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Abstract

Bipartite matching problems characterize many situations, ranging from ranking
in information retrieval to correspondence in vision. Exact inference in real-
world applications of these problems is intractable, making efficient approxi-
mation methods essential for learning and inference. In this paper we propose
a novel sequential matching sampler based on a generalization of the Plackett-
Luce model, which can effectively make large moves in the space of matchings.
This allows the sampler to match the difficult target distributions common in
these problems: highly multimodal distributions with well separated modes. We
present experimental results with bipartite matching problems—ranking and im-
age correspondence—which show that the sequential matching sampler efficiently
approximates the target distribution, significantly outperforming other sampling
approaches.

1 Introduction

Bipartite matching problems (BMPs), which involve mapping one set of items to another, are ubiq-
uitous, with applications ranging from computational biology to information retrieval to computer
vision. Many problems in these domains can be expressed as a bipartite graph, with one node for
each of the items, and edges representing the compatibility between pairs.

In a typical BMP a set of labeled instances with target matches is provided together with feature
descriptions of the items. The features for any two items do not provide a natural measure of
compatibility between the items, i.e., should they be matched or not. Consequently the goal of
learning is to create a mapping from the item features to the target matches such that when an
unlabeled instance is presented the same mapping can be applied to accurately infer the matches.
Probabilistic formulations of this problem, which involve specifying a distribution over possible
matches, have become increasingly popular, e.g., [23, 26, 1], and these models have been applied to
problems ranging from preference aggregation in social choice and information retrieval [7, 13] to
multiple sequence protein alignment in computational biology [24, 27].

However, exact learning and inference in real-world applications of these problems quickly become
intractable because the state space is typically factorial in the number of items. Approximate infer-
ence methods are also problematic in this domain. Variational approaches, in which aspects of the
joint distribution are treated independently, may miss important contingencies in the joint. On the
other hand sampling is hard, plagued by the multimodality and strict constraints inherent in discrete
combinatorial spaces.

Recently there has been a flurry of new methods for sampling for bipartite matching problems.
Some of these have strong theoretical properties [10, 9], while others are appealingly simple [6, 13].
However, to the best of our knowledge, even for simple versions of bipartite matching problems,
no efficient sampler exists. In this paper we propose a novel Markov Chain Monte Carlo (MCMC)
method applicable to a wide subclass of BMPs. We compare the efficiency and performance of our
sampler to others on two applications.
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2 Problem Formulation

A standard BMP consists of the two sets of N items U = {u1, ..., uN} and V = {v1, ..., vN}. The
goal is to find an assignment of the items so that every item in U is matched to exactly one item in V
and no two items share the same match. In this problem an assignment corresponds to a permutation
π where π is a bijection {1, ..., N} → {1, ..., N}, mapping each item in U to its match in V ; we
use the terms assignment and permutation interchangeably. We define π(i) = j to denote the index
of a match vπ(i) = vj for item ui in π and use π−1(j) = i to denote the reverse. Permutations
have a useful property that any subset of the permutation also constitutes a valid permutation with
respect to the items in the subset. We will utilize this property in later sections; here we introduce
the notation. Given a full permutation π we define π1:t (π1:0 = ∅) as a partial permutation of only
the first t items in U .

To express uncertainty over assignments, we use the standard Gibbs form to define the probability
of a permutation π:

P (π|θ) = 1

Z(θ)
exp(−E(π, θ)) Z(θ) =

∑
π

exp(−E(π, θ)) (1)

where θ is the set of model parameters and E(π, θ) is the energy. We assume, without loss of
generality, that the energy E(π, θ) is given by a sum of single and/or higher order potentials.

Many important problems can be formulated in this form. For example, in information retrieval the
crucial problem of learning a ranking function can be modeled as a BMP [12, 26]. In this domain
U corresponds to a set of documents and V to a set of ranks. The energy of a given assignment
is typically formulated as a combination of ranks and the model’s output from the query-document
features. For example in [12] the energy is defined as:

E(π, θ) = − 1

N

N∑
i=1

θi(N − π(i) + 1) (2)

where θi is a score assigned by the model to ui. Similarly, in computer vision the problem of finding
a correspondence between sets of images can be expressed as a BMP [5, 3, 17]. Here U and V are
typically sets of points in the two images and the energy is defined on the feature descriptors of these
points. For example in [17] the energy is given by:

E(π, θ) =
1

|ψ|

N∑
i=1

〈
θ, (ψui − ψvπ(i))2

〉
(3)

where ψui and ψvπ(i) are feature descriptors for points ui and vπ(i). Finally, some clustering problems
can also be expressed in the form of a BMP [8]. It is important to note here that for all models where
the energy is additive we can compute the energy E(π1:t, θ) for any partial permutation π1:t by
summing the potentials only over the t assignments in π1:t. For instance for the energy in Equation
3, E(π1:t, θ) = 1

|ψ|
∑t
i=1

〈
θ, (ψui − ψvπ1:t(i)

)2
〉

with E(π1:0, θ) = 0.

Learning in these models typically involves maximizing the log probability of the correct match as a
function of θ. To do this one generally needs to find the gradient of the log probability with respect
to θ: ∂ log(P (π|θ))

∂θ = −∂E(π,θ)
∂θ − ∂ log(Z(θ))

∂θ . Unfortunately, computing the gradient with respect to
the partition function requires a summation over N ! valid assignments, which very quickly becomes
intractable. For example for N = 20 finding ∂ log(Z(θ))

∂θ requires over 1017 summations. Thus
effective approximation techniques are necessary to learn such models.

A particular instance of BMP that has been studied extensively is the maximum weight bipartite
matching problem (WBMP). In WBMP the energy is reduced to only the single potential φ:

Eunary(π, θ) =
∑
i

φ(ui, vπ(i), θ) (4)

Equations 2 and 3 are both examples of WBMP energies. Finding the assignment with the maxi-
mum energy is tractable and can be solved in O(N3) [16]. Determining the partition function in
a WBMP is equivalent to finding the permanent of the edge weight matrix (defined by the unary
potential), a well-known #P problem [25]. The majority of the proposed samplers are designed for

2



WBMPs and cannot be applied to the more general BMPs where the energy includes higher order
potentials. However, distributions based on higher order potentials allow greater flexibility and have
been actively used in problems ranging from computer vision and robotics [20, 2] to information
retrieval [19, 26]. There is thus an evident need to develop an effective sampler applicable to any
BMP distribution.

3 Related Approaches

In this section we briefly describe existing sampling approaches, some of which have been developed
specifically for bipartite matching problems while others come from matrix permanent research.

3.1 Gibbs Sampling

Gibbs and block-Gibbs sampling can be applied straightforwardly to sample from distributions de-
fined by Equation 1. To do that we start with some initial assignment π and consider a subset of
items in U ; for illustration purposes we will use two items ui and uj . Given the selected subset of
items the Gibbs sampler considers all possible assignment swaps within this subset. In our example
there are only two possibilities: leave π unchanged or swap π(i) with π(j) to produce a new per-
mutation π′. Conditioned on the assignment of all the other items in U that were not selected, the
probability of each permutation is:

p(π′|π\{i,j}) =
exp(−E(π′, θ))

exp(−E(π, θ)) + exp(−E(π′, θ))
p(π|π\{i,j}) = 1− p(π′|π\{i,j})

where π\{i,j} is permutation π with ui and uj removed. We sample using these probabilities to
either stay at π or move to π′, and repeat the process.

Gibbs sampling has been applied to a wide range of energy-based probabilistic models. It is often
found to mix very slowly and to get trapped in local modes [22]. The main reason for this is
that the path from one probable assignment to another using only pairwise swaps is likely to go
through regions that have very low probability [5]. This makes it very unlikely that those moves
will be accepted, which typically traps the sampler in one mode. Thus, the local structure of the
Gibbs sampler is likely to be inadequate for problems of the type considered here, in which several
probable assignments will produce well-separated modes.

3.2 Chain-Based Approaches

Chain-based methods extend the assignment swap idea behind the Gibbs sampler to generate sam-
ples more efficiently from WBMP distributions. Instead of randomly choosing subsets of items to
swap, chain-based method generate a sequence (chain) of interdependent swaps. Given a (random)
starting permutation π, an item ui (currently matched with vπ(i)) is selected at random and a new
match vj is proposed with probability p(ui, vj |θ) where p depends on the unary potential φ(ui, vj , θ)
in the WBMP energy (see Equation 4). Now, assuming that the match {ui, vj}, is selected, matches
{ui, vπ(i)} and {uπ−1(j), vj} are removed from π and {ui, vj} is added to make π′. After this
change uπ−1(j) and vπ(i) are no longer matched to any item so π′ is a partial assignment. The proce-
dure then finds a new match for uπ−1(j) using p. This chain-like match sampling is repeated either
until π′ is a complete assignment or a termination criteria is reached.

Several chain-based methods have been proposed including the chain flipping approach [5] and the
Markov Chain approach [11]. Dellaert et al., [5] empirically demonstrated that the chain flipping
sampler can mix better than the Gibbs sampler when applied to multimodal distributions. However,
chain-based methods also have several drawbacks that significantly affect their performance. First,
unlike the Gibbs sampler which always maintains a valid assignment, the intermediate assignments
π′ in chain-based methods are incomplete. This means that the chain either has to be run until a valid
assignment is generated [5] or terminated early and produce an incomplete assignment [11]. In the
first case the sampler has a non-deterministic run-time whereas in the second case the incomplete
assignment can not be taken as a valid sample from the model. Finally, to the best of our knowledge
no chain-based method can be applied to general BMPs because they are specifically designed for
Eunary (see Equation 4).
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(a) t = 0 (b) t = 1 (c) t = 2 (d) t = 3
Figure 1: Top row: Plackett-Luce generative process viewed as rank matching. Bottom row: sequential match-
ing procedure. Items are U = {u1, u2, u3} and V = {v1, v2, v3}; the reference permutation is σ = {2, 3, 1}.
The proposed matches are shown in red dotted arrows and accepted matches in black arrows.

3.3 Recursive Partitioning Algorithm

The recursive partitioning [10] algorithm was developed to obtain exact samples from the distribu-
tion for WBMP. This method is considered to be the state-of-the-art in matrix permanent research
and to the beset of our knowledge has the lowest expected run time. Recursive partitioning proceeds
by splitting the space of all valid assignments Ω intoK subsets Ω1, ...,ΩK with corresponding parti-
tion functions Z1, ..., ZK . It then samples one of these subsets and repeats the partitioning procedure
recursively, generating exact samples from a WBMP distribution.

Despite strong theoretical guarantees the recursive partitioning procedure has a number of limi-
tations that significantly affect its applicability. First, the running time of the sampler is non-
deterministic as the algorithm has to be restarted every time a sample falls outside of Ω. The
probability of restart increases with N which is an undesirable property especially for training large
models where one typically needs to have precise control over the time spent in each training phase.
Moreover, this algorithm is also specific to WBMP and cannot be generalized to sample from arbi-
trary BMP distributions with higher order potentials.

3.4 Plackett-Luce Model

Our proposed sampling approach is based on a generalization of the well-established Plackett-Luce
model [18, 14], which is a generative model for permutations. Given a set of items V = {v1, ..., vN},
a Plackett-Luce model is parametrized by a set of weights (one per item)W = {w1, ..., wN}. Under
this model a permutation π is generated by first selecting item vπ(1) from the set of N items and
placing it in the first position, then selecting vπ(2) from the remaining N − 1 items and placing it
the second position, and so on until all N items are placed. The probability of π under this model is
given by:

Q(π) =
exp(wπ(1))∑N
i=1 exp(wπ(i))

×
exp(wπ(2))∑N
i=2 exp(wπ(i))

× ...×
exp(wπ(N))

exp(wπ(N))
(5)

Here exp(wπ(t))

exp(
∑N
i=t wπ(i))

is the probability of choosing the item vπ(t) out of the N − t + 1 remaining

items. It can be shown that Q is a valid distribution with
∑
π Q(π) = 1. Moreover, note that it is

very easy to draw samples fromQ by applying the sequential procedure described above. In the next
section we show how this model can be generalized to draw samples from any BMP distribution.

4 Sampling by Sequentially Matching Vertices

In this section we introduce a class of proposal distributions that can be effectively used in con-
junction with the Metropolis-Hastings algorithm to obtain samples from a BMP distribution. Our
approach is based on the observation that the sequential procedure behind the Plackett-Luce model
can also be extended to generate matches between item sets. Instead of placing items into ranked
positions we can think of the Plackett-Luce generative process as sequentially matching ranks to the
items in V , as illustrated in the top row of Figure 1. To generate the permutation π = {3, 1, 2} the
Plackett-Luce model first matches rank 1 with vπ(1) = v2 then rank 2 with vπ(2) = v3 and finally
rank 3 with vπ(3) = v1. Taking this one step further we can replace ranks with a general item set
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U and repeat the same process. Unlike ranks, items in U do not have a natural order so we use a
reference permutation σ, which specifies the order in which items in U are matched. We refer to
this procedure as sequential matching. The bottom row of Figure 1 illustrates this process.

Formally the sequential matching process proceeds as follows: given some reference permutation σ,
we start with an empty assignment π1:0 = ∅. Then at each iteration t = 1, ..., N the corresponding
item uσ(t) gets matched with one of the V \ π1:t−1 items, where V \ π1:t−1 = {vjt , ..., vjN }
denotes the set of items not matched in π1:t−1. Note that similarly to the Plackett-Luce model,
|V \π1:t−1| = N − t+ 1 so at each iteration, uσ(t) will have N − t+ 1 left over items in V \π1:t−1
to match with. We define the conditional probability of each such match to be p(vj |uσ(t), π1:t−1),∑
vj∈V \π1:t−1

p(vj |uσ(t), π1:t−1) = 1. After N iterations the permutation π1:N = π is produced
with probability:

Q(π|σ) =
N∏
t=1

p(vπ(σ(t))|uσ(t), π1:t−1) (6)

where vπ(σ(t)) is a match for uσ(t) in π. The conditional match probabilities depend on both the
current item uσ(t) and on the partial assignment π1:t−1. Introducing this dependency generalizes the
Plackett-Luce model which only takes into account that the items in π1:t−1 are already matched but
does not take into account how these items are matched. This dependency becomes very important
when the energy contains pairwise and/or higher order potentials as it allows us to compute the
change in energy for each new match, in turn allowing for close approximations to the target BMP
distribution.

We can show that the distribution Q defined by the p’s is a valid distribution over assignments:
Proposition 1 For any reference permutation σ and any choice of matching probabilities
that satisfy

∑
vj∈V \π1:t−1

p(vj |uσ(t), π1:t−1) = 1, the distribution given by: Q(π|σ) =∏N
t=1 p(vπ(σ(t))|uσ(t), π1:t−1) is a valid probability distribution over assignments.1

The important consequence of this proposition is that it allows us to work with a very rich class of
matching probabilities with arbitrary dependencies and still obtain a valid distribution over assign-
ments with a simple way to generate exact samples from it. This opens many avenues for tailoring
proposal distributions for MCMC applications to specific BMPs. In the next section we propose one
such approach.

4.1 Proposal Distribution

Given the general matching probabilities the goal is to define them so that the resulting proposal
distribution Q matches the target distribution as closely as possible. One potential way of achieving
this is through the partial energy E(π1:t, θ) (see Section 2). The partial energy ignores all the items
that are not matched in π1:t and thus provides an estimate of the ”current” energy at each iteration t.
Using partial energies we can also find the changes in energy when a given item is matched. Given
that our goal is to explore low-energy (high-probability) modes we define the matching probabilities
as:

p(vj |uσ(t), π1:t−1) =
exp(−E(H(vj , uσ(t), π1:t−1), θ))

Zt(uσ(t), π1:t−1)

Zt(uσ(t), π1:t−1) =
∑

vj∈V \π1:t−1

exp(−E(H(vj , uσ(t), π1:t−1), θ))
(7)

where H(vj , uσ(t), π1:t−1) is the resulting partial assignment after match {uσ(t), vj} is added to
π1:t−1. The normalizing constant Zt ensures that the probabilities sum to 1, which is the necessary
condition for Proposition 1 to apply. It is useful to rewrite the matching probabilities as:

p(vj |uσ(t), π1:t−1) =
exp(−E(H(vj , uσ(t), π1:t−1), θ) + E(π1:t−1, θ))

Z∗t (uσ(t), π1:t−1)

Z∗t (uσ(t), π1:t−1) =
∑

vj∈V \π1:t−1

exp(−E(H(vj , uσ(t), π1:t−1), θ) + E(π1:t−1, θ))

Adding E(π1:t−1, θ) to each item’s energy does not change the probabilities because this term can-
cels out during normalization (but it does change the partition function, denoted by Z∗t here). How-
ever, in this form we see that p(vj |uσ(t), π1:t−1) is directly related to the change in the partial energy

1The proof is in the supplementary material.
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from π1:t−1 to H(vj , uσ(t), π1:t−1) – the larger the change the bigger the resulting probability will
be. Thus, the matching choices will be made solely based on the changes in the partial energy.
Reorganizing the terms yields the proposal distribution:

Q(π|σ) = exp(−E(π1:1, θ) + E(π1:0, θ))

Z∗1 (uσ(1), π1:0)
× ...× exp(−E(π1:N , θ) + E(π1:N−1, θ))

Z∗N (uσ(N), π1:N−1)
=

exp(−E(π, θ))

Z∗(π, σ)

Here Z∗(π, σ) is the normalization factor which depends both on the reference permutation σ and
the generated assignment π. The resulting proposal distribution is essentially a renormalized version
of the target distribution. The numerator remains the exponent of the energy but the denominator
is no longer a constant; rather it is a function which depends on the generated assignment and the
reference permutation. Note that the proposal distribution defined above can be used to generate
samples for any target distribution with arbitrary energy consisting of single and/or higher order
potentials. To the best of our knowledge aside from the Gibbs sampler this is the only sampling
procedure that can be applied to arbitrary BMP distributions.

4.2 Temperature and Chain Properties

Acceptance rate, a key property of any sampler, is typically controlled by a parameter which
either shrinks or expands the proposal distribution. To achieve this effect with the sequen-
tial matching model we introduce an additional parameter ρ which we refer to as temperature:
p(vj |uσ(t), π1:t−1, ρ) ∝ exp(−E(H(vj , uσ(t), π1:t−1), θ)/ρ). Decreasing ρ leads to sharp proposal
distributions typically highly skewed towards one specific assignment, while increasing ρ makes the
proposal distribution approach the uniform distribution. By adjusting ρ we can control the range of
the proposed moves therefore controlling the acceptance rate.

To ensure that the SM sampler converges to the required distribution we demonstrate that it satisfies
the three requisite properties: detailed balance, ergodicity, and aperiodicity [15]. The detailed bal-
ance condition is satisfied because every Metropolis-Hastings algorithm satisfies detailed balance.
Ergodicity follows from the fact that the insertion probabilities are always strictly greater than 0.
Therefore any π is reachable from any σ in one proposal cycle. Finally, aperiodicity follows from
the fact that the chain allows self-transitions.

4.3 Reference Permutation

Algorithm 1 Sequential Matching (SM)
Input: σ, M , ρ
for m = 1 to M do

Initialize π1:0 = ∅
for t = 1 toN do {generate sample fromQ(·|σ)}

Find a match vj for uσ(t) using:
p(vj |uσ(t), π1:t−1, ρ)

Add {uσ(t), vj} to π1:t−1 to get π1:t

end for
Calculate forward probability:
Q(π|σ) =

∏N
t=1 p(vπ(σ(t))|uσ(t), π1:t−1, ρ)

Calculate backward probability:
Q(σ|π) =

∏N
t=1 p(vσ(π(t))|uπ(t), σ1:t−1, ρ)

if Uniform(0, 1) < exp(−E(π,θ))Q(σ|π)
exp(−E(σ,θ))Q(π|σ) then

σ ← π
end if

end for
Return: σ

Fixing the reference permutation σ yields a
state independent sampler. Empirically we
found that setting σ to the MAP permutation
gives good performance for WBMP problems.
However, for the general energy based distri-
butions considered here finding the MAP state
can be very expensive and in many cases in-
tractable. Moreover, even if MAP can be found
efficiently there is still no guarantee that using it
as the reference permutation will lead to a good
sampler. To avoid these problems we use a state
dependent sampler where the reference permu-
tation σ is updated every time a sample gets ac-
cepted. In the matching example (bottom row
of Figure 1) if the new match at t = 3 is ac-
cepted then σ would be updated to {3, 1, 2}.
Empirically we found the state dependent sam-
pler to be more stable, with consistent perfor-
mance across different random initializations of the reference permutation. Algorithm 1 summarizes
the Metropolis-Hastings procedure for the state dependent sequential matching sampler.

5 Experiments

To test the sequential matching sampling approach we conducted extensive experiments. We consid-
ered document ranking and image matching, two popular applications of BMP; and for the sake of
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Table 1: Average Hellinger distances for learning to rank (left half) and image matching (right half) problems.
Statistically significant results are underlined. Note that Hellinger distances for N = 8 are not directly com-
parable to those for N = 25, 50 since approximate normalization is used for N > 8. For N = 50 we were
unable to get a single sample from the RP sampler for any c in the allocated time limit (over 5 minutes).

Learning to Rank Image Matching

c = 20 c = 40 c = 60 c = 80 c = 100 c = 0.2 c = 0.4 c = 0.6 c = 0.8 c = 1

N = 8:
GB 0.7948 0.6211 0.4635 0.4218 0.3737 0.9108 0.8868 0.8320 0.7616 0.6533
CF 0.9012 0.8987 0.8887 0.8714 0.8748 0.9112 0.8882 0.8336 0.7672 0.6623
RP 0.7945 0.6209 0.4629 0.4986 0.3734 0.9110 0.8870 0.8312 0.7623 0.6548
SM 0.7902 0.6188 0.4636 0.4474 0.3725 0.9109 0.8866 0.8307 0.7621 0.6557

N = 25:
GB 0.9533 0.9728 0.9646 0.9449 0.9486 0.7246 0.8669 0.9902 0.9960 0.9976
CF 0.9767 0.9990 0.9937 0.9953 0.9781 0.7243 0.8675 0.9904 0.9950 0.9807
RP 0.9533 0.9728 0.9694 0.9462 0.9673 0.7279 0.9788 0.9896 0.9988 0.9969
SM 0.1970 0.1937 0.2899 0.4166 0.3858 0.7234 0.8471 0.8472 0.6350 0.5576

N = 50:
GB 0.9983 0.9991 0.9988 0.9974 0.9985 0.6949 0.9646 1.0000 1.0000 1.0000
CF 0.9841 0.9995 0.9993 0.9906 0.9305 0.6960 0.9635 1.0000 1.0000 0.9992
SM 0.1617 0.2335 0.3462 0.4931 0.4895 0.6941 0.9243 0.7016 0.3550 0.1677

comparison we concentrated on WBMP, as most of the methods cannot be applied to general BMP
problems. When comparing the samplers we concentrated on evaluating how well the Monte Carlo
estimates of probabilities produced by the samplers approximate the true distribution P . When tar-
get probabilities are known this method of evaluation provides a good estimate of performance since
the ultimate goal of any sampler is to approximate P as closely as possible.

For all experiments the Hellinger distance was used to compare the true distributions with the ap-
proximations produced by samplers. We chose this metric because it is symmetric and bounded.
Furthermore it avoids the log(0) problems that arise in cross entropy measures. For any two distri-
butions P and Q the Hellinger distance is given by D = (1 − (

∑
π P (π)Q(π))1/2)1/2. Note that

0 ≤ D ≤ 1 where 0 indicates that P = Q. Computing D exactly quickly becomes intractable as the
number of items grows. To overcome this problem we note that if a given permutation π is not gen-
erated by any of the samplers then the term P (π)Q(π) is 0 and does not affect the resulting estimate
of D for any sampler. Hence we can locally approximate D up to a constant for all samplers by
changing Equation 1 to: P (π|θ) ≈ exp(−E(π,θ))∑

π′∈Ω∗ exp(−E(π′,θ) , where Ω∗ is the union of all distinct per-
mutations produced by the samplers. The Hellinger distance is then estimated with respect to Ω∗.
For all experiments we ran the samplers on small (N = 8), medium (N = 25) and large (N = 50)
scale problems. The sampling chains for each method were run in parallel using 4 cores; the use of
multiprocessor boards such as GPUs allows our method to scale to large problems. We compare the
SM approach with Gibbs (GB), chain flipping (CF) and recursive partitioning (RP) samplers. To run
RP we used the code available from the author’s webpage. These methods cover all of the primary
leading approaches in WBMP and matrix permanent research.

Since any valid sampler will eventually produce samples from the target distribution, we tested
the methods with short chain lengths. This regime also simulates real applications of the methods
where, due to computational time limits, the user is typically unable to run long chains. Note that
this is especially relevant if the distributions are being sampled as an inner loop during parameter
optimization. Furthermore, to make comparisons fair we used the block GB sampler with the block
size of 7 (the largest computationally feasible size) as the reference point. We used 2N swaps for
each GB chain, setting the number of iterations for other methods to match the total run time for GB
(for all experiments the difference in running times between GB and SM did not exceed 10%). The
run times of the CF and RP methods are difficult to control as they are non-deterministic. To deal
with this we set an upper-bound on the running time (consistent with the other methods) after which
CF and RP were terminated. Finally, the temperature for SM was chosen in the [0.1, 1] interval to
keep the acceptance rate approximately between 20% and 60%.

5.1 Learning to Rank

For a learning to rank problem we used the Yahoo! Learning To Rank dataset [4]. For each query
the distribution over assignments was parametrized by the energy given in Equation 2. Here θi
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is the output of the neural network scoring function trained on query-document features. After
pretraining the network on the full dataset we randomly selected 50 queries with N = 8, 25, 50
documents and used GB, CF, RP and SM methods to generate 1000 samples for each query. To gain
insight into sampling accuracy we experimented with different distribution shapes by introducing
an additional scaling constant c so that P (π|θ, c) ∝ exp(−c× E(π, θ)). In this form c controls the
”peakiness” of the distribution with large values resulting in highly peaked distributions; we used
c ∈ {20, 40, 60, 80, 100}.
The left half of Table 1 shows Hellinger distances forN = 8, 25, 50, averaged across the 50 queries.2
From the table it is seen that all the samplers perform equally well when the number of items is small
(N = 8). However, as the number of items increases SM significantly outperforms all other sam-
plers. Throughout experiments we found that the CF and RP samplers often reached the allocated
time limit and had to be forced to terminate early. For N = 50 we were unable to get a single
sample from the RP sampler after running it for over 5 minutes. This is likely due to the fact that
at each matching step t = 1, ..., N the RP sampler has a non-zero probability of failing (rejecting).
Consequently the total rejection probability increases linearly with the number of items N . Even
for N = 25 we found the RP sampler to reject over 95% of the time. This further suggests that ap-
proaches with non-deterministic run times are not suitable for this problem because their worst-case
performance can be extremely slow. Overall, the results indicate that SM can produce higher quality
samples more rapidly, a crucial property for learning large-scale models.

5.2 Image Matching

For an image matching task we followed the framework of Petterson et al. [17]. Here, we used the
Giraffe dataset [21] which is a video sequence of a walking giraffe. From this data we randomly se-
lected 50 pairs of images that were at least 20 frames apart. Using the available set of 61 hand labeled
points we then randomly selected three sets of correspondence points for each image pair, containing
8, 25 and 50 points respectively, and extracted SIFT feature descriptors at each point. The target dis-
tribution over matchings was parametrized by the energy given by Equation 3 where ψ’s are the SIFT
feature descriptors. We also experimented with different scale settings: c ∈ {0.2, 0.4, 0.6, 0.8, 1}.
Figure 2 shows an example pair of images with 25 labeled points and the inferred MAP assignment.

Figure 2: Example image pair with N = 25. Green
lines show the inferred MAP assignment.

The results for N = 8, 25, 50 are shown in in
the right half of Table 1. We see that when
the distributions are relatively flat (c < 0.6) all
samplers have comparable performance. How-
ever, as the distributions become sharper with
several well defined modes (c ≥ 0.6), the
SM sampler significantly outperforms all other
samplers. As mentioned above, when the dis-
tribution has well defined modes the path from
one mode to the other using only local swaps is likely to go through low probability modes. This is
the likely cause of the poor performance of the GB and CF samplers as both samplers propose new
assignments through local moves. As in the learning to rank experiments, we found the rejection
rate for the RP sampler to increase significantly for N ≥ 25. We were unable to obtain any samples
in the allocated time (over 5 mins) from the RP sampler for N = 50. Overall, the results further
show that the SM method is able to generate higher quality samples faster than the other methods.

6 Conclusion

In this paper we introduced a new sampling approach for bipartite matching problems based on a
generalization of the Plackett-Luce model. In this approach the matching probabilities at each stage
are conditioned on the partial assignment made to that point. This global dependency allows us
to define a rich class of proposal distributions that accurately approximate the target distribution.
Empirically we found that our method is able to generate good quality samples faster and is less
prone to getting stuck in local modes. Future work involves applying the sampler during inference
while learning BMP models. We also plan to investigate the relationship between the proposal
distribution produced by sequential matching and the target one.

2Trace and Hellinger distance plots (for both experiments) are in the supplementary material.
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