
Two-stage Model for Automatic Playlist Continuation at Scale
Maksims Volkovs

Layer6 AI
maks@layer6.ai

Himanshu Rai
Layer6 AI

himanshu@layer6.ai

Zhaoyue Cheng
Layer6 AI

joey@layer6.ai

Ga Wu
Vector Institute

wuga@mie.utoronto.ca

Yichao Lu
University of Toronto
yichao@cs.toronto.edu

Scott Sanner
Vector Institute

ssanner@mie.utoronto.ca

ABSTRACT
Automatic playlist continuation is a prominent problem in music
recommendation. Significant portion of music consumption is now
done online through playlists and playlist-like online radio stations.
Manually compiling playlists for consumers is a highly time con-
suming task that is difficult to do at scale given the diversity of
tastes and the large amount of musical content available. Conse-
quently, automated playlist continuation has received increasing
attention recently [1, 7, 11]. The 2018 ACM RecSys Challenge [14]
is dedicated to evaluating and advancing current state-of-the-art in
automated playlist continuation using a large scale dataset released
by Spotify. In this paper we present our approach to this challenge.
We use a two-stage model where the first stage is optimized for
fast retrieval, and the second stage re-ranks retrieved candidates
maximizing the accuracy at the top of the recommended list. Our
team vl6 achieved 1’st place in both main and creative tracks out
of over 100 teams.

KEYWORDS
Playlists Continuation, Collaborative Filtering, Convolutional Neu-
ral Network, Gradient Boosting

ACM Reference format:
Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu,
and Scott Sanner. 2018. Two-stage Model for Automatic Playlist Continua-
tion at Scale. In Proceedings of Proceedings of the ACM Recommender Systems
Challenge 2018, Vancouver, Canada, 2018 (RecSys Challenge’18), 6 pages.
https://doi.org/10.1145/3267471.3267480

1 INTRODUCTION
As music consumption shifts towards online playlists, automated
playlist continuation is becoming an increasingly more important
problem in music recommendation. While significant progress has
been made in recent years [1, 7, 11], majority of published ap-
proaches are evaluated on proprietary datasets making open col-
laboration and benchmarking difficult. The 2018 ACM RecSys Chal-
lenge aims to bridge this gap by conducting standardized evaluation

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
RecSys Challenge’18, 2018, Vancouver, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6586-4/18/10. . . $15.00
https://doi.org/10.1145/3267471.3267480

of playlist continuation models. At the core of this challenge is the
Million Playlist Dataset (MPD) released by Spotify [14]. MPD is the
largest publicly available dataset of it’s kind with 1M playlists and
over 2.2M songs. The challenge task is to create a playlist continu-
ation model that is able to accurately recommend next songs for
each playlist.

Themodels are evaluated using a separate set of 10K test playlists
for which a subset of songs are withheld. Notably, test playlists vary
significantly in length from 0 songs (cold start) to 100 songs. This
simulates the production scenario where recommendation model
has to perform well during all phases of playlist creation. To avoid
over fitting, test held out songs are not released, and teams are
required to submit their recommendations to the evaluation server.
Over 100 teams participated in the main track of this challenge and
our team vl6 achieved 1’st place in both main and creative tracks.

Our approach is based on a two-stage architecture. The first stage
focuses on reducing the large 2.2M song search space to a much
smaller set of candidates for each playlist. By using a combination
of collaborative filtering (CF) and deep learning models we are able
to retrieve 20K candidates for each playlist with over 90% recall.
Moreover, top-1K songs in these candidate sets already cover close
to 60% recall. High recall ensures that most relevant songs are cap-
tured in the retrieved set, allowing the subsequent models to only
focus on this set without significant loss in accuracy. This, in turn,
enables us to apply more sophisticated models in the second stage
with minimal impact on run time. In the second stage we develop
a pairwise model that directly maps each (playlist, song) pair to a
relevance score. By jointly incorporating both playlist and song fea-
tures into the input, this model can capture pairwise relationships
that are difficult to express with traditional CF methods. The aim
for the second stage is to re-rank the candidate songs maximizing
the accuracy at the top of the recommended list.

In the following sections we describe both stages in detail as
well as data partitioning, training and inference procedures.

2 APPROACH
The model architecture diagram of our approach is shown in Fig-
ure 1. In the first stage, latent CF model Weighted Regularized
Matrix Factorization (WRMF) [8] is used to quickly retrieve 20K
candidate songs for each playlist. For each retrieved song we com-
pute additional model scores using embedding convolutional neural
network (CNN) as well as User-User and Item-Item [13] neighbor-
based models. All model scores together with their linear weighted
combination are then concatenated with extracted playlist-song
features and used as input to the second stage. In the second stage,

https://doi.org/10.1145/3267471.3267480
https://doi.org/10.1145/3267471.3267480

RecSys Challenge’18, 2018, Vancouver, Canada Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu, and Scott Sanner

Figure 1: Two-stage model architecture. In the first stage, WRMF is used to retrieve 20K songs for each playlist. CNN, Item-
Item and User-User models are then applied to each retrieved song. All model scores together with their linear weighted
combination (Blend) are concatenatedwith extracted playlist-song features and used as input to the second stage. In the second
stage, gradient boosting model re-ranks all retrieved songs and outputs the final ranking. Cold start playlists are handled
separately (see Section 2.3).

gradient boosting model re-ranks all candidate songs and outputs
the final ranking. Note that aside from cold start, a single two-stage
model is used for all playlists regardless of their length. This is done
deliberately to reduce complexity and speed up training time. In
this section we describe each stage in detail, the following notation
is used throughout:
• R: playlist-song matrix where Ri j = 1 if song i is in playlist j
and Ri j = 0 otherwise.V (i) deotes the set of all songs that
appear in playlist i , andU (j) denotes the set of playlists that
contain song j.
• U, V: playlist and song latent representations. Ui , Vj denote
latent representation for playlist i and song j respectively.
To avoid confusion we use superscript to indicate the latent
model, for example Uwrmf

i , Ucnn
i etc.

• S: predicted relevance scores where Si j denotes relevance
score for playlist i and song j.

2.1 First Stage
The main goal of the first stage is to quickly retrieve candidate
song set with sufficiently high recall. Latent CF models have been
shown to perform well at scale [3, 5] with efficient inference and
high accuracy. Empirically, we found that WRMF [8] produced the
best performance and use it to do the initial retrieval. However,
WRMF ignores the song order within the playlist which was shown
to be important for playlist continuation [7]. To incorporate tem-
poral information, we develop a CNN-based latent model that uses
convolutions over song embeddings to produce order-dependent
playlist embedding. Moreover, latent models have also been shown
to focus on the global patterns, and tend to be poor at detecting
strong localized correlations among small sets of items [3, 10]. So
we additionally incorporate neighbor-based CF models in the first
stage with the aim of capturing patterns missed by the latent mod-
els. To avoid repeating full retrieval multiple times we only apply
these models to candidate songs retrieved by the WRMF thus sig-
nificantly reducing the computational overhead. Below we describe
each model in detail.

WRMF. WRMF [8] is one of the most popular latent models for
binary/implicit CF. Despite the fact that it was published over 10
years ago, we found that with sufficient tuning it can still achieve

highly competitive accuracy. WRMF applies least squares to itera-
tively optimize the following objective:

argmin
U,V

∑
i, j

ci j (Ri, j − UiVj)
2 + λU ∥Ui ∥

2
2 + λV

Vj

2
2)

where ci j = 1 + αRi, j . The α constant in ci j controls how much
weight is given to the observed playlist-song pairs. After parameter
sweeps we found that using rank 200 with α = 100 and λU = λV =
0.001 produced good performance.

CNN. Existing work on modeling temporal patterns in CF has
primarily focused on recurrent neural networks (RNNs) [7, 16].
However, RNNs are inherently sequential and difficult to paral-
lelize making training and inference slow. Recent work in language
modeling and other domains has shown that CNNs can be readily
applied to sequence tasks with comparable or better performance
to RNNs [2, 6]. Unlike RNNs, CNNs are fully parallelizable leading
to significant speed ups on modern architectures such as GPUs.
Inspired by these results we develop a temporal CNN model to
generate playlist embeddings that take into account song order
within the playlist.

Noting the parallels between language modeling and playlist
continuation with documents=playlists and words=songs, we adapt
the recently proposed language model by Dauphin et al. [6] to this
task. The model architecture is shown in Figure 2. In this model
concatenated song embeddings are passed through multiple layers
of gated linear unit (GLU) convolutional blocks (see [6] for more
details on the GLU architecture). Activations from the last GLU
block are then aggregated together using max pooling and passed
to fully connected layers that output the playlist embedding.

Formally, input for each playlist i consists of concatenated em-
beddings for songs in i:

Φ1:k
i = [Vcnn

1 ,Vcnn
2 , ...,Vcnn

k]

Note that since any song subsequence within the playlist also forms
a valid playlist we have the following range for k : 1 ≤ k ≤ |V (i) |.
Φi is thus a p × k matrix where p is the size of the input embed-
ding. Convolutions in GLU blocks are applied from left to right to
Φ1:k
i , and each successive layer captures increasingly longer range

structure within the song sequence. To deal with variable length

Two-stage Model for Automatic Playlist Continuation at Scale RecSys Challenge’18, 2018, Vancouver, Canada

Figure 2: CNN playlist embedding model architecture.

input we use max pooling after last convolutional layer. Max pool-
ing retains the largest activation for each convolutional kernel, for
example if last convolutional layer has 500 kernels then the output
of max pooling will be a vector of length 500. The output length
thus only depends on the number of kernels and not on the input
size.

Given the input song sequence passing it through the CNN
produces playlist embedding:

Ucnn
i = f (Φ1:k

i ,θ)

where θ is the set of free parameters to be learned. Since our goal
is retrieval, Ucnn

i should be an accurate predictor of songs that
follow Vcnn

k . This forms the basis of our objective function. By
appropriately sizing the fully connected layers we make playlist
embeddings Ucnn to be the same size as input song embeddings
Vcnn . The probability that a given song j is contained in playlist i
is then defined as:

P (Vcnn
j |Ucnn

i) =
1

1 + e−Ucnn
i Vcnnj

(1)

During training, given a prediction point k , we aim to raise the
probability of songs that follow Vcnn

k and lower it for all other
songs:

L (i,k,θ) =

−
∑

j ∈V (i)
j>k

log
(

1

1 + e−Ucnn
i Vcnnj

)
−

∑
j′<V (i)

log *
,
1 −

1

1 + e−Ucnn
i Vcnnj′

+
-

(2)
Adopting a stochastic optimization approach we repeatedly sample
prediction point k ∈ [1, |V (i) |] for playlists in each mini batch.
Given k , we sample songs j ∈ V (i) that appear after position k ,
and songs j ′ < V (i). Gradients from L are then used to update the
model. Note that unlike language modeling where only the next
word is predicted, we instead train the model to predict arbitrary
far into the future. Similar to [7], we found that there is strong cor-
relation between consecutive songs. Consequently, only predicting
the next song makes the model heavily focus on the last song in
the input, significantly hurting performance.

Once training is completed, we make forward passes through the
model using all songs in each playlist to obtain embeddings Ucnn .
Retrieval is then done by computing dot products in the embedding
space. For this challenge our CNN model consists of 7 GLU blocks
where each block consists of convolutional layer with 900 kernels,
followed by batch normalization [9] and ReLU activation. Last GLU
block is followed by top-3max pooling retaining largest three values
per kernel, and fully connected layer. Input and output embedding
dimension is set to 200 and we use WRMF song representations to
initialize input song embeddings Vcnn . These embeddings are then
updated during model training together with model weights.

Neighbor-based Models. Two popular neighbor-based CF models
are User-User and Item-Item [13], we use both models here. The
User-User approach estimates relevance by computing similarity
between rows of R. Formally, for a given playlist-song pair (i, j)
User-User compares all playlists where j appears to i:

Suseri j =
∑

i′∈U (j)

Ri :Ri′:
∥Ri :∥ ∥Ri′:∥

(3)

where Ri : is the i’th row of R. The intuition here is that if song j
appears in many playlists that are similar to i then Suseri j is high
and j should be included in the recommended list.

Similarly, Item-Item approach estimate relevance by computing
similarity between columns of R. This method compares j with all
songs in playlist i:

Sitemi j =
∑

j′∈V (i)

R:jR:j′

R:j

R:j′

(4)

where R:j is the j’th column of R. As with User-User, if song j

is similar to songs already added in i then Sitemi j is high and j is
recommended.

Numerous extensions and generalizations have been proposed
to improve performance and/or runtime of neighbor-based mod-
els [15]. One of the prominent problems that have been identified
is the strong bias towards popular items. Popularity translates to
denser rows/columns that inflate similarity scores resulting in rec-
ommendations that are heavily skewed towards popular items.
We found this to be especially prevalent in music recommenda-
tion where popularity distribution is highly skewed towards the
most popular songs. To address this problem Verstrepen et al. [15]
propose to rescale similarity scores by the inverse popularity. We
adopt this approach here and multiply both User-User and Item-
Item scores by popularity−(1−β)j . Here, β is an empirically chosen
constant and popularityj is a normalized popularity score. Setting
β < 1 down weights relevance scores inverse proportionally to
song popularity. We found this approach to work well, significantly
improving the accuracy of both User-User and Item-Item models.
Empirically, we set β = 0.6 for User-User and β = 0.9 for Item-Item.

Model Blend. In previous sections we described four different CF
models: WRMF, CNN, Item-Item and User-User. Here, we outline
how these models are combined. A simple solution would be to
select a single best model. However, selecting one particular model
may lead to overconfident predictions and higher variance as it
ignores model uncertainty in favor of specific model assumptions.
Consequently, combining multiple models is desirable [12].

RecSys Challenge’18, 2018, Vancouver, Canada Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu, and Scott Sanner

To avoid overfitingwe resort to linearweighted ensemblemethod.
Here all models scores are linearly combined with model specific
weights:

Sblend = w1Swrmf +w2Scnn +w3Suser +w4Sitem (5)

The scores for each model are standardized before the blend by
subtracting the mean and dividing by standard deviation. Stan-
dardization re-scales the scores into the same range making them
comparable across models. The weights are chosen greedily from
the set {0, 0.1, 0.2, 0.3, 0.4, 0.5}, we deliberately keep this set small to
further reduce overfitting. After a round of greedy optimization we
select the following weight combination:w1 = 0.1,w2 = 0.4,w3 =
0.3,w4 = 0.3. This combination achieved the highest validation
accuracy and is used in all subsequent experiments. The five scores
{Swrmf , Scnn , Suser , Sitem , Sblend } are used as input to the second
stage for each candidate song.

2.2 Second Stage
Given the candidates retrieved by the first stage, the goal of the
second stage is to accurately re-rank these candidates maximizing
the accuracy at the top of the recommended list. Since the candidate
set is small, second stage model can be more expensive and trade
off efficiency for accuracy. We thus focus on pairwise interactions
here and develop a model that jointly maps (playlist, song) pairs to
relevance scores. This approach is complementary to the first stage
where none of the fourmodels are considering pairwise interactions.
The main components of the second stage are input features and
model architecture, we describe both in detail in the sections below.

Feature Extraction. We conducted extensive feature engineering
with the aim of capturing all important aspects of playlist-song
relevance. The final set of features that we used can be partitioned
into five groups:
• Input From First Stage. We use five scores from the first
stage directly as input features. This allows the second stage
model to quickly recover the performance of the first stage
and then focus on improving it.
• Playlist Features. Playlist features summarize playlist con-
tent information and the types of songs that are in the playlist
. We use features such as: playlist name and length, average
song/artist/album popularity, song homogeneity and others.
Homogeneity is estimated by comparing playlist latent rep-
resentation (WRMF, CNN etc.) with all the songs that appear
in the playlist: 1

∥V (i) ∥
∑
j ∈V (i) UiVj . We found that some

playlists mostly contain songs of specific genre/type making
the recommendation task easier, while others are much more
diverse. The homogeneity score correlates well with song
diversity and is one of the most important features in this
group.
• Song Features. Similarly to playlist features, we focus on
summarizing song content information and types of playlists
where the song appears. We use song artist/album/title fea-
tures, song duration and playlist statistics. Here, we also
compute the homogeneity score by comparing song represen-
tation to all playlists that contain it: 1

∥U (j) ∥
∑
i ∈U (j) UiVj .

This feature estimates whether the song typically appears in
playlists of similar type, and has also proven to be effective.

Figure 3: Data partitioning diagram. We sample 9K playlists
from theMPDwith same length distribution as in challenge
test set (1K per group excluding cold start). We then sam-
ple additional 90K playlists with same length distribution
for the second stage training (10K per group excluding cold
start). For the sampled playlists the training portion is used
to train the first stage and the validation portion is used for
model evaluation in the 9K set, and for second stage training
in the 90K set.

• Playlist-Song Features. This is the most important feature
group that directly describes the pairwise similarity between
each playlist-song pair. We compute similarity features be-
tween target song and songs that are in the playlist, as well as
between target playlist and playlists that contain the target
song. These features are analogous to item-item and user-
user similarities but include additional content information.
For example, we compute statistics such as artist/album over-
lap, average latent score similarity, difference in duration and
length etc. Adding this feature group provided the biggest
improvement over the first stage, so this is where we believe
future effort should focus on.
• Creative Track. For the creative track, we extracted 12 addi-
tional features from the Spotify Audio API including: acous-
ticness, danceability, energy, instrumentalness, key, liveness,
loudness, mode, speechiness, tempo, time signature and va-
lence. Adding these feature provided a small but consistent
gain.

Model Architecture. We opted to use a tree-based gradient boost-
ingmodel (GBM) in the second stage using the excellent XGBoost [4]
library. To create the training set we use the 20K song candidates
returned by the first stage and randomly sample (up to) 20 relevant
songs and 20 not relevant songs for each playlist. These samples
form the training set with binary relevant/not relevant targets. We
then train a GBM model with pairwise ranking loss as the training
objective. Empirically, ranking loss performed better than binary
cross entropy objective for this task. In all submissions, we use a
GBM model with 150 trees of depth 10.

2.3 Cold Start
Cold start playlists is the only group that is handled separately from
the two-stage model since it can’t be applied to cold start. Dealing
with cold start is challenging in this dataset since only two playlist
content features are available - name and length. We found name
to be a good predictor of playlist content and focus our cold start

Two-stage Model for Automatic Playlist Continuation at Scale RecSys Challenge’18, 2018, Vancouver, Canada

model on this feature. To deal with large scale retrieval in over
2.2M song space we again use a latent approach and aim to create
a latent representation that only depends on playlist name.

We achieve this by using matrix factorization as commonly done
in latent CF models. We create a new matrix Rname where rows
represent songs and playlists concatenated together, and columns
correspond to names. Each playlist row of Rname is a one-hot
encoding of playlist name. Similarly, each song row of Rname cor-
responds to name counts from all playlists that contain this song.
We then factorize this matrix with truncated SVD:

Rname ≈ UΣV = UnameVname (6)

where Uname = UΣ. Given Uname and Vname , we treat this as
a latent CF model and do retrieval by computing dot products
between the SVD vectors. Note that no additional information
besides name is required for playlists, so this model can be directly
applied to playlist cold start.

The SVD approach has several advantages, first, with a single
factorization we jointly embed both playlists and songs into the
same latent space. Second, the resulting representations are compact
and support efficient retrieval. Finally, there are many efficient
libraries available for truncated SVD so even though Rname has
over 3.2M rows the factorization can be computed in minutes.

2.4 Training and Inference
The test set for this challenge is comprised of ten different playlist
groups with 1K playlists per group. Each group represents a differ-
ent playlist completion task:

(1) Predict tracks for a playlist given its title only
(2) Predict tracks for a playlist given its title and the first track
(3) Predict tracks for a playlist given its title and the first 5 tracks
(4) Predict tracks for a playlist given its first 5 tracks (no title)
(5) Predict tracks for a playlist given its title and the first 10 tracks
(6) Predict tracks for a playlist given its first 10 tracks (no title)
(7) Predict tracks for a playlist given its title and the first 25 tracks
(8) Predict tracks for a playlist given its title and 25 random tracks
(9) Predict tracks for a playlist given its title and the first 100 tracks
(10) Predict tracks for a playlist given its title and 100 random tracks

This partitioning is done to simulate the production application
of the playlist continuation model. The model has to successfully
handle all stages of playlist creation from cold start to first few songs,
to long playlists with lots of songs. As discussed above, to promote
simplicity and improve generalization we train a single model for
all warm start playlists (groups 2 to 10). To achieve this, we create
a validation set with nearly identical playlist length distribution to
the test set. For each warm start test group we randomly sample
playlists from the MPD that have the same length and partition
them as per test test. So for group 2 only first track is used for
training and the rest for validation, for group 3 first five tracks are
used for training and so on. This provides a validation set with
9K playlists that closely mimics the test set, and we use this set to
validate all models before submission. Empirically, this validation
scheme provided consistent generalization where improvements
on the validation set directly translated to the test set leaderboard.

Given that the second stage model uses predictions form first
stage as input, it can’t be trained on the same training set. We
thus create an additional split for second stage training. To ensure

RPREC NDCG Clicks

WRMF 0.1641 0.3350 2.1230
CNN 0.1594 0.3230 2.1157
Item-Item 0.1772 0.3534 2.1649
User-User 0.1768 0.3550 1.6332
Blend 0.1866 0.3728 1.4064
2nd Stage 0.1985 0.3846 1.1998

Cold Start
Popular 0.0395 0.0815 17.2662
Name SVD 0.1106 0.2083 7.9609

Table 1: Validation set results.

generalization we again follow the same procedure and sample 10K
playlists for each of the warm start groups 2 to 10. This provides
additional 90K playlist split where training portion is combined
with other playlists in MPD to train the first stage, and validation
portion is used to train the second stage. Using the 20-20 sampling
scheme outlined in Section 2.2 the 90K set produces over 3.5M
training examples for the second stage which is sufficient to obtain
good results. The full data partitioning diagram is shown in Figure 3.

To train themodel we first train first stage on the training portion
of MPD (see Figure 3), and then train second stage on the 90K
playlist subset using first stage as input. Both stages are validated
using the 9K validation set.

3 EXPERIMENTS
All experiments are conducted on a single Ubuntu Linux server with
two Intel Xeon(R) E5-2620 CPUs, 256GB RAM, and Titan V GPU.
With this architecture end-to-end inference in our model is can be
done in under 50ms for each playlist. Following the challenge rules,
we use three metrics to evaluate model performance: R-Precision
(RPREC), NDCG and Clicks 1. For all metrics the truncation is set
to 500, so the model has to retrieve 500 songs for each playlist.

Table 1 shows the validation performance for both first and
second stage models. From the table we see that neighbor-based
models produce strong performance either matching or outperform-
ing the latent models. This indicates that despite their simplicity,
with appropriate tuning neighbor-based models can still provide
highly accurate recommendations. We also see that blending the
models together improves performance with Blend significantly
outperforming the best individual model on all three metrics. Strong
blend performance further supports the conclusion that combining
diverse models is beneficial for this task. We also see that CNN
has the worst performance out of the four first stage models. How-
ever, in the blend this model has the highest weight of 0.4 (see
Section 2.1), and thus contributes the most to the combined model.
As none of the other models are temporal, this indicates that the
modeling temporal structure is important for this task and should
be explored further.

The second stage model further improves performance even
over the highly competitive blend model. We see over a point gain
in both RPREC and NDCG after re-ranking the candidates in the
second stage. Empirically, we observed that after the first few trees
the GBM would already recover the blend performance and start
to improve on it. This is in part because all five first stage model

1See https://recsys-challenge.spotify.com/rules for definition of each metric.

https://recsys-challenge.spotify.com/rules

RecSys Challenge’18, 2018, Vancouver, Canada Maksims Volkovs, Himanshu Rai, Zhaoyue Cheng, Ga Wu, Yichao Lu, and Scott Sanner

Playlist 1 Playlist 2 Playlist 3
1. Drake - Sneakin 1. Stone & Van Linden - Summerbreeze 1. London Philharmonic Orchestra - Symphony No. 40 in G Minor, K. 550: Allegro molto
2. Logic - The Incredible True Story 2. Havana Brown - We Run The Night 2. London Philharmonic Orchestra - Requiem, K. 626: Lacrimosa dies illa
3. Travis Scott - Birds In The Trap Sing McKnight 3. Calvin Harris - Sweet Nothing 3. Elisabeth Ganter - Concerto in A Major for Clarinet and Orchestra, K. 622: II. Adagio
4. Big Sean - I Decided 4. David Guetta - Titanium 4. Tbilisi Symphony Orchestra - Symphony No.25 In G Minor, K. 183 I. Allegro Con Brio
5. The Weeknd - Starboy 5. Calvin Harris - Feel So Close 5. Tbilisi Symphony Orchestra - Requiem Mass In D Minor, K. 626 : II. Dies Irae

Model Recommendations
Drake - Fake Love Rihanna - We Found Love London Philharmonic Orchestra - String Quintet No.4 in G Minor, K.516: I. Allegro
Migos - Bad and Boujee Swedish House Mafia - Don’t You Worry Child Takács Quartet- String Quintet No.3 in C Minor, K.515: III. Andante
Post Malone - Congratulations Calvin Harris - Summer Columbia Symphony Orchestra - Serenade in G major, K. 525 i. Allegro

Table 2: Playlist continuation examples. We show first five songs contained in each playlist, and top-3 recommendations
produced by our model.

RPREC NDCG Clicks Borda

vl6 0.2241 0.3946 1.7839 329
hello world! 0.2233 0.3932 1.8952 323
Avito 0.2153 0.3845 1.7818 322
Creamy Fireflies 0.2201 0.3856 1.9335 320
MIPT_MSU 0.2167 0.3823 1.8754 320

Table 3: Main track test set leaderboard results for the top-5
teams.

scores are explicitly given as inputs to the second stage. These
results suggest that the second stage provides an effective way to
further improve accuracy by modeling pairwise relationships in a
scalable way.

Table 1 also shows validation cold start results. We compare
our name-based SVD approach to a simple popularity baseline.
To conduct this evaluation we remove all training songs from the
validation playlists and treat them as cold start. Here we see that
the SVD model significantly outperforms the popularity baseline,
indicating that playlist name is useful for the continuation task.
However, the cold start model still performs nearly 2x worse than
the warm start one. We believe that with additional information
such as details on playlist creator, date/time statistics, device etc.,
the gap in performance between the twomodels can be significantly
reduced. Since no such information is available in the MPDwe leave
this investigation for future work.

Table 3 shows the main track test set leaderboard results for
the top-5 teams. The final ranking is computed using the Borda
count aggregation of the individual rankings for each of the three
objectives. From the table we see that our team vl6 outperforms all
other teams on RPREC and NDCG, and has second best result on
Clicks thus achieving the highest overall Borda score of 329. Over
100 teams participated in this challenge applying a wide range of
CF approaches, so these results demonstrate that our two-stage
model provides an effective way to achieve leading accuracy while
remaining efficient during inference.

Examples of test playlists continuations are shown in Table 2.
Here, we show first five songs contained in each playlist and top-
3 suggestions produced by the model. We see that the model is
able to accurately capture and continue playlist genre – from Hip-
Hop/Pop in the first playlist, to EDM in the second playlist and
classical pieces in last one. The recommendations are also diverse
and feature songs by different artists. We consistently observed
artist diversity in recommended song lists even though the model
was not directly optimized for this during training.

4 CONCLUSION
In this paper, we described our two-stage approach for the 2018
ACM RecSys Challenge. This challenged focused on automated

playlist continuation and was organized by Spotify. In the first
stage we use a combination of latent, temporal and neighbor-based
models to retrieve a set of candidates with high recall. Then in
the second stage the candidates are re-ranked using extensive pair-
wise information. This approach allows to apply complex feature
engineering in the second stage without sacrificing run-time per-
formance, and we are able to provide end-to-end recommendations
in under 50ms for each palylist . Our model achieved highly com-
petitive performance placing first out of over 100 teams.

REFERENCES
[1] Andreja Andric and Goffredo Haus. 2006. Automatic playlist generation based

on tracking user’s listening habits. Multimedia Tools and Applications (2006).
[2] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2018. An empirical evaluation

of generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXiv:1803.01271 (2018).

[3] Robert M Bell and Yehuda Koren. 2007. Lessons from the Netflix prize challenge.
ACM SIGKDD Explorations Newsletter (2007).

[4] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In International Conference On Knowledge Discovery and Data Mining.

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for
YouTube recommendations. In ACM Recommender Systems Conference.

[6] Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Language
modeling with gated convolutional networks. In International Conference on
Machine Learning.

[7] Cedric De Boom, Rohan Agrawal, Samantha Hansen, Esh Kumar, Romain Yon,
Ching-Wei Chen, Thomas Demeester, and Bart Dhoedt. 2017. Large-scale user
modeling with recurrent neural networks for music discovery on multiple time
scales. Multimedia Tools and Applications (2017).

[8] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative filtering for
implicit feedback datasets. In IEEE International Conference on Data Mining.

[9] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference
on Machine Learning.

[10] Yehuda Koren. 2008. Factorization meets the neighborhood: A multifaceted
collaborative filtering model. In International Conference on Knowledge Discovery
and Data Mining.

[11] François Maillet, Douglas Eck, Guillaume Desjardins, and Paul Lamere. 2009.
Steerable Playlist Generation by Learning Song Similarity from Radio Station
Playlists. In International Society for Music Information Retrieval Conference.

[12] David Opitz and Richard Maclin. 1999. Popular ensemble methods: An empirical
study. Journal of artificial intelligence research 11 (1999).

[13] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In International Conference
on World Wide Web.

[14] Markus Schedl, Hamed Zamani, Ching-Wei Chen, Yashar Deldjoo, and Mehdi
Elahi. [n. d.]. RecSys Challenge 2018: Automatic Playlist Continuation.

[15] Koen Verstrepen, Kanishka Bhaduriy, Boris Cule, and Bart Goethals. 2017. Col-
laborative filtering for binary, positiveonly data. ACM SIGKDD Explorations
Newsletter 19, 1 (2017).

[16] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.
2017. Recurrent recommender networks. In International Conference on Web
Search and Data Mining.

	Abstract
	1 Introduction
	2 Approach
	2.1 First Stage
	2.2 Second Stage
	2.3 Cold Start
	2.4 Training and Inference

	3 Experiments
	4 Conclusion
	References

