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ABSTRACT
We investigate the problem of learning to rank for docu-
ment retrieval from the perspective of learning with multi-
ple objective functions. We present solutions to two open
problems in learning to rank: first, we show how multiple
measures can be combined into a single graded measure that
can be learned. This solves the problem of learning from a
‘scorecard’ of measures by making such scorecards compa-
rable, and we show results where a standard web relevance
measure (NDCG) is used for the top-tier measure, and a
relevance measure derived from click data is used for the
second-tier measure; the second-tier measure is shown to sig-
nificantly improve while leaving the top-tier measure largely
unchanged. Second, we note that the learning-to-rank prob-
lem can itself be viewed as changing as the ranking model
learns: for example, early in learning, adjusting the rank of
all documents can be advantageous, but later during train-
ing, it becomes more desirable to concentrate on correcting
the top few documents for each query. We show how an
analysis of these problems leads to an improved, iteration-
dependent cost function that interpolates between a cost
function that is more appropriate for early learning, with
one that is more appropriate for late-stage learning. The
approach results in a significant improvement in accuracy
with the same size models. We investigate these ideas using
LambdaMART, a state-of-the-art ranking algorithm.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Retrieval models; I.2.6 [Artificial
Intelligence]: Learning

General Terms
Algorithms, Experimentation, Theory

Keywords
Learning to Rank, Web Search, Relevance Measures

1. INTRODUCTION
Ranking is central to many information retrieval (IR) ap-

plications, such as web search, collaborative filtering, and
document retrieval. Large data sizes make it impractical
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to manually adapt the parameters of the ranking functions.
Thus, several methods [6, 4, 5, 17, 18, 19], have recently
been developed to automatically learn the model parame-
ters using machine learning techniques — a problem known
as learning to rank. In this paper, we focus on web search.

Learning to rank algorithms typically use labeled data,
for example, query-URL pairs that have been assigned one
of several levels of relevance by human judges [5]. How-
ever, often there are several additional sources of relevance
labels available. For example, in addition to human judg-
ments, search engines today gather user behavior informa-
tion, such as clicks and dwell time. Further examples in-
clude freshness (the recency of the data on the page, which
can be computed automatically), spamness (the likelihood
that the page is spam), and grammaticality (the quality of
the written language and grammar). Having several sources
of relevance labels per query-URL pair can compensate for
weaknesses in each single source. For example, using human
judgments to assign each query-URL pair to, say, one of
five levels of relevance, leaves open the questions of how to
rank items with the same label, and how well the judges can
solve the difficult problem of gauging user intent; clearly user
click data should be able to help answer these questions. A
search engine that leverages such markedly distinct sources
of relevance would have an advantage over one that doesn’t;
however, this immediately raises the questions of how to
compare the quality of two sets of search results given a
‘scorecard’ rather than a single numeric measure, and how
to train systems using multiple label sources. Last but not
least, the builders of a commercial search engine that uses,
for example, human judgments only, may be reluctant to
switch to another, unproven evaluation measure computed
over labels from a different source; in contrast, given the
entailed risk and having a graded measure which assures
that their familiar measure will reliably be left unimpacted
(or improved), while simultaneously improving the unproven
measure, could prove valuable.

In this paper we address these problems by introducing
the notion of a graded measure.1 Consider the case where
three IR measures {A, B, C} (each of which maps a given or-
dering of documents for a given query to a score) are avail-
able, all taking values in �. The graded measure is then
simply the triplet A ≡ {A, B, C} with the associated lex-
icographic ordering, such that, for example, A1 ≥ A2 iff
A1 ≥ A2, or A1 = A2 and B1 ≥ B2, or A1 = A2 and
B1 = B2 and C1 ≥ C2. Clearly this definition extends to
any number of real-valued measures (and associated label

1By analogy to the formal notion of a graded vector space.



sources), and any two values of a graded measure are com-
parable. Here we consider the following two measures as an
example: A will be taken as Normalized Discounted Cumu-
lative Gain [13], and B will be a click-based measure [10,
14, 16]. Another intuitive way to view this approach is as
follows: if, for example, the test set contains 10,000 queries,
then since the NDCG is a single number computed as the
mean NDCG over all queries, it seems reasonable to expect
that one could keep the same NDCG while improving a sec-
ondary measure, such as a click-based one.

We choose the second measure to be click-based because
clicks can be collected at a much lower cost and provide di-
rect user feedback regarding user intent for a large number
of real-world query-URL pairs, compared to human-based
labels gathered from a small number of annotators who may
have different knowledge, background, and opinions about
relevance. We also use clicks in the secondary rather than
primary measure since clicks have a strong position bias [15]
and a high degree of noise, even when the position bias is
removed [14]. In this paper, we define a graded measure over
{NDCG, CNDCG}, where CNDCG is a defined click-based
measure, and propose learning the graded measure within
the LambdaMART ranking algorithm [19], which has been
shown to have excellent empirical accuracy, winning the re-
cent Yahoo! Learning to Rank Challenge [8]. LambdaMART
is particularly well-suited to learning IR measures, and a
graded IR measure, since learning for such a measure only
requires expressing the gradient of the cost with respect to
the model scores, and not the cost itself.

Although the notion of using several sources of relevance
is not new, for example learning from user feedback data
as ranking features [1], or as labels to replace human labels
[10], our work addresses an open learning-to-rank question
regarding tiered learning from multiple label sources. Our
approach learns from several sources of labels and from a
graded, user-defined measure over those labels. Our ap-
proach is particularly appealing because there is typically
a high degree of conflict between label sources, thus making
the existence of the globally optimal ranking, which per-
fectly satisfies each source, very unlikely. The graded metric
idea effectively avoids this problem by optimizing for each
part of the graded measure based on the user-imposed con-
straints. Furthermore, our approach is general, allowing the
measures, label sources, and degree of preference between
them, to be specified.

Our work also differs from prior work on learning for mul-
tiple measures, where each measure employs the same la-
bel source, for example as in [7], where both NDCG and
Mean Reciprocal Rank (MRR) are computed over human
relevance labels and then simultaneously optimized using a
structured SVM framework. To our knowledge, our work
is the first to combine multiple objectives that learn from
multiple label sources in a graded way, and that can take
advantage of a rich understanding, coming from several data
sources, of the importance of a training sample.

The second part of the paper reveals three problems with
optimizing for a single measure using a static objective func-
tion, which will be described in more detail below, but which
we summarize here as follows. First, search engine accu-
racy is typically evaluated based on the documents in the
top few rank positions, since those are the documents most
viewed by users; take, for example, NDCG truncated to the
top three documents. In the spirit of optimizing for what

one cares about, one might conclude that we should train
using NDCG@3 as the target measure, since LambdaRank
(of which LambdaMART is the boosted tree instantiation)
can model any IR measure [9]. However, it has been shown
that this gives suboptimal results, probably because the ef-
fective amount of training data drops precipitously by so
doing [4, 9]. LambdaRank and LambdaMART are thus typ-
ically trained using un-truncated NDCG. In this paper, we
examine the question: can we get the best of both worlds
by training using un-truncated NDCG early during training
and gradually using truncated NDCG during later stages of
training? The key idea is to gradually modify the learning
process as the learning progresses by shifting the emphasis
on the full ranking to the top of the list. This approach
allows us to utilize all of the training data while fine-tuning
the model for the target evaluation measure. The second
problem relates to the margin built into the LambdaRank
cost. For a query for which all of the documents happen to
be ranked correctly by the current model, the LambdaRank
gradients (which can be thought of as forces on unit masses,
where the masses represent the documents) are still non-
zero: LambdaRank still tries to further separate the (cor-
rectly ranked) documents. The third problem is related:
suppose that instead, late during training, a highly relevant
document is incorrectly ranked very low in the list. Lamb-
daRank will try hard to fix this (the force on that document
will be large, and pushing upwards), when it likely cannot
be fixed (for example, due to a noisy label). We give these
last two problems the mnemonics Don’t Fix what Isn’t Bro-
ken and Give Up on Lost Causes. Intuitively, the hope is
that freeing the ranker from having to spend its capacity
learning to model these effects will improve generalization
accuracy, or at a minimum achieve the same accuracy with
smaller models.

In this paper, we address the above problems by consid-
ering multiple measures as training targets. In the graded
measure case, the measure is composed of two standard mea-
sures (although the technique generalizes to any number of
standard measures). In the other case, the target measure
essentially becomes a linear combination of two measures,
such as NDCG and NDCG@3, and an interpolation over
iterations is performed between the two desired standard
measures.

2. GENERAL FRAMEWORK
We begin by formalizing the problem of learning to rank

in the document retrieval domain. At training time, we are
given a set of N queries Q = {q1, ..., qN}. To simplify no-
tation, we drop the query index i, and refer to a general
query q. Each query q is associated with a set of K docu-
ments D = {d1, ...., dK} and their associated relevance labels
L = {�1, ..., �K}. Each document dj is represented as a query
dependent feature vector in �p, where dj [v] denotes the vth

feature value, with a corresponding relevance label �j ∈ �
(typically an integer) that indicates how relevant document
dj is to query q.

The goal of learning is to create a ranker F such that,
given a set of documents D with relevance labels L for query
q, the ranking of documents in D produced by F has max-
imal agreement with L. In this paper we concentrate on
LambdaMART’s model of F , where F : �p → � is a docu-
ment scoring function which assigns scores used for ranking.



We use S = {s1, ..., sK} to denote the scores assigned by F
to D.

We evaluate the agreement between the ranking produced
by F and the relevance labels L for query q with Normalized
Discounted Cumulative Gain (NDCG) [13]:

NDCG@T (q) =
1

Z

TX
t=1

2�(t) − 1

log(1 + t)
, (1)

where the sum is over documents for query q in ranked
top-down order, �(t) is the label of the document at rank
position t, and Z is a normalizing constant which guaran-
tees that NDCG is between 0 and 1. The truncation T is
a constant typically set to a small value to emphasize the
importance of correctly ranking documents at the top list
positions. We report mean NDCG — the average NDCG(q)
across all queries, and drop q to simplify notation. NDCG
is well-suited for information retrieval evaluation due to its
handling of multilevel labels and its dependence on trunca-
tion level. The main challenges in optimizing NDCG during
training are that it contains a truncated summation over
ordered items and is therefore not smooth and not differ-
entiable, and that T is generally set to be small, such as 3,
which ignores changes in rank position below position 3. We
address these challenges in this paper.

3. LAMBDAMART
Since our approach extends the LambdaMART framework

[3, 19], in this section we briefly review the ranking algo-
rithm. We choose to extend LambdaMART because it has
shown excellent empirical accuracy, recently winning the Ya-
hoo! Learning to Rank Challenge [8, 2], and requires only
the definition of the desired gradients of a cost function,
which avoids the problem of differentiating a measure that
requires document sorting, as in most IR measures, which
are either flat, or discontinuous, everywhere. LambdaMART
is a combination of the tree-boosting optimization method
MART [11] and the listwise ranking model LambdaRank [4].
LambdaMART learns pairwise preferences over documents
with emphasis derived from the NDCG gain found by swap-
ping the rank position of the documents in any given pair, so
it is a listwise algorithm (in the sense that the cost depends
on the sorted list of documents). Remarkably, LambdaRank
has been shown empirically to find local optima in NDCG
[9].

We now describe the objective function and gradients used
in training both LambdaRank and LambdaMART. The
RankNet objective function, on which the LambdaRank ob-
jective is based, is a pairwise cross-entropy cost applied to
the logistic function of the difference of the model scores [5].
Formally, given a pair of documents dj , dk and assuming
�j > �k, then the objective is expressed as:

Ojk ≡ O(ojk) = −ojk + log(1 + eojk), (2)

where ojk ≡ sj − sk is the score difference. The derivative
of the objective according to the score difference is

∂Ojk/∂ojk = ∂Ojk/∂sj = −1/(1 + eojk). (3)

The LambdaRank framework uses a smooth approxima-
tion to the gradient of a target evaluation measure with
respect to the score of a document at position j, and we de-
note the λ-gradient as λj . The λ-gradient to best optimize
for NDCG (based on empirical evaluation) is defined as the

derivative of the objective (Eq 3) weighted by the difference
in NDCG obtained when a pair of documents swap rank
positions:

λjk ≡
˛̨̨
˛ΔNDCG@T (sj , sk)

∂Ojk

∂ojk

˛̨̨
˛ . (4)

Thus, at the beginning of each iteration, the documents are
sorted according to their current scores, and the difference
in NDCG is computed for each pair of documents by keep-
ing the ranks of all of the other documents constant and
swapping only the rank positions for that pair. The change
in NDCG is computed as

ΔNDCG@T (sj , sk)

= N
“
2�j − 2�k

” „
1

log(1 + t(dj))
− 1

log(1 + t(dk))

«
.

(5)

The λ-gradient for document dj is computed by summing
the λ’s for all pairs of documents (dj , dk) for query q:

λj =
X

k∈(dj ,dk):
�j �=�k

λjk. (6)

It should be noted that this λ representation is schematic,
in two senses: first, LambdaRank (and hence LambdaMART)
is defined by noting that the models used (neural nets and
gradient boosted trees) only need the gradients of the cost
with respect to the model scores to be specified, not the
actual costs, and the λ’s are then simply defined to be-
have smoothly as documents swap rank positions. Second,
|ΔNDCG@T (sj , sk)| depends on the order of the documents
sorted according to the current model’s scores, and in this
sense, by defining the gradients after the documents have
been sorted by score (Eq 4), we avoid having to write a very
complex objective function that would have to encapsulate
the effect of the sort. We refer the reader to [3] for details.

The |ΔNDCG| factor emphasizes those pairs that have
the largest impact on NDCG. Note that the truncation in
NDCG is relaxed to the entire document set to maximize
the use of the available training data [9]. To optimize for
NDCG, LambdaMART implements the LambdaRank idea
using MART, a boosted tree model where each tree models
the derivatives of the cost with respect to the model scores
for each training point, and in this case, those derivatives are
the λ’s. The scoring function that LambdaMART produces
after M iterations can be written as

F (dj) =
MX

m=1

αmfm(dj), (7)

where each fi(dj) ∈ � is modeled by a single regression tree
and αi ∈ � is the weight associated with each regression
tree. At each iteration the regression tree is created by first
computing the λj ’s and their derivatives (ρj ’s):

ρj =
∂λj

∂oj
. (8)

The tree is then initialized at the root node and we loop
through all documents to find the feature v and the threshold
ξ such that, if all document with dj [v] ≤ ξ fall to the left
child node, and the rest to the right child node, then the
sum X

j∈L

`
λj − λ̄L

´2
+

X
j∈R

`
λj − λ̄R

´2



is minimized. Here L (R) is the set of indicies of documents
that fall to the left (right) subtree and λ̄L (λ̄R) is the mean
of the λ’s for the set of samples that fall to the left (right).
The split is attached to the root node and the process is
repeated at each child node. Each fi thus maps a given dj

to a real value by passing dj down the tree, where the path
(left or right) at a given node in the tree is determined by
the value of a particular feature of dj and where the output
of the tree is taken to be a fixed value associated with each
leaf �:

γk =
−P

dj∈Φ�
λjP

dj∈Φ�
ρj

,

where Φ� is a set of documents that fall into leaf �. The
denominator here corresponds to taking a Newton step. By
adding ρ to the documents’ scores we effectively take a step
in the direction that minimizes the objective function. A
global multiplicative learning rate is often also used. Note
that the αi can be viewed as all taking the value one, since
each leaf value combines the gradient, Newton step, and
learning rate into one number. Below, it will guide intu-
ition to note that the λ’s can be interpreted as forces on
point masses (represented by the documents), pushing the
documents up or down the list [4].

The LambdaMART approach is very general: it extends
the MART model beyond handling costs for which gradi-
ents are defined and well-behaved, to IR measures for which
they are not. However it does not naturally handle multiple
sources of relevance. In Section 4 we show how the lexi-
cographic measure described above can be adapted in the
LambdaMART framework to handle graded measures, and
we apply it to a tiered measure of human judgments and
clicks.

4. MULTIPLE SOURCES OF RELEVANCE
As mentioned above, relevance labels derived from human

judges have several disadvantages, and recent work has ex-
plored alternative sources, such as user click-through rates
[10, 14, 12, 16]. However, click-through rates also have sev-
eral significant drawbacks, such as a high degree of noise
and a strong position bias. In this paper we address this
issue by offering a solution that allows optimization over
multiple measures that are graded. We assume the first-tier
measure is NDCG and the second-tier measure is a click-
based measure, however our framework is general and can
be extended to other measures and other sources of relevance
labels such as freshness or grammaticality. A key advantage
of our approach is that it allows for a graded combination of,
for example, a potentially more trusted label (e.g., human
judge) with a potentially noisy or “yet to be trusted as the
sole label source” label (e.g., click information). We begin
by defining one possible target evaluation measure for clicks
(other examples include [12, 16]).

Here we assume that the labels L come from human judg-
ments and take values in {0, 1, 2, 3, 4}, where 0 indicates a
bad and 4 indicates a perfect document for the query. We
also assume that we have a second label source for query
q denoted by C = {c1, ..., cm}, where in our work we as-
sume that the secondary label source is the query click logs,
and each cj ∈ [0, 1] is a score derived from a given function
of the query click information for document dj . However,
many possible label sources can be considered for both the
primary and secondary labels. We use superscripts L and C

Figure 1: A set of documents ordered for a given
query. The light gray bars represent irrelevant (bad)
documents, while the dark blue bars represent rel-
evant (good) documents. NDCG@3 will not be af-
fected if the two relevant documents are swapped,
as shown by the red arrow. However, if the cur-
rently lower-ranked relevant document is clicked on
more than the higher ranked one (has a higher click
label), then the swap will improve CNDCG@3 with-
out affecting NDCG@3.

to denote that the labels being used are from label source L

or C, respectively, i.e., λ
(L)
j and O(L).

4.1 Click Evaluation Measure
To evaluate a ranking model on clicks, we need a suit-

able evaluation measure. Several measures have been pro-
posed in the literature [10, 14, 16, 12]; a popular one is
Kendall’s τ [10, 14], which compares pairwise preferences
induced by clicks with those induced by the ranking model’s
output scores. Kendall’s τ is well suited to comparing full
rankings, but is less desirable when preferring the top of the
list. Our aim is to emphasize the accuracy at the top of the
ranked list, and to ultimately optimize for a combination of
measures. Thus for simplicity, we choose to adapt NDCG,
a measure that more heavily rewards correctly ranking the
top of the list, to click-based relevance labels as follows:

CNDCG@T =
1

N

TX
t=1

2c(t)×4 − 1

log(1 + t)
, (9)

where the click label c(t) ∈ [0, 1] is a function of click infor-
mation for the document at rank position t, and multiplying
by 4 (the maximum value of labels L) extends the numera-
tor to the same range as the human-derived relevance labels
L, making CNDCG scores comparable to NDCG scores.

4.2 Learning a Graded Measure
Our aim is to improve CNDCG without decreasing NDCG,

in particular at truncation level three. For a graded mea-
sure, one ranking model is to be preferred over another if
it gives at least equivalent NDCG scores, with improved
CDCG scores, on a test (valid) set. We explore this in the
listwise framework of LambdaMART by requiring that doc-
ument pairs with the same human relevance label � should
be swapped if the lower-ranked document has a higher click



label c (higher user click-through rate). The intuition be-
hind our approach is illustrated in Figure 1. To achieve this
requirement, we define a λ-gradient λ(C) that is designed
to optimize for CNDCG and considers click labels cj , ck for
pairs of documents (dj , dk) with the same human relevance
label �j = �k:

λ
(C)
j =

X
k∈(dj ,dk):

cj>ck
�j=�k

λ
(C)
jk

=
X

k∈(dj ,dk):
cj>ck
�j=�k

|ΔCNDCG@T (sj , sk)| log(1 + esk−sj ),

where |ΔCNDCG@T (sj , sk)| is the difference in CNDCG
obtained when dj is swapped with document dk in the cur-
rent ranking. CNDCG prefers rankings where for every pair
of documents with the same relevance label, the document
that is clicked more is ranked higher. Furthermore, note

that λ
(L)
j given in Eq 6 does not include pairs of documents

with the same relevance label, so the learning signal pro-

vided by λ
(L)
j does not contradict that provided by λ

(C)
j . To

optimize for both NDCG and CNDCG simultaneously, we
linearly combine the λ-gradients:

λj = (1 − w) λ
(L)
j + w λ

(C)
j , (10)

where w ∈ [0, 1] controls the contribution of each λ-gradient,
allowing the tiering of measures to be in a sense more or less
graded. To minimize conflicting signals between the two

λ’s, we exclude documents with zero clicks from λ
(C)
j , pri-

marily because zero clicks can result from users not finding
a document relevant, or from users not seeing a document,
which can happen if the document is ranked further down
the list, or if the document has never been ranked. In either
case, the document could still be highly relevant, making it
potentially dangerous to treat zero clicks as an indicator of
irrelevance.

To investigate the agreement between the two λ-gradients,

we trained a model to optimize for NDCG by using λ
(L)
j dur-

ing learning, but for comparison purposes computed both

λ
(L)
j and λ

(C)
j at each iteration. We define λ-gradient agree-

ment to be either when the signs of λ
(L)
j and λ

(C)
j for doc-

ument dj were the same or when λ
(C)
j = 0. Figure 2 shows

the percent of λ’s that agree as learning progresses for two

cases: (1) λ
(C)
j is computed over all {(dj , dk) : cj > ck}

pairs and (2) λ
(C)
j is computed over pairs {(dj , dk) : cj �=

0, ck �= 0, cj > ck, �j = �k}. When all click pairs are used
(case 1), the agreement between the two λ signals is roughly
70% (ignoring the first iteration). This indicates that the
two λ-gradient signals are relatively compatible, and that it
should be possible to optimize for both NDCG and CNDCG

simultaneously. Furthermore, restricting the use of λ
(C)
j to

pairs of documents with the same human relevance label and
removing documents with zero clicks significantly improves
agreement by almost 15 percentage points, indicating that
such a restriction during learning could offer additional im-
provements in accuracy. Section 6 details our results on
using a linear combination of λ-gradients to learn a graded
measure.
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Figure 2: Training iteration versus percent λ agree-

ment on training data when λ
(C)
j uses all {(dj , dk) :

cj > ck} pairs (black diamonds) versus {(dj , dk) : cj �=
0, ck �= 0, cj > ck, �j = �k} pairs (red circles).

5. OPTIMIZING FOR POSITION THREE
We now consider learning with several λ-gradients to op-

timize for NDCG and NDCG@3, using a single label source.
Despite the emphasis on truncation three, LambdaMART
utilizes all of the training data by relaxing the truncation

for NDCG in λ
(L)
j to include all documents. In this section,

we investigate the effects of this relaxation on learning and
propose a modified λ-gradient designed to better optimize
for NDCG@3. We use NDCG@3 here for illustrative pur-
poses; a similar analysis can easily be extended to NDCG at
other truncations.

5.1 Effects of λ(L) on Learning NDCG
The document gradients λ

(L)
j govern how the ranking model

changes with each iteration of learning. To gain insight, we
monitored λ(L)’s throughout learning. In Figure 3(a), for
each highly relevant document dj with �j = {3, 4} in our
training set, we plot the following percentage

1

H

X
j:�j={3,4}

P
�k=v λ

(L)
jk

λ
(L)
j

, (11)

for v = {0, 1, 2, 3 and 4}, and where H represents the num-
ber of highly relevant documents across all queries. Through-
out learning, contributions from irrelevant and weakly rel-
evant documents (�k = {0, 1}) consistently account for on
average more than 70% of the total gradient value of a highly
relevant document. During the initial stages of learning, it
is desirable to strongly separate highly relevant documents
from irrelevant documents. During later stages, however,
most irrelevant documents will be already low in the ranked
list, and the NDCG@3 gains will come not from further sep-
arating relevant and irrelevant documents, but from fine-
grained separations among the top 3 positions. That is,
separations between documents with labels 3 and 4, or 2 and
3, for example, become more and more essential as learning
progresses.

To support this hypothesis, we plot the distribution of the
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Figure 3: Figure 3(a) shows percent λ contribution to highly relevant documents with relevance labels 3 and
4 from all relevance labels. Figure 3(b) shows the distribution of relevance labels in the top 3 rank positions
throughout the 500 learning iterations, averaged across all training queries.

label values �j for documents dj ranked in the top 3 posi-
tions using the model at iteration t as learning progresses,
as shown in Figure 3(b). After only a few iterations, irrel-
evant documents (�j = 0) account for less than 5% of the
documents in the top 3 positions. Furthermore, weakly rel-
evant documents (�j = 1) account for less than 20% of the
documents in the top 3 positions. Over 40% of documents
are highly relevant within the first few iterations, further
demonstrating that the learning algorithm is able to almost
immediately separate highly relevant documents from irrel-
evant ones, and that encouraging fine-grained separations
among top-ranked documents may lead to more accurate
ranking models.

Formally, irrelevant documents low in the ranked list dom-
inate the λ-gradient values of highly relevant documents
throughout learning due to the structure of the λ(L)’s. Re-

call that λ
(L)
jk is a sigmoid weighted by the change in NDCG

when documents dj and dk swap rank positions (Eq 4).
When the pair of documents is ranked correctly, ojk = sj −
sk > 0, the sigmoid will approach 0, but the ΔNDCG com-
ponent will grow with increasing rank position, as illustrated
by the following example. Suppose there are 3 documents:
d1 (�1 = 4) in position 1, d2 (�2 = 0) in position 4, and
d3 (�3 = 0) in position 50. The ΔNDCG values for the
corresponding pairs, namely (d1, d2) and (d1, d3), are:

|ΔNDCG(s1, s2)| =
(24 − 20)

N

„
1

log(2)
− 1

log(4)

«
=

10.8

N
,

|ΔNDCG(s1, s3)| =
(24 − 20)

N

„
1

log(2)
− 1

log(50)

«
=

17.8

N
.

Pair (d1, d3) thus gets almost double the weight even though
d3 is far down the list. In many cases, this weight will coun-

teract the decreasing sigmoid, causing λ
(L)
1,3 to significantly

contribute to λ
(L)
1 . In most learning-to-rank datasets there

is also a significant label imbalance; the number of irrelevant
documents typically far outnumber the number of relevant
ones. This further magnifies the effects of the ΔNDCG com-
ponent on learning, since the large number of irrelevant doc-
uments ranked low will additively dominate the λ-gradient.

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

Iteration

% change full
% change top 3
Training NDCG@3
Validation NDCG@3

Figure 4: Train and validation NDCG@3, together
with percent of changes that happen across the en-
tire ranking and within the top-3 positions, averaged
over all training queries.

A similar observation can be made for incorrectly ranked
pairs. When the difference ojk < 0 for incorrectly ranked
documents dj and dk is large, the sigmoid asymptotes to 1.
Now consider the previous example with swapped labels: d1

(�1 = 0) in position 1, d2 (�2 = 4) in position 4, and d3 (�3 =
4) in position 50. Because the difference in scores is larger
for pair (d1, d3), the sigmoid will either be 1 for both (d1, d2)
and (d1, d3), or it will be larger for (d1, d3). Swapping the
labels has no effect on the |ΔNDCG|, so (d1, d3) will still
get almost double the weight. Thus, the model will learn
to separate d1 from d3 more heavily than d1 from d2, when
fixing (d1, d2) is much easier. The LambdaRank gradient
appears to emphasize global changes in ranking throughout
learning, instead of targeting easier, more local adjustments.
In addition, focusing on global changes could be risky, in
particular if, say, d3 has an incorrect label.

More evidence that learning at the top of the list is unable
to significantly improve can be seen from Figure 4, which



shows training and validation NDCG@3, as well as the frac-
tion of changes in ranking that occur in the top 3 positions
versus across the entire ranking, averaged across all training
queries. After 100 iterations, less than 3% of changes occur
in the top 3 positions, while there are between 5% and 15%
rank changes across the whole list.

In summary, we have identified two related effects of λ(L)

on learning:

1. λ(L) concentrates on separating irrelevant and highly
relevant documents, thus Fixing what isn’t broken,

2. λ(L) emphasizes large global changes in ranking over
local ones, thus Not giving up on lost causes.

Since both of these effects arise in later stages of learn-
ing, our solution is to gradually modify the λ-gradients to
encourage learning to correctly rank the top of the list.
To make this transition smooth, we propose an iteration-
dependent linear combination of two λ-gradients that adjusts
the weight wm with each boosting iteration m:

λm = (1 − wm) λ(L) + wm λ(S), (12)

where λ(L) is the LambdaRank gradient, λ(S) is a new gra-
dient, and wm ∈ [0, 1]. In the next section, we define λ(S),
which aims to address the aforementioned challenges and
optimize more directly for NDCG@3.

5.2 A Modified Objective and λ-gradient
The effects discussed above partially arise from the cross-

entropy cost used in the objective function of LambdaRank
and LambdaMART (Eq 2). The derivative of the cost is a
sigmoid (Eq 3) and is plotted in Figure 5. As the difference
in scores increases for an incorrectly ranked pair, the deriva-
tive approaches 1. Thus, pairs that are further apart have
larger λ-gradients, causing the model to concentrate on fix-
ing them. We thus need a cost whose derivative decreases
as the difference in scores becomes significantly large. One
choice is a sigmoid:

O
(S)
jk =

1

1 + exp(sj − sk + μ)
, (13)

where μ is the center (mean) of the sigmoid. Differentiating
this objective with respect to score difference (ignoring the
sign), we get a weighted exponential:

∂O
(S)
jk

∂ojk
=

∂O
(S)
jk

∂sj
=

eojk+μ

(1 + eojk+μ)2
, (14)

also plotted in Figure 5. Note that when ojk > 0, the deriva-

tive (Eq 14) drops off similarly to the derivative of O(L) (Eq
3). On the other hand, when ojk < 0, Eq 14 asymptotes to
zero as desired. Given a document with score sj , the new
function will have a neighborhood of [sj − μ − ε, sj − μ + ε]
where the derivative is non-zero, and the further we move
from the center sj −μ of this neighborhood, the smaller the
gradient becomes. So this objective will strongly encourage
local moves in ranking.

The corresponding λ-gradient λ(S) can be defined as fol-
lows:

λ
(S)
jk = |ΔNDCG@T (sj , sk)| eojk+μ

(1 + eojk+μ)2
. (15)

However, we showed earlier that the |ΔNDCG| weight is
larger for pairs of documents that are ranked further apart.
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Figure 5: Plots of the derviatives of the two objec-
tives: O(L) (Eq 3, black circle) and O(C) with μ = 0
(Eq 14, blue square), both without the NDCG dif-
ference component. On the x-axis is the difference
in scores ojk; it is assumed that �j > �k and document
dj should be ranked higher than document dk.

This weight could counteract the signal from the the sigmoid
cost and prefer documents far away from the center of the
neighborhood. A potential way to address this problem is
to raise the truncation level to 3 in the λ-gradient:

λ
(S@3)
jk = |ΔNDCG@3(sj , sk)| eojk+μ

(1 + eojk+μ)2
, (16)

which discards pairs where both documents are ranked lower
than 3; combining this with the sigmoid cost will result in
non-zero gradients only for documents whose scores are close
to scores of the documents in the top 3 positions. Below
position 3, NDCG@3 no longer depends on the order of the
documents. Using our example with d1 (�1 = 0) in position
1, d2 (�2 = 4) in position 4 and d3 (�3 = 4) in position 50,
we now have that:

|ΔNDCG@3(s1, s2)| =
1

N

24 − 20

log(2)
=

21.6

N
,

|ΔNDCG@3(s1, s3)| =
1

N

24 − 20

log(2)
=

21.6

N
.

Since the derivative of the sigmoid will be significantly larger
for pair (d1, d2), the λ’s will guide the model to swap d1 and
d2. We have thus created an objective and corresponding
λ-gradient which concentrates on the top of the ranked list
and emphasizes local changes. Note, however, that using
λ(S@3) may suffer from too few training pairs, thus it may
still be advantageous to use λ(S) over λ(S@3).

5.3 Newton Step vs. Gradient Descent
LambdaMART uses the second derivative of the cost in a

Newton step that scales each leaf value in each weak learner.
With the new cost, however, the second derivative becomes

ρ
(S)
jk = |ΔNDCG@T (sj , sk)|e

ojk+μ(eojk+μ − 1)

(1 + eojk+μ)3
.

Since the difference in scores can be positive or negative,
eojk+μ −1 can be positive or negative; this makes it difficult
to control the sign of the gradients when the average step



size is computed in each leaf. To avoid this problem, we re-
place the Newton step with standard gradient descent when
training with the iteration-dependent λ (Eq 12). In order to
preserve the scale-independence, we normalize the λj ’s for
each query by dividing them by their standard deviation.

6. EXPERIMENTS
We conducted our experiments on a large real-world web

dataset. The queries were sampled from the user query logs
of a commercial search engine, along with roughly 150–200
corresponding URLs per query. We divided the data into
train/valid/test sets of size 108K/13.5K/13.5K queries, re-
spectively. Each query-URL pair has 860 features, a human
relevance label � ∈ {0, . . . , 4}, and two types of click labels
c ∈ [0, 1]. The click label for a query-document pair q-d is
assigned the click-through rate computed over many users,
where a click is when a user clicks on d after entering either
(1) a query equivalent to q, denoted by =, or (2) a query
similar or equal to q, denoted by ≈. To reduce the position
bias for the click labels, we used the last clicks (document
which was clicked on last during the user session) to mea-
sure the click-through rate for each document. This method
provides a better indication of relevance than aggregating all
clicks for each document. Typically, the fact that the user
stopped browsing after clicking on a particular document
often indicates that s/he was satisfied with that document.

Several of the 860 features used for training were func-
tions of click-through rate. Typically, learning from fea-
tures that encode the target label assignments would result
in a model that severely overfits to the training data, es-
sentially memorizing the labels by learning only from those
features. However, in this case we have two sets of target
labels and have enforced the constraint that NDCG must
not change significantly. This constraint forces the model
to generalize because the trivial mapping from click features
to labels would perform very poorly on the primary NDCG
objective. Moreover, since click-through rates are available
for many documents at test time, we want to leverage this
information when making model predictions. We do, how-
ever, remove those features from the model that encode the
label exactly or near exactly in order to learn a more general
model.

For each experiment, we performed extensive parameter
sweeps over the LambdaMART parameters and the parame-
ters of our weighted λ-gradients. For each model, we set the
number of leaves to 30, the number of boosting iterations
to 1000, and swept two values of the learning rate (0.2, 0.5)
and three values of the number of documents required to
fall in a given leaf node (6000, 8000, 10000). We also swept
the parameters of each weighted objective function, as de-
scribed in the text below. The best parameters for each
model were determined based on the best NDCG@3 accu-
racy on the validation set. Our sweeps were extensive, and
showed that relative accuracy among the models was fairly
robust to parameter settings. Results are reported on the
held-out test set. We report statistical significance using a
paired t-test at the 95% confidence level, where we calculate
the accuracy differences between two models on each query
in our 13.5K test set and then compute the standard error.
We compare the standard error of the differences against the
mean difference; the model is significantly better if the ratio
of the mean to the standard error is greater than 1.96.
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Figure 6: Examples of exponential and linear func-
tions for three different values of η.

6.1 Results: Graded Objective
We first report results on learning to optimize for the

graded measure using a graded λ-gradient (Eq 10), with
NDCG (on labels L) as the tier-one measure and CNDCG
(on labels C) as the tier-two measure. We swept over w ∈
{0.01, 0.1, 0.2, 0.3, 0.4, 0.5}. Table 1 shows results from train-

ing LambdaMART using λ(L) versus using the graded λ, for
two different sources of click labels (with the Newton step).
The results indicate that optimizing for the graded objec-
tive, in the case of both click label sources, yields equivalent
NDCG scores to the baseline, while significantly improv-
ing CNDCG, at all truncation levels. Notably, the CNDCG
scores increase by as much as 3–5 points at all truncations.

6.2 Results: Iteration-dependent Objective
We next report results on our iteration-dependent objec-

tive which uses an iteration-dependent λ-gradient (Eq 12),
where the two objectives are the LambdaRank objective
O(L) and the sigmoid objective O(S) (both use labels L).
The starting weight w0 was determined based on accuracy on
the validation set, after sweeping over w0 ∈ {0.1, 0.25, 0.5}.
We experimented with two methods of increasing wm, ex-
ponential and linear,

wm = wm−1 + exp(−η/m), and wm = wm−1 + η,

respectively, where the rate of increase η was chosen based
on accuracy on the validation set, after sweeping over η ∈
{100, 250} (exponential) and η ∈ {0.1, 0.01, 0.001} (linear),
respectively. Figure 6 shows examples of exponential and
linear functions for different values of η as the numbers of
boosting iterations increases.

The results for both linear and exponential methods are
shown in Table 2. Firstly, it is notable that the baseline us-
ing gradient descent significantly outperforms the baseline
using the Newton step, at all truncations except NDCG@1
and NDCG@2. Secondly, we find that using all trunca-
tion levels for learning, λ(S), in our iteration-dependent λ-
gradient significantly beats using λ(S@3). Thirdly, train-
ing with the iteration-dependent λ based on λ(L) and λ(S)

(denoted λ(L) + λ(S)) is significantly better than both the
gradient-descent baseline and the Newton-step baseline at
all truncations except NDCG@1 and NDCG@2. Finally, re-



Table 1: Results on LambdaMART (baseline) versus LambdaMART using the graded objective. Two types
of click labels are considered: = and ≈. LambdaMART is trained using the Newton step (N.) in both cases.
Bold indicates statistical significance of the graded objective over the baseline at the 95% confidence level.

Click Method Measure @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

=

Baseline (N.) NDCG 62.27 61.43 61.66 62.29 62.88 63.49 64.00 64.47 64.83 65.17

λ(L) + λ(C) (N.) NDCG 62.49 61.47 61.77 62.32 62.97 63.49 63.96 64.42 64.78 65.15
Baseline (N.) CNDCG 38.54 41.71 43.12 43.93 44.45 44.80 45.06 45.28 45.44 45.59

λ(L) + λ(C) (N.) CNDCG 43.11 45.74 46.75 47.33 47.66 47.89 48.06 48.19 48.30 48.37

≈
Baseline (N.) NDCG 62.27 61.43 61.66 62.29 62.88 63.49 64.00 64.47 64.83 65.17

λ(L) + λ(C)(N.) NDCG 62.36 61.38 61.59 62.17 62.80 63.35 63.85 64.32 64.72 65.07
Baseline (N.) CNDCG 48.81 53.01 55.23 56.67 57.66 58.37 58.92 59.33 59.71 60.02

λ(L) + λ(C) (N.) CNDCG 53.80 57.20 59.33 60.59 61.47 62.08 62.60 62.99 63.29 63.56

Table 2: NDCG results on the 13.5K test set for LambdaMART (baseline; both Newton and gradient descent)

versus LambdaMART using the iteration-dependent objective for two combinations: (1) λ(L) and λ(S) and

(2) λ(L) and λ(S@3). Two methods of weight adjustment are considered: exponential and linear. Significant
differences are indicated in bold (95% confidence level) and in italic (90% confidence level). Significance of

the baseline gradient descent model is over the baseline Newton model. Significance of λ(L) + λ(S) models
is over the baseline gradient descent model. Significance of λ(L) + λ(S@3) models is omitted since they are
consistently worse than the λ(L) + λ(S) models.

Method @1 @2 @3 @4 @5 @6 @7 @8 @9 @10

Baseline (Newton) 62.27 61.43 61.66 62.29 62.88 63.49 64.00 64.47 64.83 65.17
Baseline (Gradient Descent) 62.47 61.53 61.94 62.57 63.17 63.75 64.28 64.77 65.16 65.51

λ(L) + λ(S), Exponential 62.66 61.69 62.15 62.74 63.39 63.98 64.50 64.96 65.37 65.71

λ(L) + λ(S), Linear 62.56 61.82 62.19 62.78 63.33 63.97 64.47 64.91 65.32 65.68

λ(L) + λ(S@3), Exponential 62.23 61.5 61.75 62.3 62.9 63.4 63.87 64.3 64.67 65.03

λ(L) + λ(S@3), Linear 62.3 61.64 61.82 62.43 62.99 63.51 64.02 64.45 64.82 65.14

sults indicate that the two methods of weight adjustment,
exponential and linear, produce equivalent ranking models,
with the exception that the linear adjustment additionally
results in a significant (at the 90% level) gain at NDCG@2
over the gradient descent baseline.

We also conduct experiments to determine if in the pres-
ence of smaller amounts of training data (for example in
emerging search markets, where less labeled training data
is available), training LambdaMART using the iteration-
dependent gradients offers accuracy improvements over the
baseline. Figures 7(a)–7(c) show NDCG@1, 3, 10 results
on the 13.5K test set from training on varying percentages
of the 108K training data. The results indicate that with
even small amounts of training data, the iteration-depedent
objective yields significant improvements over the baseline
methods, at various truncation levels. Results also indicate,
as previously shown, that the LambdaMART baseline using
gradient descent outperforms the LambdaMART baseline
using the Newton step.

7. CONCLUSIONS
We have shown how to extend the λ family of functions

and apply our approaches to a state-of-the-art ranker, Lamb-
daMART, in two ways: first, we showed how graded mea-
sures can be learned using our λ functions. This is an in-
creasingly important issue for commercial search engines, as
they typically want to optimize for several evaluation mea-

sures simultaneously, and simple scorecards of measures are
not easily comparable. Second, we adjusted the λ functions
to solve two problems that we showed occur with the cur-
rent LambdaMART λ-gradient: the ranking model should
stop trying to further separate documents that are already
correctly ordered and well-separated, as well as ranking mis-
takes that persist long into training. The application of
these ideas, all of which are based on training with multiple
measures, resulted in ranking models that gave significant
improvements in ranking accuracy over the baseline state-
of-the-art ranker LambdaMART.

Future work includes extending our multi-tiered learning
to include other standard IR measures. One can also imag-
ine, as discussed in the introduction, having a triplet of mea-
sures, or perhaps an entire scorecard of measures, and thus
extending learning to several measures of interest. We would
also like to determine ways to learn for multiple measures
when not all of the training samples have labels from the
various sources. For example, click information is readily
available on many pages that lack a human judgment. De-
veloping a principled approach to learning for multiple mea-
sures employing several (sometimes missing) label sources is
a promising direction for future research.
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