

MAP only allows binary (relevant/not relevant) document
assignments, and is defined in terms of average precision
(AP):

AP (π,L) =

PM
k=1 P@k ∗ L(π−1(k))PM

k=1 L(π−1(k))
(13)

where M is the number of documents; and P@k is the pre-
cision at k:

P@k =

Pk
i=1 L(π−1(i))

k
(14)

MAP is then computed by averaging AP over all queries. To
compute P@k and MAP on the MQ datasets the relevance
levels are binarised with 1 converted to 0 and 2 converted
to 1. All presented NDCG, Precision and MAP results are
averaged across the test queries and were obtained using the
evaluation script available on the LETOR website.

5.1 Results
To investigate the properties of MPM we conducted exten-

sive experiments with various versions of the model. Through
these experiments we found that the supervised θ version
(see Section 4.3) had the best performance; below we refer

to this model as θ-MPM. Note that the training data are
only used in θ-MPM to set the values of the adherence pa-
rameters Θ. Then the scores and the variances on each test
query are found via maximum likelihood, and the scores are
sorted to produce a predicted ranking. This is similar to the
framework used by the CPS model [23] where the training
data is used to estimate the φ parameter. In all experiments
we did not take the variances into account during the sort.

We compare the results of θ-MPM against the best meth-
ods currently listed on the LETOR4.0 website,1 namely the
BordaCount model and the best of the three CPS models
(combination of Mallows and Plackett-Luce models) on each
of the MQ datasets. We also compare with the Bradley-
Terry and Plackett-Luce models, as well as the singular value
decomposition based method SVP [8]. These models cover
most of the primary leading approaches in rank aggregation
research. The Bradley-Terry model is fit using the same
count matrices Cn that are used for MPM.

For all models we found that 100 steps of gradient de-
scent was enough to obtain the optimal results. To avoid
constrained optimization we reparametrized the variance pa-
rameters as γi = exp(βi) and optimized βi instead. This
reparametrization was done for all the reported experiments.
Inference with MPM is extremely fast: a MATLAB imple-
mentation took ∼ 0.8 (∼ 0.005 seconds per query) to make a
full pass through Fold 1 (156 queries, 2874 documents) of the
MQ2008-agg dataset, and ∼ 4.0 seconds (∼ 0.012 seconds
per query) to make a full pas through Fold 1 (336 queries,
13652 documents) of the MQ2007-agg dataset.

The results for MPM together with the baselines on MQ2008-
agg and MQ2007-agg datasets are shown in the top and
bottom halves of Table 1 respectively. For each data set
we conducted a paired T-test between θ-MPM and the best
baseline at each of the 5 truncations for NDCG and preci-
sion as well as MAP, the statistically significant results at
the 0.05 level are underlined. From the table we see that the
θ-MPM models significantly outperforms the baselines on
the MQ2007-agg dataset on both NDCG and MAP metrics.
On MQ2008-agg θ-MPM is also the best model, significantly
improving over the baselines on truncations 2-4 for NDCG
and 2,3,5 for Precision.

1research.microsoft.com/en-us/um/beijing/projects/letor/



Table 2: NDCG results for the MovieLens data set, for each user the missing ratings are filled using the
probabilistic matrix factorization model; statistically significant results are underlined.

N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10

Bradley-Terry 40.09 36.00 35.20 34.96 34.49 34.40 31.63 32.08 32.46 32.35
Plackett-Luce 69.56 54.17 48.97 46.58 44.89 43.44 42.50 41.25 40.64 40.03
MPM 69.15 54.29 49.72 46.98 45.52 44.13 43.25 42.62 42.04 41.57

(a) (b) (c)

Figure 4: Plots of NDCG at truncations 1, 5 and 10; in this setting all the missing ratings were repeatedly
imputed by one of the constants shown on the x-axis and the rankings given by each method were evaluated
using NDCG (Equation 15). All the differences are statistically significant.

Figure 3: Top row: normalized Θ, found by the su-
pervised procedure outlined in Section 4.3, for train-
ing Fold 1 of MQ2007-agg. Bottom row: learned Θ
on the same Fold. Here white = 1 and black = 0.

Figure 3 shows the adherence parameters Θ set based on
the labeled training examples, together with the one learned
in an unsupervised fashion by doing gradient descent on both
S and Θ simultaneously. From the figure we see many simi-
larities in the two vectors, indicating that the model is able
to capture the notion of ”outliers” which correlates closely
with the training labels. There are however a number of dif-
ferences, such as the first three components being switched
from on to off in the learned Θ. In our experiments we
found that setting Θ using the training labels consistently
produced better performance.

6. COLLABORATIVE FILTERING EXPER-
IMENTS

For collaborative filtering experiments we used the Movie-
Lens dataset, a collection of 100,000 ratings (1-5) from 943
users on 1682 movies. This data set was chosen because
it provides demographic information such as age and occu-
pation for each user, as well as movie information such as
genre, title and release year. Each user in this data rated at
least 20 movies but the majority of ratings for each movie
are missing and the rating matrix is more than 94% sparse.
We formulate the preference aggregation as follows: given
users’ ratings the goal is to come up with a single ranking of
the movies that accurately summarizes the majority of user

preferences expressed in the data. This ranking could be
used as an initial recommendation for a new user who has
not provided any ratings yet, as well as in a summary page.
Note that the aggregation can be further personalized by
only aggregating over users that share similar demographic
and/or other factors with the target user.

To convert ratings into preferences we can either sort them
(resolving ties), to obtain a partial ranking for each user, or
use the pairwise method to obtain the count matrices Cn,
where Cn(i, j) = (lni − lnj)I [lni > lnj ] if movies xi and
xj were rated by user n and 0 otherwise. We use the sort
method for the permutation based Plackett-Luce model and
use the rating difference method for the pair based Bradley-
Terry and MPM models.

In collaborative filtering and in most other applications
the primary goal of aggregation is to recommend items to
a new or existing user. Items ranked in the top few po-
sitions are of particular interest because they are the ones
that will typically be shown to the user. Intuitively a top
ranked item should have ratings from many users (high sup-
port) and most who rated it should prefer it to other items
(strong preference). Consequently NDCG suggests itself as a
good metric to evaluate the rankers for this problem because
of its emphasis on the top ranked items and the truncation
level structure. Unlike meta search the ground truth ratings
are not available for most collaborative filtering data. To
get around this problem we complete the rating matrix by
imputing the missing ratings for every user. We investigate
two methods of imputing the ratings: a user independent
method, where all the missing ratings are filled in by the
same value, and a user dependent method, where for every
user n the missing ratings are predicted by a probabilis-
tic matrix factorization model (PMF) [24]. The reason for
choosing PMF was that it has shown excellent performance



Table 3: Top 5 and bottom 5 movies found by each model. For each movie the table shows the number of
users that rated it (#u) and the total number of pairwise contests that the movie won (#won) and lost(#lost)
across all users.

Bradley-Terry #u #won #lost Plackett-Luce #u #won #lost MPM #u #won #lost

Pather Panchali 8 1431 89 Shawshank Red. 283 32592 5943 Star Wars 583 49290 10112
Wallace & Gromit 67 7448 962 Wallace & Gromit 67 7448 962 Raiders of the L. 420 40057 10644
Casablanca 243 26837 4633 Usual Suspects 267 30779 6666 Godfather 413 36531 8040
Close Shave 112 11219 1963 Star Wars 583 49290 10112 Silence of the L. 390 38192 9125
Rear Window 209 22590 4513 Wrong Trousers 118 13531 2291 Shawshank Red. 283 32592 5943
. . .
. . .
. . .
Children of Corn 19 62 3161 Barb Wire 30 462 5507 Cable Guy 106 3469 14377
Lawnmower Man 2 21 129 3868 Robocop 3 11 125 2535 Striptease 67 1347 9909
Free Willy 3 27 171 3912 Gone Fishin’ 11 123 1098 Very Brady 93 3353 12509
Kazaam 10 128 2041 Highlander III 16 881 2826 Jungle2Jungle 132 2375 11086
Best of the Best 3 6 33 1445 Ready to Wear 18 289 3785 Island of Dr. 57 1176 9415

on collaborative filtering tasks such as the Netflix challenge.
After completing the rating matrix we compute the NDCG
value for every user by sorting the items according to scores:

NDCG(π, Ln)@K =
1

GK(Ln)

KX
i=1

2Ln(π−1(i)) − 1

log(i + 1)
(15)

Here π is the aggregated ranking obtained by sorting the
items according to scores, and π−1(i) is the index of the
item with rank i in π; Ln is a (completed) vector of ratings
for user n. GK is the normalizing constant and represents
the maximum DCG value that could be obtained for n:

GK(Ln) =

KX
i=1

2Ln(σ−i(i)) − 1

log(i + 1)
(16)

where σ is a permutation of Ln with the ratings sorted
from largest to smallest. In this form if for a given user
n an item in position i in π has a rating lower than the
rating Ln(σ−1(i)) of the i’th highest rated item by n, the
corresponding term in the NDCG summation will decrease
exponentially with the difference between Ln(σ−1(i)) and
Ln(π−1(i)). We use this metric (averaged across all users)
to evaluate the performance of the models.

6.1 Results
We compare the results of MPM to the Bradley-Terry

and Plackett-Luce models, the two best baselines on the
meta search task. For all models we found that 100 steps of
gradient descent was enough to reach convergence.

The NDCG results from the user dependent rating impu-
tation method are shown in Table 2. From this table we see
that MPM outperforms the best baseline, Plackett-Luce, on
all truncations except 1 with statistically significant gains
at truncations 5-10. This is likely due to the fact that in
MPM the score magnitude is directly related to the number
of observations. The model has a strong bias to put movies
with a large number of observations at the extremes of the
ranking.

The NDCG plots for the user independent rating imputa-
tion method are shown in Figure 4. The plots show NDCG
at truncations 1, 5 and 10 for the three methods, when each
of the values in {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5} was used to fill the
missing ratings. Here, the value 3.5 was chosen as the upper
boundary because it is the average rating for the MovieLens
data set. A number of studies have shown that users tend

to rate items that they like so the average of the observed
ratings is typically significantly higher than the average of
the the unobserved ones [19]. From the figure we see that
MPM significantly outperforms both the Bradley-Terry and
Plackett-Luce models. The differences are especially large
when low values are imputed for the missing ratings. This
indicates that the Bradley-Terry and Plackett-Luce models
place items that were rated by very few users (low support)
at the top of the list. This causes the imputed ratings to
dominate the numerator in the NDCG summation making
the results very sensitive to the magnitude of the imputed
rating.

This effect can also be observed from Table 3 which shows
the top and bottom 5 movies generated by each model to-
gether with statistics on the number of users that rated each
movie and the number of pairwise contests lost and won by
the movie (summed across all users). For a given user n and
movie i with rating lni we find the number of pairwise wins
by counting the number of pairs {i, j} with lni > lnj ; losses
are found in a similar way. From the table we see that the
Bradley-Terry model places the movie Pather Panchali at
the top of the list. This movie is only rated by 8 out of 943
users and even though most users who rated it preferred it
to other movies (#lost is low) there is still very little evi-
dence that this movie represents the top preference for the
majority of users. Due to its pairwise independence assump-
tion the Bradley-Terry model is always likely to place movies
with few ratings near the top/bottom of the list.

The Plackett-Luce model partially fixes this problem by
considering items jointly, and places the frequently rated
movie Shawshank Redemption first. However the model does
not fully eliminate the problem, placing the very infrequently
rated Wallace & Gromit (also ranked second by Bradley-
Terry) in the second spot. Part of the reason for this comes
from the fact that the Plackett-Luce is a permutation based
model and as such cannot model the strength of preferences,
treating the preferences given for example by ratings {5, 2, 1}
the same as {5, 4, 3}.

On the other hand for the Multinomial Preference Model
we see that the position of the item is related to both the
number of observed preferences and the strength of those
preference. The top three movies are all rated by more than
400 users and are strongly preferred by the majority of those
users.

A more severe pattern can be observed for the bottom 5



(a) (b)

Figure 5: 5(a) shows the number of ratings versus the learned variance γi for each movie xi. 5(b) shows the
rank for each movie obtained after sorting the scores versus the learned γi.

movies. Both Bradley-Terry and Plackett-Luce place movies
rated by less than 30 users in the bottom 5 positions labeling
them the worst movies in the entire data set. This selection
has very little evidence in the data and has a high probability
of being wrong if more ratings are collected. For MPM all of
the bottom 5 movies are rated by more than 50 users with
3 out of 5 movies rated by more than 90 users.

In addition to the retrieval accuracy we investigated the
properties of the learned variance parameters γ. Figure 5(a)
shows the learned variances together with the number of
ratings for each movie. Note that the variance is inversely
proportional to the number of ratings so as the number of
ratings increases the model becomes increasingly more cer-
tain in the preferences decreasing the variance. In Figure
5(b) we plot γ against the aggregate rank for each movie.
The general pattern is clear: the variance decreases towards
the extremes of the ranking, indicating that the model is
more certain in the movies that are placed near the top and
near the bottom of the aggregate ranking. As shown above,
this is due to the fact that the movies at the extremes of the
ranking have many comparisons, allowing accurate inference
of strong negative or positive preferences.

The plot however, also shows outliers, which are the movies
placed in the middle of the aggregrate ranking with low vari-
ance/high confidence. After further inspection we found
that each such movie had many positive as well as nega-
tive preferences. Examples of these include Sabrina (#u:190
#won:10190 #lost:12347), Mrs. Doubtfire (#u:192 #won:13251
#lost:17551) and Ghost (#u:170 #won:11785 #lost:14452).
Note that all three movies were rated by more than 150 users
and overall were neither strongly preferred nor strongly dis-
liked. The model thus correctly placed them in the middle
of the ranking with strong confidence. Moreover, note that
it is impossible to express this confidence with scores alone
since all the movies in the middle of the ranking have similar
scores. The variances thus provide additional information
about the decisions made by the model during the aggre-
gation, which could be very useful for post processing and
evaluation.

7. CONCLUSION AND FUTURE WORK
We have introduced a new probabilistic model over pref-

erences based on a multinomial generative process. Prefer-
ences over items are expressed through real valued scores
resulting in a convex optimization problem during inference
which can be solved efficiently with standard gradient based
techniques. Modeling the general partial pairwise prefer-
ences makes the model applicable to a wide range of pref-
erence aggregation problems. Empirically we have shown
that our approach outperforms existing preference aggrega-
tion methods on two unrelated problems: meta search and
collaborative filtering.

Future work includes developing supervised extensions of
the model that can more directly utilize the labeled training
data available in problems such as meta search. Another in-
teresting direction is to investigate how the learned variances
can be used to improve the final ranking. Finally, we also
plan to explore mixtures of the MPM distributions where
each mixing component is parametrized by its own set of
scores. The mixture could be trained to learn different user
preference types and used for personalized recommendation.
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