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Abstract

In this paper we present a general treatment of the preference aggregation problem, in
which multiple preferences over objects must be combined into a single consensus ranking.
We consider two instances of this problem: unsupervised aggregation where no informa-
tion about a target ranking is available, and supervised aggregation where ground truth
preferences are provided. For each problem class we develop novel learning methods that
are applicable to a wide range of preference types.1 Specifically, for unsupervised aggre-
gation we introduce the Multinomial Preference model (MPM) which uses a multinomial
generative process to model the observed preferences. For the supervised problem we de-
velop a supervised extension for MPM and then propose two fully supervised models. The
first model employs SVD factorization to derive effective item features, transforming the
aggregation problems into a learning-to-rank one. The second model aims to eliminate the
costly SVD factorization and instantiates a probabilistic CRF framework, deriving unary
and pairwise potentials directly from the observed preferences. Using a probabilistic frame-
work allows us to directly optimize the expectation of any target metric, such as NDCG or
ERR. All the proposed models operate on pairwise preferences and can thus be applied to
a wide range of preference types. We empirically validate the models on rank aggregation
and collaborative filtering data sets and demonstrate superior empirical accuracy.

Keywords: preference aggregation, meta-search, learning-to-rank, collaborative filtering

1. Introduction

Many areas of study, such as information retrieval (IR), collaborative filtering, and social
web analysis face the preference aggregation problem, in which multiple preferences over
objects must be combined into a single consensus ranking. Early developments in preference
aggregation and analysis originated in social science (Arrow, 1951) and statistics (Luce,
1959), giving rise to the field of social choice. Research in social choice concentrates on
measuring individual interests, values, and/or welfare as an aggregate towards collective
decision. Common problems explored in this field include vote aggregation in elections and
other domains as well as player/team ranking based on observed game outcomes. Most
of these problems are relatively small in size and can be analyzed thoroughly, resulting
in models that have well-explored properties and theoretical guarantees. These models

1. The code for all models introduced in this paper is available at www.cs.toronto.edu/~mvolkovs.
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now decide the outcomes of such crucial events as presidential and government elections
as well as legal decisions. However, the theoretical guarantees for many of these models
typically come at the expense of complicated inference and/or strong assumptions about
the preference data (Chevaleyre et al., 2007; Rossi et al., 2011).

The recent explosion of web technologies has generated immense amounts of new pref-
erence data. Several properties of this data make it difficult to apply many of the existing
aggregation models. First, the ease with which people can access and generate content on
the web has resulted in a drastic increase in the quantity of data. For instance, where
before the majority of sports data had on the order of a thousand players that participated
in several tournaments per year, now, online gaming has millions of users that participate
in tens of millions of games daily. Recent statistics on the popular game Halo indicate that
over 2 billion multiplayer games are played annually,2 with hundreds of thousands of games
happening at any given moment. Consequently, while the aggregation problem in online
gaming remains similar to the traditional one in sports—combine preference in the form of
game outcomes to generate reliable estimates of players’ skills—any model developed for
this task now has to be able to process large amounts of data quickly and handle diverse
evidence types ranging from one-on-one games to elimination team tournaments.

Second, the diversity of online applications has led to many new preference types. In
addition to the common direct evidence in the form of votes and ratings we now also have
a variety of indirect evidence, including web page clicks, dwell time (time spent on a page),
and viewing patterns. While these evidence forms do not directly indicate preference, when
aggregated across many users, they have been found to closely correlate with it (Joachims,
2002; Joachims et al., 2007). Methods that mine these preferences are now extensively used
in search engine optimization (Agichtein et al., 2006; Joachims et al., 2007; Guo et al.,
2009) and other domains. Moreover, for some of the new problems the preferences are no
longer generated by people. An example of this is meta-search where an issued query is
sent to several search engines and the (often partial) document rankings returned by them
are aggregated by the meta-search engine to generate more comprehensive ranking results.
In this problem there is no human interaction and all the preferences are generated by the
machines. Consequently social theories on user behavior and models based on these theories
are less applicable here.

Finally, new types of aggregation problems have also recently emerged. In the past the
majority of the aggregation problems were unsupervised, that is, no ground truth prefer-
ence information about the items was available. For these problems the aim is typically to
produce a ranking that satisfies as many of the observed preferences (majority or another
related objective) as possible. Due to the popularity of such problems almost all of the ex-
isting research in preference aggregation has concentrated on the unsupervised aggregation.
However, many of the recent problems are amenable to the supervised setting, as ground
truth preference information is available. The meta-search problem mentioned above is
one example of supervised preference aggregation. Often, to train/evaluate the aggregat-
ing function the documents retrieved by the search engines are given to human annotators
who assign relevance labels to each document. The relevance labels provide ground truth
preference information about the documents, that is, the documents with higher relevance

2. Full article can be found at http://www.pcmag.com/article2/0,2817,2402479,00.asp.
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label are to be ranked above those with lower one. Another example is crowdsourcing (e.g.,
MechanicalTurk), where tasks often involve assigning ratings to objects or pairs of objects
ranging from images to text. The ratings from several users are then aggregated to produce
a single labeling of the data. To ensure consistency in generated labels a domain expert
typically labels a subset of the data shown to the “crowd”. The labels are then used to
evaluate the quality of annotations submitted by each worker. In these problems the aim is
not to satisfy the majority but rather to learn a mapping from the observed preferences to
the ground truth ones. Consequently, methods that aim to satisfy the majority often lead
to suboptimal results since they lack the “specialization” property: they cannot identify
cases where the majority is wrong and only a small subset of the preferences should be
used. Such a property is impossible to achieve without referring to the ground truth labels.

The scale and variety of the preference data generated by the social and other web
domains discussed above show that the field of preference aggregation is rapidly evolving
and expanding. Almost every user-oriented web application ranging from web shops and
social networks to web search and gaming is now using preference aggregation techniques,
the accuracy of which has a direct and significant impact on the generated revenue and
business decisions. There is thus an evident need to develop effective aggregation methods
that are able to scale to the large web data sets and handle diverse preference types.

As the field has evolved a new trend has recently emerged where machine learning
methods are starting to be used to automatically learn the aggregating models. While
these methods typically lack the theoretical support of the social choice models they often
show excellent empirical performance and are able to handle large and diverse preference
data. These models have now been applied successfully to preference aggregation problems
in collaborative filtering (Gleich and Lim, 2011; Jiang et al., 2011; Guiver and Snelson,
2009), information retrieval (Cormack et al., 2009; Liu et al., 2007b; Chen et al., 2011)
and online gaming (Dangauthier et al., 2007), as well as others. Inspired by these results
the work presented in this paper also takes a machine learning approach and develops
new models for both supervised and unsupervised preference aggregation problems. In the
following sections we describe existing approaches and open challenges for both problems.
We then introduce and empirically validate new models for each problem type.

2. Unsupervised Preference Aggregation

Unsupervised preference aggregation is the problem of combining multiple preferences over
objects into a single consensus ranking when no ground truth preference information is
available. As mentioned above, the majority of research in preference aggregation has
concentrated on this problem and a number of models have been developed. Given the
underlying correspondence between ranking and permutation, considerable work on unsu-
pervised preference aggregation has exploited probabilistic models on permutations, many
of which originate in statistics and psychology. Mallows (Mallows, 1957) and Plackett-Luce
(Plackett, 1975; Luce, 1959) are particularly popular models, each with many extensions
(Guiver and Snelson, 2009; Quin et al., 2010; Lu and Boutilier, 2011). However, research
has largely concentrated on learning a consensus ranking based on a set of observed full,
or partial rankings. These models are thus inadequate for problems where preferences are
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expressed in other forms, and where inconsistencies exist in the observed preferences, such
as ”a beat b”, ”b beat c”, and ”c beat a”.

In this section we address this problem by developing a flexible probabilistic model over
pairwise comparisons. Pairwise comparisons are the building blocks of almost all forms of
evidence about preference and subsume the most general models of evidence proposed in
literature. Our model can thus be applied to a wide spectrum of preference aggregation
problems and does not impose any restrictions on the type of evidence. The score-based
approach that we adopt allows for rapid learning and inference, which makes the model
applicable to large-scale aggregation problems. We experimentally validate our model on a
rank aggregation and collaborative filtering tasks using Microsoft’s LETOR4.0 (Liu et al.,
2007a) and the MovieLens (Herlocker et al., 1999) data sets.

2.1 Framework

We assume a set of N instances where for every instance n we have a set of Mn items
Xn = {xn1, ..., xnMn} and a set of Ψ experts. Each expert ψ ∈ {1, ...,Ψ} generates a list of
preferences for items in Xn. We assume that the same set of experts generate preferences
for items in each instance. The preferences can be in the form of full or partial rankings,
top-K lists, ratings, relative item comparisons, or combinations of these. All of these forms
can be converted to a set of partial pairwise preferences, which in most cases will be neither
complete nor consistent. We use {xni � xnj} to denote the preference of xni over xnj .
We allow the same pairwise preferences to occur multiple times, and use the pairwise count
matrix Yψ

n (i, j) : Mn×Mn to count the number of times preference {xni � xnj} is produced

by the expert ψ, with Yψ
n (i, j) = 0 if {xni � xnj} is not expressed by ψ.

The most straightforward way to convert rankings into pairwise preferences is through
binary comparisons. Given two rankings rψni and rψnj assigned by ψ to xni and xnj we set

Yψ
n (i, j) = I[rψni < rψnj ] where I is an indicator function, similarly Yψ

n (j, i) = I[rψnj < rψni].
This representation, however, completely ignores the strength of preference expressed by
the magnitude of the rankings. For example, the partial ranking {1, 200, 300} will have
the same count matrix as the ranking {1, 2, 3}, but the first ranking expresses significantly
more confidence about the ordering of the items than the second one. To account for this
we instead use Yψ

n (i, j) = (rψnj − r
ψ
ni)I[rψni < rψnj ] and Yψ

n (j, i) = (rψni − r
ψ
nj)I[rψnj < rψni].

In this form we assume that ranking {rni = 1, rnj = 200} is equivalent to observing the
pairwise preference {xni � xnj} 199 times, whereas ranking {rni = 1, rnj = 2} is equivalent
to observing {xni � xnj} only once. This method of accounting for preference strength
is not new and the reader can refer to Gleich and Lim (2011) and Jiang et al. (2011) for
more extensive treatment of this and other approaches for converting rankings to pairwise
matrices. We summarize these pairwise preference representations below:

1. Binary Comparison:

Yψ
n (i, j) = I[rψni < rψnj ],

2. Rank Difference:

Yψ
n (i, j) = (rψnj − r

ψ
ni)I[rψni < rψnj ].
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A ranking of items in Xn can be represented as a permutation of Xn. A permutation π
is a bijection π : {1, ...,Mn} → {1, ...,Mn} mapping each item xni to its rank π(i) = j, and
i = π−1(j). Given the observed (partial) preference instance n consisting of count matrices
Yn = {Y1

n, ...,Y
Ψ
n } the goal is to come up with a single ranking π of items in Xn that

maximally satisfies this instance.

Most preference aggregation problems fit this framework. For instance in meta-search
instances correspond to queries and Xn is the set of documents retrieved for a given query qn.
Each expert ψ represents a search engine which generates either partial or complete ranking
of the documents in Xn. As before we can let Yψ

n (i, j) = (rψnj−r
ψ
ni)I[rψni < rψnj ] if documents

xni and xnj are both ranked by the search engine ψ and set Yψ
n (i, j) = 0 otherwise. In

collaborative filtering X is the set of movies/songs/books etc., and an instance of the rank
aggregation problem aims to infer the consensus ranking of movies given the (partial) ratings
of users ψ (Guiver and Snelson, 2009; Gleich and Lim, 2011). The pairwise approach

provides a natural way to model this problem. We can define Yψ(i, j) = (`ψi −`
ψ
j )I[`ψi > `ψj ]

where `i and `j are the ratings assigned to movies xni and xnj by user ψ. If ψ did not rate
either xni or xnj we set Yψ(i, j) = 0.

2.2 Previous Work

Relevant previous work in this area can be divided into two categories: permutation based
and score based. In this section we describe both types of models.

2.2.1 Permutation-Based Models

Permutation based models work directly in the permutation space. The most common
and well explored such model is the Mallows model (Mallows, 1957). Mallows defines a
distribution over permutations and is typically parametrized by a central permutation σ
and a dispersion parameter φ ∈ (0, 1]; the probability of a permutation π is given by:

P (π|φ, σ) =
1

Z(φ, σ)
φ−D(π,σ),

where D(π, σ) is a distance between π and σ. For rank aggregation problems inference
in this model amounts to finding the permutation σ that maximizes the likelihood of the
observed rankings. For some distance metrics, such as Kendall’s τ and Spearman’s rank
correlation, the partition function Z(φ, σ) can be found exactly. However, finding the central
permutation σ that maximizes the likelihood is typically very difficult and in many cases is
intractable (Meila et al., 2007).

Recent work extends the Mallows model to define distributions over partial rankings
(Lu and Boutilier, 2011). Under partial rankings the partition function can no longer be
computed exactly, so these authors introduced a new sampling approach to estimate it.
When the number of items is large, however, this sampling approach is typically very slow,
which makes the model impractical for many large scale online problems such as meta-search
where aggregation has to be done very quickly. Furthermore, both the proposed pairwise
model and the sampling approach rely on the assumption that all pairwise preferences are
consistent, which is often violated in real-world preference aggregation problems.
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A number of other generalizations of the Mallows model such as the Cranking model
(Lebanon and Lafferty, 2002) the Aggregation model (Klementiev et al., 2008), and the
CPS model (Quin et al., 2010). The Cranking model extends the Mallows distribution to
model several diverse preference profiles. Each preference profile i is modeled by its own
central permutation σi and ”importance” θi:

P (π|σ,θ) =
1

Z(σ,θ)
e−

∑
i θiD(π,σi),

where σ = {σi} and θ = {θi} are the profile parameters. The above model can be viewed as
a mixture of Mallows models where each component is parametrized by (σi, θi) pair. Using
this alternative representation the work of Klementiev et al. (2008) further generalizes
the Cranking model to partial top-K lists and derives an Expectation Minimization (EM)
algorithm to learn the parameters θ.

Another recent extension of the Mallows model, the CPS model, defines a sequential
generative process, similar to the Plackett-Luce model described below, which draws the
items without replacement to form a permutation; the probability of a given permutation
π is:

P (π|σ, φ) =
M∏
i=1

exp(−θ
∑

π1:i
D(π1:i, σ))

Z(i, π)
,

where the summation in the numerator is over all permutations π1:i that have the first i
elements fixed to π; Z(i, π)’s are the normalizing constants that ensure that

∑
π P (π|σ, φ) =

1. For several distance metrics such as Spearman’s rank correlation and footrule as well as
Kendall’s τ , the summation

∑
π1:i
D(π1:i, σ) over (M− i)! elements, can be found in O(M2),

allowing the normalizing constants Z(i, π) to be computed in polynomial time. However,
during inference one must still consider nearly all of the M ! possible permutations to find
an optimal π. A greedy approximation avoids this search, which reduces the complexity to
O(M2), but provides no guarantee with respect to the optimal solution.

In general, due to the extremely large search space (typically M ! for M items) and the
discontinuity of functions over permutations, exact inference in permutation-based models is
often intractable. Thus one must resort to approximate inference methods, such as sampling
or greedy approaches, often without guarantees on how close the approximate solution will
be to the target optimal one. As the number of items grows, the cost of finding a good
approximation increases significantly, which makes the majority of these models impractical
for many real world applications where data collections are extremely large. The score-based
approach described next avoids this problem by working with real valued scores instead.

2.2.2 Score-Based Models

In score-based approaches the goal is to learn a set of real valued scores (one per item)
Sn = {sn1, ..., snMn} which are then used to sort the items. Working with scores avoids the
discontinuity problems of the permutation space.

Early score based methods for rank aggregation in meta-search are heuristic based.
For example, BordaCount (Aslam and Montague, 2001), Condorcet (Montague and Aslam,
2002) and median rank aggregation (Fagin et al., 2003) derive the item scores by averaging
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ranks across the experts or counting the number of pairwise wins. In statistics a very
popular pairwise score model is the Bradley-Terry (Bradley and Terry, 1952) model:

P (Yψ
n |Sn) =

∏
i 6=j

(
exp(sni)

exp(sni) + exp(snj)

)Yψ
n (i,j)

,

where exp(sni)
exp(sni)+exp(snj)

can be interpreted as the probability that item xni beats xnj in the

pairwise contest. In logistic form the Bradley-Terry model is very similar to another pop-
ular pairwise model, the Thurstone model (Thurstone, 1927). Extensions of these models
include the Elo Chess rating system (Elo, 1978), adopted by the World Chess Federation
FIDE in 1970, and Microsoft’s TrueSkill (Dangauthier et al., 2007) rating system for player
matching in online games, used extensively in Halo and other games. Furthermore, the
popular supervised learning-to-rank model RankNet (Burges et al., 2005) is also based on
this approach.

The key assumption behind the Bradley-Terry model is that the pairwise probabilities
are completely independent of the items not included in the pair. A problem that arises
from this assumption is that if a given item xni has won all pairwise contests, the likelihood
becomes larger as sni becomes larger. It follows that a maximum likelihood estimate for
sni is ∞ (Mase, 2003). As a consequence the model will always produce a tie amongst
all undefeated items. Often this is an unsatisfactory solution because the contests that
the undefeated items participated in, and their opponents’ strengths, could be significantly
different.

To avoid some of these drawbacks, the Bradley-Terry model was generalized by Plackett
and Luce (Plackett, 1975; Luce, 1959) to a model for permutations:

P (π|Sn) =

Mn∏
i=1

exp(Sn(π−1(i)))∑Mn
j=i exp(Sn(π−1(j)))

,

where Sn(π−1(i)) is the score of the item in position i in π. The generative process behind
the Plackett-Luce model assumes that items are selected sequentially without replacement.
Initially item π−1(1) is selected from the set of Mn items and placed first, then item π−1(2)
is selected from the remaining Mn−1 items and placed second and so on until all Mn items
are placed. Note that here inference can be done quickly by doing simple gradient descent
on scores, which is a clear advantage over most permutation based models. The Plackett-
Luce generalization relaxes the independence assumption of the Bradley-Terry model but
this model is only applicable to consistent full or partial rankings (or consistent pairwise
preferences) which significantly limits its application. Moreover, for 2-item rankings the
Plackett-Luce model reduces to the Bradley-Terry model and thus suffers from the same
infinite score problem. To overcome this problem a Bayesian framework was also recently
introduced for the Plackett-Luce model by placing a Gamma prior on the selection prob-
abilities (Guiver and Snelson, 2009). The authors of that work demonstrated that the
Bayesian approach prevented overfitting and produced aggregate rankings that better fitted
the observed preference data. This improvement however, comes at the cost of significant
computational overhead required during score inference. In this work we show that the
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model we develop achieves similar improvement over the Plackett-Luce model without the
additional computational overhead and preference type restrictions.

Recently several score based approaches have been developed to model the joint pair-
wise matrix (Gleich and Lim, 2011; Jiang et al., 2011). In these methods the preferences
expressed by each of the experts are combined into a single preference matrix Ytot

n =∑Ψ
ψ=1 Yψ

n , which is then factorized by a low rank factorization such as:

Ytot
n ≈ Sne

T − eSTn .

The resulting scores Sn are then used to rank the items. The main drawback of this approach
is that by combining all preferences into a single Ytot

n the individual expert information
is lost. Consequently outlier experts with preferences substantially deviating from the
consensus can significantly influence both Ytot

n and the resulting scores.

2.3 Multinomial Preference Model (MPM)

In this section we develop a new score based model for pairwise preferences, the Multinomial
Preference Model (MPM) (Volkovs and Zemel, 2012). A key motivating idea behind our
approach is that when absolute preferences such as rankings are converted into pairwise
counts using the rank difference approach described above, we interpret the resulting counts
as conveying two forms of information: a binary preference, simply based on which item is
ranked higher, and a confidence, based on the magnitude of the rank difference. Consider
for example three items x1, x2 and x3 with ranks r1 = 1, r2 = 2 and r3 = 3 respectively.
Figure 1(a) shows the resulting count matrix after these ranks are converted to pairwise
preferences. Item x1 is preferred to both x2 and x3 with Y(1, 2) = r2 − r1 = 1 and
Y(1, 3) = r3 − r1 = 2, x2 is preferred only to x3 with Y(2, 3) = r3 − r2 = 1, and x3 is not
preferred to any item. Note that preference {x1 � x3} where both items are at the extremes
of the ranking has the largest rank difference and consequently the biggest count.

Now consider the second example with partial ranking r1 = 30, r2 = 20 and r3 = 1
yielding the pairwise count matrix shown in Figure 1(b). Comparing this with the previous
example we see that the preference {x3 � x1} with items at the extremes of the ranking
also has the highest count, however in this case we are significantly more certain of it. The
count Y(3, 1) = 29 is considerably higher than the highest count from the previous example,
strongly indicating that x3 should be placed above x1. The two examples demonstrate how
large values of Y(i, j) may be interpreted as providing more evidence to conclude that
{xi � xj} is correct.

In MPM we model the count matrix Yψ
n as an outcome of multiple draws from the joint

consensus distribution Qn over pairwise preferences defined by the scores Sn. For instance
in the second example above after observing Y we can infer that P (x3 � x1) should have
the most mass under Q. We use Bn to denote the random variable distributed as Qn. A
draw from Qn can be represented as a vector bij of length Mn∗(Mn−1) (all possible pairs),
with 1 on the entry corresponding to preference {xni � xnj} and zeros everywhere else, that
is, a one-hot encoding. Given Sn we define the consensus distribution as follows:

Definition 1 The consensus distribution Qn = {P (Bn = bij |Sn)}i 6=j is a collection of

pairwise probabilities P (Bn = bij |Sn), where P (Bn = bij |Sn) =
exp(sni−snj)∑
k 6=l exp(snk−snl) .
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(a) (b)

Figure 1: Figure 1(a) displays the count matrix with the contests won by each of the 3
items x1, x2 and x3 after their ranking {r1 = 1, r2 = 2, r3 = 3} is converted to
pairwise counts using the rank difference method. A count is displayed in each
(xi, xj) entry if ri < rj , and the size of the square represents the count magnitude.
Figure 1(b) shows the same matrix for the ranking {r1 = 30, r2 = 20, r3 = 1}.

Qn defines a multinomial distribution over pairwise preferences. Parametrization through
Sn controls the shape of Qn, lending considerable flexibility in distributions over prefer-
ences, which can be tailored to many different problems. To generate the observed ag-
gregated counts Yψ

n we assume that Tψn independent samples are drawn from Qn where
Tψn =

∑
i 6=j Yψ

n (i, j) so that:

Yψ
n (i, j) =

Tψn∑
t=1

I[Bn = b
(t)
ij ],

where I[Bn = b
(t)
ij ] is 1 if preference {xni � xnj} was sampled on the t’th draw and 0

otherwise. Under this model the probability of the observed counts is given by:

P (Yψ
n |Sn) =

Tψn !∏
i 6=j Yψ

n (i, j)!

∏
i 6=j

P (Bn = bij |Sn)Y
ψ
n (i,j)

=
Tψn !∏

i 6=j Yψ
n (i, j)!

∏
i 6=j

(
exp(sni − snj)∑
k 6=l exp(snk − snl)

)Yψ
n (i,j)

.

Note that in MPM the pairwise probabilities depend on the entire item set X and the
observed counts matrix is modeled jointly. The magnitude of the score sni is directly related
to the count Yψ

n (i, j). When the scores are fitted via maximum likelihood the gradient of
the log probability with respect to sni is given by:

∂ log(P (Yψ
n |Sn))

∂sni
=

∑
j

Yψ
n (i, j)−

∑
j

Yψ
n (j, i)

− Tψn
(
∂ log(

∑
k 6=l e

snk−snl)

∂sni

)
. (1)
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(a) (b)

Figure 2: Graphical model representation of the generative process in MPM and its θ ex-
tension for a single instance n. Here Tψn =

∑
i 6=j Yψ

n (i, j) is the total number

of preferences observed for expert ψ and Tn =
∑Ψ

ψ=1 T
ψ
n is the total number of

preferences across all experts for instance n.

Note that when xni is strongly preferred to other items the first term in Equation 1 will be
large leading to an increase in sni. This will in turn raise the probability of preferences where
xni beats the other items. Raising the probability for some preferences must simultaneously
lower it for others since the probabilities always sum to 1. The second term, the derivative
of the partition function, accounts for this. The scores thus compete with each other and
the ones with the most positive/negative evidence get pushed to the extremes. This is
exactly the effect we wanted to achieve because it will allow us to accurately model the
count matrices as illustrated by the toy examples above. In contrast with MPM, in the
Bradley-Terry model there is no joint interaction amongst scores and pairs are modeled
independently so a single preference is sufficient to push the score to infinity.

2.4 Incorporating Prediction Confidence

In the base MPM model it is difficult to judge the model’s confidence for a given score
combination. Aside from the relative score magnitudes, it is hard to measure the uncertainty
associated with the score assigned to each item and the aggregate ranking that the scores
impose. Such a measure can be very useful during inference and can influence the decision
process. For instance, it can be used to further filter and/or reorder the items in the
aggregate ranking. Moreover, for problems where the accuracy is extremely important, the
recommender system can inform the user if the produced ranking has high/low degree of
uncertainty.

To address this problem we introduce a set of variance parameters Γn = {γn1, ..., γnMn},
γni > 0 ∀i. Each γni models the uncertainty associated with the score sni inferred for the
item xni. The consensus distribution now becomes:

P (Bn = bij |Sn,Γn) =
exp((sni − snj)/(γni + γnj))∑
k 6=l exp((snk − snl)/(γnk + γnl))

.
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Note that the probability of xni beating xnj decreases (increases) if the variance for either
xni or xnj increases (decreases). Through Γn we can effectively express the variance over
the preferences for each item xni and translate this variance into uncertainty over pairwise
probabilities. Moreover, measures such as the average variance, γ̄n = 1

Mn

∑M
i=1 γni, can be

used to infer the variance for the entire aggregate ranking produced by the model.

In this setting the γ’s can either be learned in combination with scores via maximum
likelihood or set using some inference procedure. The generative process for MPM with
both Sn and Γn parameters is shown in Figure 2(a).

2.5 Modelling Deviations from the Consensus

The assumption in MPM that the preferences generated by the Ψ experts are independent
and identically distributed is likely to be false in many domains. Often one would expect
to find preferences which either completely or partially deviate from the general consensus.
For example in collaborative filtering most people tend to like popular movies such as Harry
Potter and Forrest Gump, but in almost all cases one can find a number of outlier users who
would give these movies low ratings. Assuming that the preferences of the outliers have
the same distribution as the consensus, as is done in the base MPM model, can skew the
aggregation especially if the outliers are severe.

To introduce the notion of outliers into our model we define an additional set of adherence
parameters Θ = {θ1, ..., θΨ}, θψ ∈ [0, 1]. Here we assume that each expert ψ has its own

distribution over preferences Qψn , whose adherence to the global consensus distribution Qn
(see Definition 1) is described by θψ. Associated with each expert ψ is a random variable

Bψ
n ∼ Qψn , where we define Qψn as:

Qψn = {P (Bψ
n = bij |Sn,Γn, θψ)}i 6=j ,

P (Bψ
n = bij |Sn,Γn, θψ) =

exp(θψ(sni − snj)/(γni + γnj))∑
k 6=l exp(θψ(sni − snj)/(γni + γnj))

.

Note that if θψ = 0, Qψn becomes a uniform distribution indicating that the preferences of
the expert ψ deviate completely from the consensus (is an outlier), and will not be modeled
by it. Values between 0 and 1 indicate different degrees of agreement, with θψ = 1 indicating
complete agreement. Hence, by introducing θψ we make the model robust, allowing it to
control the extent to which each expert’s preferences are modeled by the scores, effectively
eliminating the outliers.

In the generative process we now assume that at each of the Tn =
∑

ψ T
ψ
n draws an expert

ψ is picked at random and a preference is generated from Qψn ; Figure 2(b) demonstrates this
process. Under this process the probability of the observed instance n with count matrices
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Yn = {Y1
n, ...,Y

Ψ
n } is given by:

P (Yn|Sn,Γn,Θ) =

=

Ψ∏
ψ=1

 Tψn !∏
i 6=j Yψ

n (i, j)!

∏
i 6=j

P (Bψ
n = bij |Sn,Γ, θψ)Y

ψ
n (i,j)


=

Ψ∏
ψ=1

 Tψn !∏
i 6=j Yψ

n (i, j)!

∏
i 6=j

(
exp(θψ(sni − snj)/(γni + γnj))∑
k 6=l exp(θψ(snk − snl)/(γnk + γnl))

)Yψ
n (i,j)

 .
The preferences are modeled by a mixture of Ψ multinomials that share the same score
vector Sn but differ in the adherence parameter θψ. Both Sn and Θ can be efficiently
learned by maximizing the log likelihood, and the consensus ranking can then be obtained
by sorting the scores.

As noted above, in many preference aggregation problems the input typically consists
of several preference instances n, and the goal is to infer a separate set of scores Sn and
variances Γn for each instance n. The log likelihood of the entire corpus under the model
is given by:

L({Yn}|{Sn}, {Γn},Θ) =

= log
N∏
n=1

Ψ∏
ψ=1

 Tψn !∏
i 6=j Yψ

n (i, j)!

∏
i 6=j

P (Bψ
n = bij |Sn,Γ, θψ)Y

ψ
n (i,j)

 .
Here Θ is shared across the instances and the original MPM model is recovered by setting
Θ ≡ 1. When two of the three parameters {Sn,Γn,Θ} are fixed it is not difficult to show
that L is concave with respect to the third parameter. Therefore simple gradient descent
can be used to efficiently find a globally optimal setting. Furthermore, even though joint
optimization is no longer convex, in the experiments we found that by using gradient descent
jointly good local optimum solutions can still be found efficiently.

When training examples are available the inference proceeds as follows: first training
examples are used to set Θ; then keeping Θ fixed the scores and the variances are optimized
on the test examples by maximizing the log likelihood. The advantage of this approach is
that it is conceptually simple and can be applied to most extensions/generalizations of the
model. The disadvantage is that it requires computing parameter gradients for every test
instance which can be computationally intensive. Moreover, due to the non-convexity we
do not have any guarantees on the types of solutions found by this approach since gradient
optimization can converge to any local optimum. These disadvantages however are shared
by most score-based aggregation models. For many of these models (aside from the simple
ones) finding the maximum a posteriori score vectors is intractable so one has to resort
to approximate variational or gradient-based methods that have similar complexities. We
empirically found gradient-based inference to be stable provided that the model parameters
are initialized with small values. Throughout all experiments we used samples from a
Gaussian with mean 0 and standard deviation of 0.01 to initialize the parameters and
found that the difference in results across multiple restarts was negligible.
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2.6 Rank Aggregation Experiments

For rank aggregation problem we use the LETOR (Liu et al., 2007a) benchmark data sets.
These data sets were chosen because they are publicly available, include several baseline
results, and provide evaluation tools to ensure accurate comparison between methods. In
LETOR4.0 there are two rank aggregation data sets, MQ2007-agg and MQ2008-agg.

MQ2007-agg contains 1692 queries with 69,623 documents and MQ2008-agg contains
784 queries and a total of 15,211 documents. Each query contains several lists of partial
rankings of the documents under that query. There are 21 such lists in MQ2007-agg and
25 in MQ2008-agg. These are the outputs of the search engines to which the query was
submitted. In addition, in both data sets, each document is assigned one of three relevance
levels: 2 = highly relevant, 1 = relevant and 0 = irrelevant. Finally, each data set comes
with five precomputed folds with 60/20/20 splits for training/validation/testing. The results
shown for each model are the averages of the test set results for the five folds.

The MQ2007-agg data set is approximately 35% sparse, meaning that for an average
query the partial ranking matrix of documents by search engines will be missing 35% of its
entries. MQ2008-agg is significantly more sparse with the sparsity factor of approximately
65%.

The goal is to use the rank lists to infer an aggregate ranking of the documents for each
query which maximally agrees with the held-out relevance levels. To evaluate this agreement
we use standard information retrieval metrics: Normalized Discounted Cumulative Gain
(N@K) (Jarvelin and Kekalainen, 2000), Precision (P@K) and Mean Average Precision
(MAP) (Baeza-Yates and Ribeiro-Neto, 1999). Given an aggregate ranking π, and relevance
levels Ln, NDCG is defined as:

NDCG(π,Ln)@K =
1

G(Ln,K)

K∑
i=1

2Ln(π−1(i)) − 1

log(1 + i)
,

where Ln(π−1(i)) is the relevance level of the document in position i in π, and G(Ln,K)
is a normalizing constant that ensures that a perfect ordering has an NDCG value of 1.
The normalizing constant allows an NDCG measure averaged over multiple instances with
different numbers of items to be meaningful. Furthermore, K is a truncation constant and
is generally set to a small value to emphasize the utmost importance of getting the top
ranked items correct.

MAP only allows binary (relevant/not relevant) document assignments, and is defined
in terms of average precision (AP):

AP (π,Ln) =

∑Mn
i=1 P@i ∗ Ln(π−1(i))∑Mn

i=1 Ln(π−1(i))
,

where P@i is the precision at i:

P@i =

i∑
j=1

Ln(π−1(j))

i
.

MAP is then computed by averaging AP over all queries. To compute P@k and MAP on
the MQ data sets the relevance levels are binarised with 1 converted to 0 and 2 converted
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NDCG Precision

N@1 N@2 N@3 N@4 N@5 P@1 P@2 P@3 P@4 P@5 MAP

MQ2008
BordaCount 23.68 28.06 30.80 34.32 37.13 29.72 30.42 29.38 29.75 29.03 39.45
CPS-best 26.52 31.38 34.59 37.63 40.04 31.63 32.27 32.27 31.66 30.64 41.02
SVP 32.49 36.20 38.62 40.17 41.85 38.52 36.42 34.65 32.01 30.23 43.61
Condorcet 35.67 37.39 39.11 40.50 41.59 40.94 37.43 34.73 32.08 29.59 42.63
Bradley-Terry 38.05 39.24 40.77 41.79 42.62 44.77 39.73 36.26 33.19 30.28 44.35
Plackett-Luce 35.20 38.49 39.70 40.49 41.55 41.32 38.96 35.33 32.02 29.62 42.20
θ-MPM 37.07 40.29 41.78 42.76 43.69 43.62 40.94 37.24 33.64 30.81 44.32

MQ2007
BordaCount 19.02 20.14 20.81 21.28 21.88 24.88 25.24 25.69 25.80 25.97 32.52
CPS-best 31.96 33.18 33.86 34.09 34.76 38.65 38.65 38.14 37.19 37.02 40.69
SVP 35.82 35.91 36.53 37.16 37.50 41.61 40.28 39.50 38.88 38.10 42.73
Condorcet 37.31 37.63 38.03 38.37 38.66 43.26 42.14 40.94 39.85 38.75 42.56
Bradley-Terry 39.88 39.86 40.40 40.60 40.91 46.34 44.65 43.48 41.98 40.95 43.98
Plackett-Luce 40.63 40.39 40.26 40.71 40.96 46.93 45.10 43.09 42.32 41.09 43.64
θ-MPM 41.13 41.21 41.09 41.41 41.53 47.35 45.78 44.17 43.01 41.97 44.35

Table 1: MQ2008-agg and MQ2007-agg results; statistically significant results are under-
lined.

to 1. All presented NDCG, Precision and MAP results are averaged across the test queries
and were obtained using the evaluation script available on the LETOR website.3.

To investigate the properties of MPM we conducted extensive experiments with various
versions of the model. Through these experiments we found that the θ version (see Section
2.5) had the best performance; below we refer to this model as θ-MPM. To learn this model
we first used the training data to learn the adherence parameters Θ. Then keeping Θ fixed
we inferred the scores and variances on each test query via maximum likelihood and sorted
the scores to produce a predicted ranking. This is similar to the framework used by the
CPS model (Quin et al., 2010) where the training data is used to estimate the θ parameter.
In all experiments we did not take the variances into account during the sort.

We compare the results of θ-MPM against the best methods currently listed on the
LETOR4.0 website, namely the BordaCount model and the best of the three CPS models
(combination of Mallows and Plackett-Luce models) on each of the MQ data sets. We also
compare with the Condorcet, Bradley-Terry and Plackett-Luce models, as well as the sin-
gular value decomposition based method SVP (Gleich and Lim, 2011). These models cover
most of the primary leading approaches in unsupervised preference aggregation research.
The Bradley-Terry model is fit using the same count matrices Yψ

n that are used for MPM.

For all models we found that 100 steps of gradient descent were enough to obtain the
optimal results. To avoid constrained optimization we reparametrized the variance param-
eters as γni = exp(βni) and optimized βni instead. This reparametrization was done for all
the reported experiments.

3. LETOR data set can be found at http://research.microsoft.com/en-us/um/beijing/projects/

letor/.
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N@1 N@2 N@3 N@4 N@5 N@6 N@7 N@8 N@9 N@10

Ratings imputed by PMF
Bradley-Terry 40.09 36.00 35.20 34.96 34.49 34.40 31.63 32.08 32.46 32.35
Plackett-Luce 69.56 54.17 48.97 46.58 44.89 43.44 42.50 41.25 40.64 40.03

Neighbor-based 61.48 49.96 44.66 42.87 40.98 39.74 39.01 37.94 37.94 37.73

MPM 69.15 54.29 49.72 46.98 45.52 44.13 43.25 42.62 42.04 41.57

Ratings imputed by neighbor model
Bradley-Terry 34.66 34.07 34.09 34.11 34.02 34.22 32.73 33.14 33.47 33.48
Plackett-Luce 70.81 56.33 50.97 48.27 46.64 45.17 44.17 43.01 42.23 41.74

PMF 69.17 55.93 50.90 48.22 46.65 45.42 44.58 43.88 43.22 42.72

MPM 71.90 56.34 51.21 48.55 46.73 45.41 44.34 43.58 42.94 42.43

Table 2: NDCG results for the MovieLens data set, for each user the missing ratings
are filled using the probabilistic matrix factorization model (top half), and the
neighbor-based approach (bottom half); statistically significant results are under-
lined.

The results4 for MPM together with the baselines on MQ2008-agg and MQ2007-agg
data sets are shown in the top and bottom halves of Table 1 respectively. For each data
set we conducted a paired T-test between θ-MPM and the best baseline at each of the 5
truncations for NDCG and precision as well as MAP; the statistically significant results at
the 0.05 level are underlined.

From the table we see that the θ-MPM models significantly outperforms the baselines
on the MQ2007-agg data set on both NDCG and MAP metrics. θ-MPM is also the best
model On MQ2008-agg, significantly improving over the baselines on truncations 2-5 for
NDCG and 2,3 for Precision.

2.7 Collaborative Filtering Experiments

For collaborative filtering experiments we used the MovieLens data set,5 a collection of
100,000 ratings (1-5) from 943 users on 1682 movies. This data set was chosen because
it provides demographic information such as age and occupation for each user, as well as
movie information such as genre, title and release year. Each user in this data set rated
at least 20 movies, but the majority of ratings for each movie are missing and the rating
matrix is more than 94% sparse. We formulate the preference aggregation as follows: given
users’ ratings the goal is to come up with a single ranking of the movies that accurately
summarizes the majority of user preferences expressed in the data. This ranking could be
used as an initial recommendation for a new user who has not provided any ratings yet, as
well as in a summary page. Note that the aggregation can be further personalized by only
aggregating over users that share similar demographic and/or other factors with the target
user.

4. All NDCG and precision values in this and other tables were multiplied by 100 to make them more
readable.

5. MovieLens data set can be found at http://www.grouplens.org/node/73.
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To convert ratings into preferences we can either sort them (resolving ties), to obtain
a partial ranking for each user, or use the pairwise method to obtain the count matrices
Yψ, where Yψ(i, j) = (`ψi − `

ψ
j )I[`ψi > `ψj ] if movies xi and xj were rated by user ψ and 0

otherwise. We use the sort method for the permutation-based Plackett-Luce model and use
the rating difference method for the pair-based Bradley-Terry and MPM models.

In collaborative filtering and in most other applications the primary goal of aggregation
is to recommend items to a new or existing user. Items ranked in the top few positions are
of particular interest because they are the ones that will typically be shown to the user.
Intuitively a top ranked item should have ratings from many users (high support) and most
who rated it should prefer it to other items (strong preference). Consequently NDCG is a
good metric to evaluate the rankers for this problem because of its emphasis on the top
ranked items and the truncation level structure. Unlike rank aggregation the ground truth
aggregate ratings are not available for most collaborative filtering data. To get around this
problem we complete the rating matrix by imputing the missing ratings for every user. We
investigate two methods of imputing the ratings: a user independent method, where all
the missing ratings are filled in by the same value, and two user dependent methods. The
first method is neighbor-based and predicts the ratings using the nearest neighbors for a
given user ψ. The second method uses the probabilistic matrix factorization model (PMF)
(Salakhutdinov and Mnih, 2008) to factorize the rating matrix and predict missing entries.
Both are commonly used for CF and have shown good empirical performance on various
CF tasks such as the Netflix challenge. After completing the rating matrix we compute the
NDCG value for every user by sorting the items according to scores:

NDCG(π,Lψ)@K =
1

G(Lψ,K)

K∑
i=1

2L
ψ(π−1(i)) − 1

log(i+ 1)
. (2)

Here π is the aggregated ranking obtained by sorting the items according to scores, and
π−1(i) is the index of the item in position i in π; Lψ is a (completed) vector of ratings for
user ψ. G(Lψ,K) is the normalizing constant and represents the maximum DCG value that
could be obtained for ψ:

G(Lψ,K) =
K∑
i=1

2L
ψ(σ−i(i)) − 1

log(i+ 1)
,

where σ is a permutation of Lψ with the ratings sorted from largest to smallest. In this
form, if an item in position i in π has a rating lower than the rating Lψ(σ−1(i)) of the
i’th highest rated item by user ψ, the corresponding term in the NDCG summation will
decrease exponentially with the difference between Lψ(σ−1(i)) and Lψ(π−1(i)). We use this
metric (averaged across all users) to evaluate the performance of the models.

We compare the results of MPM to the Bradley-Terry and Plackett-Luce models, the
two best baselines on the rank aggregation task. For all models we found that 100 steps of
gradient descent was enough to reach convergence. In addition to rank aggregation, we also
examine CF methods directly to aggregate the items. To avoid biased evaluation in both
cases we use a different CF method to aggregate the items, that is, if ratings are imputed
with PMF (neighbor-based) then the neighbor-based (PMF) model is used to aggregate the
items. We use Borda count to aggregate the items by first sorting the completed rating
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(a) (b) (c)

Figure 3: Plots of NDCG at truncations 1, 5 and 10; in this setting all the missing ratings
were repeatedly imputed by one of the constants shown on the x-axis and the
rankings given by each method were evaluated using NDCG (Equation 2). All
the differences are statistically significant.

vector for each user to get a user-dependent item ranking. The resulting rankings are then
aggregated across all users using the Borda rule. We chose to use Borda count here because
it is a well-explored approach that has stable performance and is commonly applied to social
choice problems such as CF.

The NDCG results from the user dependent rating imputation method are shown in
Table 2. From this table we see that MPM outperforms the best aggregation method,
Plackett-Luce, both when ratings are imputed by the neighbor-based approach (top half
of the table) and PMF (bottom half of the table). We also see that the neighbor-based
CF model performs considerably worse than both MPM and Plackett-Luce while PMF has
competitive performance, outperforming MPM at higher truncations. These results are
consistent with the CF literature where PMF is typically found to perform better since it
can capture more complex correlations that extend beyond simple neighbor relationships.
However, unlike most aggregation methods that only learn one parameter (two for MPM)
per item, in PMF we have to fit a set of parameters for each user and item. This significant
increase in the number of parameters makes optimization more complex as PMF models
are typically highly prone to overfitting. Moreover, it is unclear how learned models should
be used to get the aggregate ranking as they only provide user-dependent rating predic-
tions. This introduces an additional optimization step that needs to be run before ranking
predictions can be made. Overall, for the MovieLens data we found that these models did
not give significant gains while being considerably slower.

The NDCG plots for the user independent rating imputation method are shown in
Figure 3. Here we concentrate on comparison with other aggregation methods and exclude
CF methods for reasons mentioned above. The plots show NDCG at truncations 1, 5 and 10
for the three methods, when each of the values in {0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5} was used to fill
the missing ratings. Here, the value 3.5 was chosen as the upper boundary because it is the
average rating for the MovieLens data set. A number of studies have shown that users tend
to rate items that they like so the average of the observed ratings is typically significantly
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Bradley-Terry #u #won #lost Plackett-Luce #u #won #lost MPM #u #won #lost

Pather Panchali 8 1431 89 Shawshank Red. 283 32592 5943 Star Wars 583 49290 10112
Wallace & Gromit 67 7448 962 Wallace & Gromit 67 7448 962 Raiders of the L. 420 40057 10644
Casablanca 243 26837 4633 Usual Suspects 267 30779 6666 Godfather 413 36531 8040
Close Shave 112 11219 1963 Star Wars 583 49290 10112 Silence of the L. 390 38192 9125
Rear Window 209 22590 4513 Wrong Trousers 118 13531 2291 Shawshank Red. 283 32592 5943
. . .
. . .
. . .
Children of Corn 19 62 3161 Barb Wire 30 462 5507 Cable Guy 106 3469 14377
Lawnmower Man 2 21 129 3868 Robocop 3 11 125 2535 Striptease 67 1347 9909
Free Willy 3 27 171 3912 Gone Fishin’ 11 123 1098 Very Brady 93 3353 12509
Kazaam 10 128 2041 Highlander III 16 881 2826 Jungle2Jungle 132 2375 11086
Best of the Best 3 6 33 1445 Ready to Wear 18 289 3785 Island of Dr. 57 1176 9415

Table 3: Top 5 and bottom 5 movies found by each model. For each movie the table shows
the number of users that rated it (#u) and the total number of pairwise contests
that the movie won (#won) and lost (#lost) across all users.

higher than the average of the unobserved ones (Marlin et al., 2005). From the figure we
see that MPM significantly outperforms both the Bradley-Terry and Plackett-Luce models.
The differences are especially large when low values are imputed for the missing ratings.
This indicates that the Bradley-Terry and Plackett-Luce models place items that were rated
by very few users (low support) at the top of the list. This causes the imputed ratings to
dominate the numerator in the NDCG summation making the results very sensitive to the
magnitude of the imputed rating.

This effect can also be observed from Table 3, which shows the top and bottom 5 movies
generated by each model together with statistics on the number of users that rated each
movie and the number of pairwise contests lost and won by the movie (summed across all

users). For a given user ψ and movie i with rating `ψi we find the number of pairwise wins

by counting the number of pairs (i, j) with `ψi > `ψj ; losses are found in a similar way. From
the table we see that the Bradley-Terry model places the movie Pather Panchali at the top
of the list. This movie is only rated by 8 out of 943 users and even though most users
who rated it preferred it to other movies (#lost is low) there is still very little evidence
that this movie represents the top preference for the majority of users. Due to its pairwise
independence assumption the Bradley-Terry model is always likely to place movies with few
ratings near the top/bottom of the list.

The Plackett-Luce model partially fixes this problem by considering items jointly, and
places the frequently rated movie Shawshank Redemption first. However the model does
not fully eliminate the problem, placing the very infrequently rated Wallace & Gromit (also
ranked second by Bradley-Terry) in the second spot. Part of the reason for this comes from
the fact that Plackett-Luce is a permutation based model and as such cannot model the
strength of preferences, treating the preferences given for example by ratings {5, 2, 1} the
same as {5, 4, 3}.

On the other hand for the Multinomial Preference Model we see that the position of
the item is related to both the number of observed preferences and the strength of those
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(a) (b)

Figure 4: 4(a) shows the number of ratings versus the learned variance γi for each movie
xi. 4(b) shows the rank for each movie obtained after sorting the scores versus
the learned γi.

preference. The top three movies are all rated by more than 400 users and are strongly
preferred by the majority of those users.

A more severe pattern can be observed for the bottom 5 movies. Both Bradley-Terry
and Plackett-Luce place movies rated by fewer than 30 users in the bottom 5 positions,
labeling them the worst movies in the entire data set. This selection has very little evidence
in the data and has a high probability of being wrong if more ratings are collected. For
MPM all of the bottom 5 movies are rated by more than 50 users with 3 out of 5 movies
rated by more than 90 users.

In addition to the retrieval accuracy we investigated the properties of the learned vari-
ance parameters γ. Figure 4(a) shows the learned variances together with the number of
ratings for each movie. Note that the variance is inversely proportional to the number of
ratings, so as the number of ratings increases the model becomes increasingly more certain
in the preferences, decreasing the variance. In Figure 4(b) we plot γ against the aggre-
gate rank for each movie. The general pattern is clear: the variance decreases towards the
extremes of the ranking, indicating that the model is more certain in the movies that are
placed near the top and near the bottom of the aggregate ranking. As shown above, this
is due to the fact that the movies at the extremes of the ranking have many comparisons,
allowing accurate inference of strong negative or positive preferences.

The plot however also shows outliers, which are the movies placed in the middle of the
aggregate ranking with low variance/high confidence. After further inspection we found
that each such movie had many positive as well as negative preferences. Examples of these
include Sabrina (#u:190 #won:10190 #lost:12347), Mrs. Doubtfire (#u:192 #won:13251
#lost:17551) and Ghost (#u:170 #won:11785 #lost:14452). Note that all three movies
were rated by more than 150 users and overall were neither strongly preferred nor strongly
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disliked. The model thus appropriately placed them in the middle of the ranking with
strong confidence. Moreover, note that it is impossible to express this confidence with scores
alone since all the movies in the middle of the ranking have similar scores. The variances
thus provide additional information about the decisions made by the model during the
aggregation, which could be very useful for post-processing and evaluation.

3. Supervised Preference Aggregation

Research in preference aggregation has largely concentrated on the unsupervised aggregation
problem described above. However, many of the recent aggregation problems are amenable
to supervised learning, as ground truth preference information is available. The meta-search
and crowdsourcing problems are both examples of supervised preference aggregation. Due to
the popularity of these and other supervised problems the supervised aggregation framework
has received a lot of attention recently, with a number of competitions conducted in TREC6

as well as other conferences, and several meta-search data sets(Liu et al., 2007a) have been
released to encourage research in the area. Despite these efforts, to the best of our knowledge
most of the proposed models are still unsupervised and the supervised methods are unable
to fully use the labeled data and optimize the aggregating function for the target metric.
There is thus an evident need to develop an effective supervised aggregation framework.

To address this problem we first develop a supervised extension of the MPM model
introduced in the previous section. We show how the labeled training data can be used to
set the adherence parameters Θ and experimentally verify that this approach improves the
test accuracy of the model.

We then develop a general framework for supervised preference aggregation. Our frame-
work builds on the idea of converting the observed preferences into pairwise matrices de-
scribed in the previous section. We first show how these matrices can be used to derive
effective fixed length item representations that make it possible to apply any learning-to-
rank method to optimize the parameters of the aggregating function for the target IR metric.
We then show how the pairwise matrices can also be employed as potentials in a ranking
Conditional Random Field (CRF), and develop efficient learning and inference procedure
to optimize the CRF for the target IR metric.

We validate all of the introduced models on two supervised rank aggregation data sets
from Microsoft’s LETOR4.0 data collection.

3.1 Framework

As in unsupervised preference aggregation, a typical supervised problem also consists of
training instances where for each instance we are given a set of items. The experts generate
preferences for the items and the preferences can be in the variety of forms ranging from
full/partial rankings and ratings to relative item comparisons and combinations of these.
However, unlike the unsupervised problem, we now also have access to the ground truth
preference information over the items for each instance. The goal is to learn an aggregating
function which maps expert preferences to an aggregate ranking that maximally agrees with
the ground truth preferences.

6. TREC 2013 crowdsourcing track can be found at https://sites.google.com/site/treccrowd/.
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(a) R (b) Y2

Figure 5: (a) An example rank matrix R where 4 documents are ranked by 3 experts. Note
that in meta-search the rank for a given document can be greater than the number
of documents in R. (b) The resulting pairwise matrix Y2 for expert 2 (second
column of R) after the ranks are transformed to pairwise preferences using the
log rank difference method.

In this work we concentrate on the rank aggregation instance of this problem from the
information retrieval domain. However, the framework that we develop is general and can
be applied to any supervised preference aggregation problem in the form defined above.
In information retrieval the instances correspond to queries Q = {q1, ..., qN} and items to
documents Dn = {dn1, ...., dnMn} where Mn is the number of documents retrieved for qn.
For each query qn the experts’ preferences are summarized in an Mn × Ψ rank matrix Rn

where Rn(i, ψ) denotes the rank assigned to document dni by the expert ψ. Note that the
same Ψ experts rank items for all the queries so Ψ is query independent. Furthermore,
Rn can be sparse, as experts might not assign ranks to every document in Dn; we use
Rn(i, ψ) = 0 to indicate that document dni was not ranked by expert ψ. The sparsity
arises in problems like meta-search where qn is sent to different search engines and each
search engine typically retrieves and ranks only a portion of the documents in Dn. The
ground truth preferences are expressed by the relevance levels Ln = {`n1, ..., `nMn} which
are typically assigned to the documents by human annotators.

In contrast to the learning-to-rank problem where each document is represented by
a fixed length, query dependent, and typically heavily engineered feature vector, in rank
aggregation the rank matrix R is the only information available to train the aggregating
function. Additionally this matrix is typically very sparse. Hence there is no fixed length
document description, as is required by most supervised methods. To overcome this problem
we use the ideas behind the MPM approach and convert the rank matrix into a pairwise
preference matrix. We then show how this conversion can be used to develop an effective
supervised framework for this problem.

3.2 Pairwise Preferences

Given the Mn × Ψ ranking matrix Rn our aim is to convert it into Ψ Mn ×Mn pairwise
matrices Yn = {Y1

n, ...,Y
Ψ
n }, where each Yψ

n expresses the preferences between pairs of
documents based on the expert ψ. In Section 2.1 we considered binary and count-based
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transformations; here we extend these ideas and consider a general transformation of the
form Yψ

n (i, j) = g(Rn(i, ψ),Rn(j, ψ)). We experiment with three versions for g that were
proposed by Gleich and Lim (2011): Binary Comparison (Equation 1), and normalized and
logarithmic versions of Rank Difference (Equation 2).

3. Normalized Rank Difference

Here the normalized rank difference is used:

Yψ
n (i, j) = I[Rn(i, ψ) < Rn(j, ψ)]

Rn(j, ψ)−Rn(i, ψ)

max(Rn(:, ψ))
.

Normalizing by the maximum rank assigned by the expert ψ (max(Rn(:, ψ))) ensures

that the entries of Yψ
n have comparable ranges across experts.

4. Log Rank Difference

This method uses the normalized log rank difference:

Yψ
n (i, j) = I[Rn(i, ψ) < Rn(j, ψ)]

log(Rn(j, ψ))− log(Rn(i, ψ))

log(max(Rn(:, ψ)))
.

In all cases both Yψ
n (i, j) and Yψ

n (j, i) are set to 0 if either Rn(i, ψ) = 0 or Rn(j, ψ) = 0

(missing ranking). Non-zero entries Yψ
n (i, j) represent the strength of the pairwise prefer-

ence {dni � dnj} expressed by expert ψ. Figure 5 shows an example ranking matrix and
the resulting pairwise matrix after the ranks are transformed to pairwise preferences using
the log rank difference method. Note that preferences in the form of ratings and top-K
lists can easily be converted into Yψ

n using the same transformations. Moreover, if pairwise
preferences are observed, we simply skip the transformation step and fill the entries Yψ

n (i, j)
directly.

As mentioned above, working with pairwise comparisons has a number of advantages,
and models over pairwise preferences have been extensively used in areas such as social
choice (David, 1988), information retrieval (Joachims, 2002; Burges, 2010), and collaborative
filtering (Lu and Boutilier, 2011; Gleich and Lim, 2011). First, pairwise comparisons are
the building blocks of almost all forms of evidence about preference and subsume the most
general models of evidence proposed in literature. A model over pairwise preferences can
thus be readily applied to a wide spectrum of preference aggregation problems and does
not impose any restrictions on the input type. Second, pairwise comparisons are a relative
measure and help reduce the bias from the preference scale. In meta-search for instance,
each of the search engines that receives the query can retrieve diverse lists of documents
significantly varying in size. By converting the rankings into pairwise preferences we reduce
the list size bias emphasizing the importance of the relative position.

3.3 Previous Work

The majority of research on preference aggregation has concentrated on the unsupervised
problem and was covered in detail in Section 2.2. In this section we review the supervised
approaches for preference aggregation.
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In meta-search a heuristic method called Reciprocal Rank Fusion (RRF) (Cormack et al.,
2009) has recently been proposed. RRF uses the rank matrix to derive the document scores:

sni =

Ψ∑
ψ=1

1

α+ Rn(i, ψ)
,

where α is a constant which mitigates the impact of high rankings from outlier experts
and is set by cross validation. Once the scores are computed they are used to sort the
documents. We place this method into the supervised category because of the need to set
the constant α which has a significant effect on ranking accuracy (Cormack et al., 2009).
Despite its simplicity RRF has obtained excellent empirical accuracy; however it also has
some disadvantages. First, RRF relies on complete rankings and it is unclear how to extend
it to problems like meta-search where many rankings are typically missing. Second, this
method is designed specifically for rank aggregation and cannot be applied to other types
of preferences.

A supervised score-based rank aggregation approach based on a Markov Chain was
also recently introduced by Liu et al. (2007b). In this model the authors use the ground
truth preferences to create a pairwise constraint matrix and then learn a scoring function
such that the produced aggregate rankings satisfy as many pairwise constraints as possible.
The main drawbacks of this approach are that it is computationally very intensive, requiring
constrained optimization (semidefinite programming), and it does not incorporate the target
IR metric into the optimization. The pairwise constraint idea was also recently extended
by Chen et al. (2011) to a semi-supervised setting where the ground truth preferences are
available for only a subset of the documents.

Extensive work in the learning-to-rank domain has demonstrated that optimizing the
ranking function for the target metric produces significant gains in test accuracy (Li, 2011).
However, to the best of our knowledge none of the models developed for supervised prefer-
ence aggregation take the target metric into account during the optimization of the aggre-
gating function. The models that we develop in the following sections aim to bridge this
gap.

3.4 Supervised Extension for MPM

Before delving into the new models we first develop a simple supervised extension for the
Multinomial Preference Model introduced above. The MPM can be considered fully un-
supervised, as the adherence parameters Θ, the consensus scores and the variances are
inferred from the observed preferences. This produces a predicted ranking for a given set
of observed preferences by sorting the inferred scores, without ever using any known con-
sensus rankings or relevance labels in the data. In this section we describe an approach to
incorporate this ground truth information into this model.

Each θψ models the adherence of the expert ψ to the consensus. For the labeled train-
ing instances the consensus is explicitly given by the relevance levels Ln. This allows us
to evaluate the adherence of each expert to the consensus exactly by computing the match
between the preferences given by the expert and those expressed by the ground truth rel-
evances. Using this we can set θψ to the average distance between the preferences of the
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expert ψ and the ground truth labels across the instances:

θψ =
1

N

N∑
n=1

1−D(Ln,Y
ψ
n ),

where D is a normalized distance metric between preferences, such as Kendall’s τ . Note
that θψ → 1(→ 0) indicates that the preferences of expert ψ agree with (deviate from) the
ground truth preferences (target consensus) across the training examples.

To apply the model we now (1) use the labeled training instances to find Θ and (2)
keeping Θ fixed infer scores and variances for each test instance by maximizing the likelihood
of the observed preferences.

3.5 Feature-Based Approach

We now introduce the first of the two fully supervised models for preference aggregation.
The main idea behind this approach is to summarize the relative preferences for each doc-
ument across the experts by a fixed length feature vector (Volkovs et al., 2012). This
transforms the preference aggregation problem into a learning-to-rank one, and any of the
standard methods can then be applied to optimize the aggregating function for the tar-
get IR metric such as NDCG. In following section we describe an approach to extract the
document features.

3.5.1 Feature-Based Approach: Feature Extraction

Given the rank matrix Rn and the resulting pairwise matrix Yψ
n for expert ψ (as shown

in Figure 5), our aim is to convert Yψ
n into a fixed length feature vector for each of the

documents in Dn. Singular Value Decomposition (SVD) based approaches for document
summarization such as Latent Semantic Indexing (Deerwester et al., 1990) are known to
produce good descriptors even for sparse term-document matrices. Another advantage of
SVD is that it requires virtually no tuning and can be used to automatically generate the
descriptors once the pairwise matrices are computed. Because of these advantages we chose
to use SVD to extract the features. For a given Mn ×Mn pairwise matrix Yψ

n the rank-p
SVD factorization has the form:

Yψ
n ≈ Uψ

nΣψ
nVψ

n ,

where Uψ
n is an Mn× p matrix, Σψ

n is an p× p diagonal matrix of singular values and Vψ
n is

an Mn×p matrix. The full SVD factorization has p = Mn, however, to reduce the noise and
other undesirable artifacts of the original space most applications that use SVD typically
set p � Mn. Reducing the rank is also an important factor in our approach as pairwise
matrices tend to be very sparse with ranks significantly smaller than Mn.

Given the SVD factorization we use the resulting matrices as features for each document.
It is important to note here that both Uψ

n and Vψ
n contain useful document information since

Yψ
n is a pairwise document by document matrix. To get the features for document dni and

expert ψ we use:
φ(dni,Y

ψ
n ) = [Uψ

n(i, :), diag(Σψ
n),Vψ

n (i, :)],

here Uψ
n(i, :) and Vψ

n (i, :) are the i’th rows of Uψ
n and Vψ

n respectively and diag(Σψ
n) is the

main diagonal of Σψ
n represented as a 1 × p vector. Note that the diag(Σψ

n) component is
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independent of i and will be the same for all the documents in Dn. We include the singular
values to preserve as much information from the SVD factorization as possible. The features
φ(dni,Y

ψ
n ) summarize the relative preference information for dni expressed by the expert φ.

To get a complete view across the experts we concatenate together the features extracted
for each expert:

φ(dni) = [φ(dni,Y
1
n), ..., φ(dni,Y

Ψ
n )].

Each φ(dni,Y
ψ
n ) contains 3p features so the entire representation will have 3Ψp features.

Moreover, note that since the experts and p are fixed across queries this representation
will have the same length for every document in each query. We have thus created a
fixed length feature representation for every document dni, effectively transforming the
aggregation problem into a standard learning-to-rank one. During training our aim is now
to learn a scoring function f : R3Ψp → R which maximizes the target IR metric such as
NDCG. The feature representation allows us to fully use all of the available labeled training
data to optimize the aggregating function for the target metric, which is not possible to do
with the existing aggregation methods.

It is worth mentioning here that the SVD factorization of pairwise matrices has been
used in the context of preference aggregation (see (Gleich and Lim, 2011) for example).
However, previous approaches largely concentrated on applying SVD to fill the missing
entries in the joint pairwise matrix Ytot

n =
∑Ψ

ψ=1 Yψ
n and then use the completed matrix to

infer the aggregate ranking. Our approach on the other hand uses SVD to compress each
pairwise matrix Yψ

n and produce fixed length feature vector for each document.

3.5.2 Feature-Based Approach: Learning and Inference

Given the document features extracted via the SVD approach our goal is to use the labeled
training queries to optimize the parameters of the scoring function for the target IR metric.
The main difference between the introduced feature-based rank aggregation approach and
the typical learning-to-rank setup is the possibility of missing features. When a given
document dni is not ranked by the expert ψ the row Yψ

n (i, :) and column Yψ
n (:, i) will both

be missing (i.e., 0). To account for this we modify the conventional linear scoring function
to include a bias term for each of the Ψ experts:

f(φ(dni),W) =
∑
ψ∈Ψ

wψ · φ(dni,Y
ψ
n ) + I[Rn(i, ψ) = 0]bψ, (3)

where W = {wψ, bψ}ψ is the set of free parameters to be learned with each wψ having

the same dimension as φ(dni,Y
ψ
n ), and I[] is an indicator function. The bias term bψ

provides a base score for dni if dni is not ranked by expert ψ. The weights wψ control how
much emphasis is given to preferences from expert ψ. It is important to note here that
the scoring function can easily be made non-linear by adding additional hidden layer(s), as
in conventional multilayer neural nets. In the form given by Equation 3 our model has a
total of (3p + 1)Ψ parameters to be learned. We can use any of the developed learning-
to-rank approaches (see Li, 2011 for a detailed description of many popular learning-to-
rank methods) to optimize W; in this work we chose to use the LambdaRank method.
We chose LambdaRank because it has shown excellent empirical performance, for example,
winning the Yahoo! Learning To Rank Challenge (Chapelle et al., 2010). We briefly describe
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Algorithm 1 Feature-Based Learning Algorithm

Input: {(q1,D1,L1,R1), ..., (qN ,DN ,LN ,RN )}
Parameters: learning rate η
for n = 1 to N do {feature extraction}

from Rn compute Yn = {Y1
n, ...,Y

Ψ
n }

for i = 1 to Mn do
compute features φ(dni) using SVD

end for
end for
initialize weights: W
repeat {scoring function optimization}

for n = 1 to N do
compute λ-gradients: ∇W =

∑
i λni

∂sni
∂W

update weights: W = W − η∇W
end for

until convergence
Output: W

LambdaRank here and refer the reader to Burges et al. (2006) and Burges (2010) for a more
extensive treatment.

LambdaRank learns pairwise preferences over documents with emphasis derived from
the NDCG gain found by swapping the rank position of the documents in any given pair, so
it is a listwise algorithm (in the sense that the cost depends on the sorted list of documents).
Formally, given a pair of documents (dni, dnj) with `ni 6= `nj , the target probability that
dni should be ranked higher than dnj is defined as:

Pnij =

{
1 if `ni > `nj
0 otherwise

.

The model’s probability is then obtained by passing the difference in scores between dni
and dnj through a logistic:

Qnij =
1

1 + exp(−(f(φ(dni),W)− f(φ(dnj),W)))

=
1

1 + exp(−(sni − snj))
.

The aim of learning is to match the two probabilities for every pair of documents with
different labels. To achieve this a cross entropy objective is used:

On = −
∑

`ni>`nj

Pnij log(Qnij).

This objective weights each pair of documents equally thus placing equal importance on
getting the relative order of document correctly both at the top and at the bottom of the
ranking. However, most target evaluation metrics including NDCG are heavily concentrated

1006



New Learning Methods for Supervised and Unsupervised Preference Aggregation

Figure 6: The inference diagram for the feature-based preference aggregation approach.
Given a test query (q,D,R) the inference proceeds in three steps: (1) The ranking
matrix R is converted to a set of pairwise matrices Y = {Y1, ...,YΨ}. (2) SVD
is used to extract document features from each pairwise matrix Yψ. (3) The
learned scoring function is applied to the features to produce the scores for each
document. The scores are then sorted to get the aggregate ranking.

on the top of the ranking. To take this into account the LambdaRank framework uses a
smooth approximation to the gradient of a target evaluation measure with respect to the
score of a document dni, and we refer to this approximation as λ-gradient. The λ-gradient for
NDCG is defined as the derivative of the cross entropy objective weighted by the difference
in NDCG obtained when a pair of documents swap rank positions:

λnij = |∆NDCG@K(sni, snj)|
∂On

∂(sni − snj)
.

Thus, at the beginning of each iteration, the documents are sorted according to their current
scores, and the difference in NDCG is computed for each pair of documents by keeping the
ranks of all of the other documents constant and swapping only the rank positions for that
pair (see Burges et al., 2006 for more details on λ calculation). The λ-gradient for document
dni is computed by summing the λ’s for all pairs of documents (dni, dnj) for query qn:

λni =
∑

j:`nj 6=`ni

λnij .

The |∆NDCG| factor emphasizes those pairs that have the largest impact on NDCG. Note
that the truncation in NDCG is relaxed to the entire document set to maximize the use of
the available training data.

To make the learning algorithm more efficient the document features can be precomputed
a priori and re-used throughout learning. This significantly reduces the computational
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complexity at the cost of additional storage requirement of O(MnΨp) for each query qn.
The complete stochastic gradient descent learning procedure is summarized in Algorithm
1.

Once the parameters of the scoring function are learned then at test time, given a
new query q with rank matrix R, we (1) convert R into a set of pairwise matrices Y =
{Y1, ...,YΨ}; (2) extract the document features using rank-p SVD; and (3) apply the learned
scoring function to get the score for every document. The scores are then sorted to get the
aggregate ranking. This process is shown in Figure 6.

3.6 CRF Approach

The SVD-based feature approach introduced above is effective at producing compact doc-
ument representation which we experimentally found to work well for this task. These
representations also allow to apply any learning-to-rank approach making it very easy to
incorporate the model into many existing IR frameworks. However, while the SVD model
is robust, it requires applying SVD factorization at test time which can be computation-
ally intensive. Moreover, SVD representation significantly compresses the pairwise matrices
and might throw away useful information potentially affecting performance and making the
model less interpretable. To avoid these disadvantages we develop another fully supervised
model which uses the pairwise matrices directly. As mentioned above, the variable number
of documents per query and absence of the fixed-length document representation make it
difficult to apply the majority of supervised methods to this problem, since they require
fixed-length item representations. CRFs on the other hand are well suited for tasks with
variable input lengths, and have successfully been applied to problems that have this prop-
erty, such as natural language processing (Sha and Pereira, 2003; Roth and Yih, 2005),
computational biology (Sato and Sakakibara, 2005; Liu et al., 2006), and information re-
trieval (Qin et al., 2008; Volkovs and Zemel, 2009). Moreover, CRFs are very flexible and
can be used optimize the parameters of the model for the target metric. For these reasons
we develop a CRF framework for preference aggregation (Volkovs and Zemel, 2013).

3.6.1 CRF Approach: Model

The main idea behind this approach is based on an observation that the pairwise preference
functions defined above naturally translate to pairwise potentials in a CRF model. Using
these function we can evaluate the “compatibility” of any ranking π by comparing the order
induced by the ranking with the pairwise preferences from each expert. This leads to an
energy function:

E(π,Yn; W) =

= − 1

M2
n

Mn∑
i=1

∑Ψ
ψ=1

(
bψϕψ(π−1(i)) + wψpos

∑
j 6=i Y

ψ
n (π−1(i), j)− wψneg

∑
j 6=i Y

ψ
n (j, π−1(i))

)
log(i+ 1)

,
(4)

where Yψ
n (π−1(i), j) is the pairwise preference for the document in position i in π over doc-

ument dnj expressed by expert ψ, and W = {bψ, wψpos, wψneg}Ψψ=1 is the set of free parameters
to be learned.
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This energy function contains a binary unary potential ϕψ(i,Rn) = I[Rn(i, ψ) = 0],
where I[] is an indicator function. This potential is active only when document dni is not
ranked by the expert ψ, in which case bψ provides a base preference score for the item.
The energy also contains pairwise potentials that directly use pairwise matrices Y. Note
that from the definition of Y in Section 3.2 it follows that only one of Yψ

n (π−1(i), j) or

Yψ
n (j, π−1(i)) can be non-zero for any pair of documents. Consequently, if Yψ

n (π−1(i), j)
is on (non-zero) then expert ψ “agrees” with the relative order induced by π (lowering the

energy) and the strength of this agreement is given by wψpos. Similarly, if Yψ
n (j, π−1(i)) is

on then expert ψ “disagrees” with the relative order, and raises the energy. The weights
wψpos and wψneg thus control how much emphasis is given to positive and negative relative
preferences from expert ψ. 1/ log(i + 1) is the rank discount function similar to the one
used in NDCG and other IR metrics, which emphasizes items at the top positions in the
ranking. Finally, normalizing by 1/M2

n ensures that the energy ranges are comparable across
instances with different numbers of items.

The model assigns a probability to every ranking π based on this energy function:

P (π|Yn) =
1

Z(Yn)
exp(−E(π,Yn; W)) Z(Yn) =

∑
π

exp(−E(π,Yn; W)),

where the partition function Z(Yn) sums over all valid rankings π.

It is important to note here that in the proposed model a separate set of weights
{bψ, wψpos, wψneg} is learned for each expert ψ, which allows the model to effectively capture
the correlations between individual expert preferences and the ground truth ones. However,
this framework cannot be applied when the expert identity is unknown or when new experts,
unseen during training, are introduced at test time. This is often the case in domains like
crowdsourcing where the experts must be anonymized due to privacy considerations, and
the number of experts is large so new experts are often introduced at test time. To general-
ize the model to these settings we can simply share the same parameters b, wpos and wneg,
removing the dependence on ψ. The resulting consensus model only takes into account the
net preference across all Ψ experts, ignoring the individual preferences. Though this makes
it possible to apply the model to arbitrary expert sets, this may weaken it since preference
information from individual experts can contain very useful information, especially in cases
where the majority of experts are wrong. When a subset of the experts is known, it is
possible to take an intermediate approach and learn individual weights {bψ, wψpos, wψneg} for
the known experts ψ, and consensus-based weights {b, wpos, wneg} for the unknown experts.
This demonstrates the flexibility of the proposed CRF framework which allows us to effec-
tively learn to aggregate preferences in the settings where both item and expert sets can
vary in length.

3.6.2 CRF Approach: Learning and Inference

The most popular approach to training CRFs is maximum likelihood. However, this ap-
proach does not take the target metric into account and thus might be ineffective at op-
timizing it. Recent work has explored different empirical and theoretical approaches to
incorporate the target metric during CRF training (Volkovs and Zemel, 2009; Gimpel and
Smith, 2010; McAllester and Keshet, 2011) Inspired by this work we follow the approach of

1009



Volkovs and Zemel

Algorithm 2 CRF Learning Algorithm

Input: {(q1,D1,L1,R1), ..., (qN ,DN ,LN ,RN )}
Parameters: learning rate η, cut-off ε
for n = 1 to N do {pairwise matrices}

from Rn compute Yn = {Y1
n, ...,Y

Ψ
n }

end for
initialize weights: W
repeat {CRF optimization}

for n = 1 to N do
if Mn > ε then

downsample documents to get Lnε, Ynε

else
Lnε = Ln and Ynε = Yn

end if
compute exact gradients with {Lnε,Ynε}:

∇W = ∂O(Lnε,Ynε)/∂W
update weights: W = W + η∇W

end for
until convergence
Output: W

Volkovs and Zemel (2009) and use the expected metric as the target objective to maximize:

O(Ln,Yn) =
∑
π

G(π,Ln)P (π|Yn), (5)

where G can be any IR metric such as the NDCG or MAP. Note that even even the cases
where G is non-smooth (e.g., NDCG, MAP) the above objective remains smooth with
respect to W and can be maximized using standard gradient-based procedure. However,
to optimize this objective we need to calculate P (π|Yn) for all Mn! rankings π of the items
in each query qn. This computation quickly becomes intractable since even for Mn = 15
one needs to sum over more than 1012 permutations. Standard MCMC and variational
techniques can be used here to estimate the gradients, however, these methods are typically
too slow to be applied to the IR domain where data sets often contain thousands of queries.

To avoid these problems we use an approach similar to the one suggested by Caetano
et al. (2009) which we empirically found to work well. Every time a query qn is visited and
the number of documents is greater than ε, we randomly select a subset of ε documents
and use the corresponding relevance labels Lnε and pairwise matrices Ynε = {Y1

nε, ...,Y
Ψ
nε}

to compute the gradients for W. Here each pairwise matrix Yψ
nε is a slice of the original

matrix Yψ
n which includes only the selected ε documents. Choosing ε sufficiently small

allows the gradients to be computed exactly by enumerating all possible ε! permutations of
the documents.

Similarly to the feature-based model, this learning procedure can be made more effi-
cient by precomputing both unary and pairwise potentials. This reduces the complexity of
computing the model’s energy from O(M2

nΨ) to O(MnΨ) at the cost of additional storage
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requirement of O(Mn) per query. The complete stochastic gradient descent learning proce-
dure is summarized in Algorithm 2. Note that this algorithm can be used to optimize the
parameters of the CRF for any of the target IR metrics.

Once the CRF is learned then given a new test query (q,D,R), the goal is to predict a
single ranking π for the M documents in D based on the expert preferences R. Fortunately,
once R is converted into Y = {Y1, ...,YΨ} such inference can be done very efficiently in
this CRF. Since 1/ log(i+ 1) is a monotonically decreasing function it is easy to verify that
the ranking with the highest probability is obtained by sorting the items according to their
total “score” given by the potentials:

π̂ = arg min
π

E(π,Y; W) = arg sort([ϑ1, ..., ϑM ])

where the scores are:

ϑi = −
Ψ∑
ψ=1

bψϕψ(i) + wψpos
∑
j 6=i

Yψ(i, j)− wψneg
∑
j 6=i

Yψ(j, i)

 .

It is important to note here that this inference procedure only requires computing simple
sums and can thus be done very efficiently . This is a significant advantage over the feature-
based approach which requires SVD factorization to be done for every test query.

3.7 Experiments

For our experiments we use the MQ2007-agg and MQ2008-agg rank aggregation data sets
from the LETOR4.0 (Liu et al., 2007a) collection. Detailed description of the data sets is
given is Section 2.6.

3.7.1 MPM Experiments

In the first set of experiments we compare the performances of the supervised and the
unsupervised versions of the MPM model. Both versions are fit using the pairwise count
matrix described in Section 2.1. Note that this method of converting rankings to pairwise
preferences is very similar to the rank difference method discussed in Section 3.2 with the
only difference being the exclusion of the normalization term max(Rn(:, ψ)). As before
we use 100 steps of the gradient descent to fit the models and reparametrize the variance
parameters as γni = exp(βni) to avoid constrained optimization. The results for the unsu-
pervised (θ-MPM) and the supervised (θsup-MPM) models on both data sets are shown in
Table 4. From the table we see that the supervised version of the MPM model significantly
outperforms the unsupervised one on both data sets. This supports the expected conclusion
that when ground truth preference data is available using it during model training improves
performance.

To further investigate the differences between the two MPM models we plotted the
adherence parameters Θ found by each model. Figure 7 shows the adherence parameters Θ
set based on the labeled training examples, together with the one learned in an unsupervised
fashion by doing gradient descent. From the figure we see many similarities in the two
vectors, indicating that the model is able to capture the notion of ”outliers” which correlates
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NDCG Precision

N@1 N@2 N@3 N@4 N@5 P@1 P@2 P@3 P@4 P@5 MAP

MQ2008-agg
θ-MPM 37.07 40.29 41.78 42.76 43.69 43.62 40.94 37.24 33.64 30.81 44.32
θsup-MPM 38.17 40.57 42.19 43.07 43.99 44.89 41.13 37.67 33.80 31.17 44.71

MQ2007-agg
θ-MPM 41.13 41.21 41.09 41.41 42.53 47.35 45.78 44.17 43.01 41.97 44.35
θsup-MPM 41.77 41.91 41.92 42.34 42.79 48.35 46.64 44.53 43.52 42.72 45.71

Table 4: MQ2008-agg and MQ2007-agg MPM results; statistically significant results are
underlined.

Figure 7: Top row: normalized Θ, found by the supervised procedure outlined in Section
3.4, for training Fold 1 of MQ2007-agg. Bottom row: learned Θ on the same
Fold. Here white = 1 and black = 0.

closely with the training labels. There are however a number of differences, such as the first
three components being switched from on to off in the learned Θ. In our experiments we
consistently found that setting Θ using the training labels produced better performance.

3.7.2 SVD and CRF Experiments

In the second set of experiments we compare the performance of the SVD-based feature
model trained with LambdaRank (denoted as SVDsup) and the CRF one. For each model
we experimented with binary, rank difference, and log rank difference methods to compute
the pairwise matrices (see Section 3.2) and selected the method that gave the best validation
NDCG@10 results. For the SVD-based model we found through cross-validation that setting
p = 1 (SVD rank) gave the best performance which is expected considering the sparsity
level of the pairwise matrices. The LambdaRank training of the scoring function was run
for 200 iterations with a learning rate of 0.01, and validation NDCG@10 was used to choose
the best model. For the CRF model we used expected NDCG (see Equation 5) as the target
objective and set ε = 6 ensuring that at least one document of every relevance label was
chosen each time.

We compare the results of our model against the unsupervised baselines used in the
MPM experiments (see Section 2.6). We also compare with the established meta-search
standard Reciprocal Rank Fusion (RRF). To the best of our knowledge these models cover
all of the primary leading approaches in the (supervised) rank aggregation research except
for the Markov Chain model (Liu et al., 2007b) discussed above. We were unable to compare
with this method because it is neither publicly available nor listed as one of the baselines
on LETOR, making standardized comparison difficult.
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NDCG Precision

N@1 N@2 N@3 N@4 N@5 P@1 P@2 P@3 P@4 P@5 MAP

MQ2008-agg

BordaCount 23.68 28.06 30.80 34.32 37.13 29.72 30.42 29.38 29.75 29.03 39.45
CPS-best 26.52 31.38 34.59 37.63 40.04 31.63 32.27 32.27 31.66 30.64 41.02
SVP 32.49 36.20 38.62 40.17 41.85 38.52 36.42 34.65 32.01 30.23 43.61
Bradley-Terry 38.05 39.24 40.77 41.79 42.62 44.77 39.73 36.26 33.19 30.28 44.35
Plackett-Luce 35.20 38.49 39.70 40.49 41.55 41.32 38.96 35.33 32.02 29.62 42.20
Condorcet 35.67 37.39 39.11 40.50 41.59 40.94 37.43 34.73 32.08 29.59 42.63
RRF 38.77 40.73 43.48 45.70 47.17 44.89 41.32 38.82 36.51 34.13 47.71

θsup-MPM 38.17 40.57 42.19 43.07 43.99 44.89 41.13 37.67 33.80 31.17 44.71
SVDsup 42.81 44.53 47.02 49.00 50.69 48.85 44.13 41.84 39.09 36.50 50.32
CRF 42.29 44.99 47.54 49.05 51.03 48.67 44.58 42.08 38.75 36.55 50.41

MQ2007-agg

BordaCount 19.02 20.14 20.81 21.28 21.88 24.88 25.24 25.69 25.80 25.97 32.52
CPS-best 31.96 33.18 33.86 34.09 34.76 38.65 38.65 38.14 37.19 37.02 40.69
SVP 35.82 35.91 36.53 37.16 37.50 41.61 40.28 39.50 38.88 38.10 42.73
Bradley-Terry 39.88 39.86 40.40 40.60 40.91 46.34 44.65 43.48 41.98 40.95 43.98
Plackett-Luce 40.63 40.39 40.26 40.71 40.96 46.93 45.10 43.09 42.32 41.09 43.64
Condorcet 37.31 37.63 38.03 38.37 38.66 43.26 42.14 40.94 39.85 38.75 42.56
RRF 41.93 42.66 42.42 42.73 43.13 48.70 47.20 44.84 43.52 42.52 46.72

θsup-MPM 41.77 41.91 41.92 42.34 42.79 48.35 46.64 44.53 43.52 42.72 45.71
SVDsup 46.13 46.76 46.71 46.87 47.28 52.90 51.39 49.33 47.80 46.66 50.05
CRF 46.93 46.81 46.75 46.51 46.93 54.14 51.48 49.12 47.54 46.68 50.39

Table 5: MQ2008-agg and MQ2007-agg results; statistically significant differences between
CRF and SVDsup are underlined. All the differences between both CRF and
SVDsup models and the best baseline are statistically significant.

The NDCG and Precision results for truncations 1-5 as well as MAP results are shown in
Table 5. From the table we see that both SVDsup and CRF model significantly outperform
all the other aggregation methods, improving by as much as 5 NDCG points over the best
baseline on each of the MQ-agg data sets. Moreover, we also see that the CRF model has
very strong performance producing similar results to the best SVDsup model. While both
models use the same pairwise matrices Y, inference in CRF is orders of magnitude faster
than in SVDsup. Finally, we note that the results on the MQ2008-agg data set, which is
more than 65%, sparse demonstrate that both models are robust and generalize well even
in the sparse setting.

To investigate the utility of representing each expert’s preferences with a separate set of
parameters we ran experiments with a combined approach. For each query qn we combined
all pairwise preference matrices into a single matrix Ytot

n =
∑Ψ

ψ=1 Yψ
n and trained the

SVDsup model on the SVD features from Ytot
n only. Note that this model has no information

about the individual expert preferences. We refer to this model as “combined” and compare
it to the full model which uses SVD features from each Yψ

n referred to as “individual”. The
results for the two data sets are shown in Figure 8. From the figure we see that the individual
model significantly outperforms the combined one on both data sets. The performance of
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(a) NDCG, MQ2008-agg (b) Precision, MQ2008-agg

(c) NDCG, MQ2007-agg (d) Precision, MQ2007-agg

Figure 8: Test NDCG@1-5 and Precision@1-5 results for SVDsup trained on features ex-
tracted from each Yψ

n (individual), versus SVDsup trained on features extracted
only from the joint preference matrix Ytot

n (combined). Results for the CRF
model are similar and are not shown.

the combined model is comparable to the best baseline consensus method, the Reciprocal
Rank Fusion. This is not surprising since Ytot

n summarizes the consensus preference across
the experts, and without access to the individual preferences the ranker can only learn
to follow the consensus. Note however, that the gain from using the individual expert
features is very significant which further supports the conclusion that specialization is very
important for the supervised preference aggregation. To further validate this conclusion
we conducted the same experiment with the CRF model. We removed the expert specific
weights wψ, wψpos and wΨ

neg and learned a single set of parameters W = {b, wpos, wneg} for
all the experts. The results were similar to those in Figure 8 and we observed a significant
drop in both NDCG and Precision accuracies.

Figure 9 further demonstrates the importance of specialization. The figure shows the
expert ranking matrix together with the scores produced by the Reciprocal Rank Fusion
and SVDsup for an example test query from MQ2008-agg. From the ground truth relevance
levels (L) it is seen that only document d6 is relevant to this query. However, from the
ranking matrix we see that the experts express strong net preference for documents d1,
d4, d5 and d8, whereas the preferences for d6 are mixed with many positive and negative
preferences. The Reciprocal Rank Fusion is a consensus-based approach and as such ranks
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Figure 9: The matrix on the left shows the expert ranking matrix R for a test query in Fold 1
of the MQ2008-agg data set. 8 documents {d1, ..., d8} were retrieved for this query
and the normalized expert rankings are represented by white squares. The size
of each square reflects the preference strength, so that large squares correspond
to high rankings (strong preference). Missing rankings are represented by empty
cells. The matrix on the right shows the normalized scores for each document
produced by the Reciprocal Rank Fusion (RF) and the LambdaRank SVDsup
(LR) models, as well as the ground truth relevance levels (L). Note that only d6

is relevant to this query.

documents d1, d4, d5 and d8 above d6 with NDCG@1-4 of 0. Other consensus-based methods
produce similar rankings. SVDsup on the other hand, is able to ignore the consensus and
concentrate on a small subset of the preferences, placing d6 on top and producing a perfect
ranking. Moreover, note that the scores for the other documents produced by the SVDsup
are significantly lower than the score for d6, so the model is confident in this ranking. The
query shown in Figure 9 is an example of a difficult query (often these correspond to long-tail
queries) where the majority of experts generate incorrect preferences. For these queries the
aggregated rankings produced by the consensus-based methods will also be incorrect. Our
supervised approaches are able to fix this problem through specialization. By examining
the queries in both MQ2008-agg and MQ2007-agg we found that both data sets contain a
number of such queries and that both SVDsup and CRF performs significantly better on
those queries than the consensus-based baselines.

3.7.3 Runtime Comparison

In the previous sections we demonstrated that fully supervised models SVDsup and CRF
significantly outperform all baselines on two rank aggregation tasks. We also mentioned
that the CRF model is considerably faster at inference time. In this section we quantify
this difference.

We use test Fold 1 of the MQ2008-agg data set and conduct two sets of experiments.
In the first experiment we repeatedly increase the number of experts. Starting with the

initial expert matrix at iteration 1: R
(1)
n = Rn, we concatenate it with the original matrix

to get an expanded one for iteration 2: R
(2)
n = [R

(1)
n ,Rn]. Thus, after t iterations the

resulting matrix R
(t)
n = [R

(t−1)
n ,Rn] contains Mn rows and t × Ψ columns. Concatenating
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(a) Expert expansion runtimes (b) Item expansion runtimes

Figure 10: Average per query runtimes (in seconds) for test Fold 1 of the MQ2008-agg.
Figure 10(a) shows runtimes for the expert expansion experiment. Figure 10(b)
shows runtimes for the item expansion experiment.

expert matrices allows us to test the inference procedure of each method on an increasingly
larger data while preserving sparsity. In the second experiment we repeat this procedure
but this time we append the matrices increasing the number of documents. Here, the
ranking matrix at iteration t contains t ×Mn rows and Ψ columns. The first experiment
thus tests for scenarios where the expert set is large (expert expansion), that typically arise
in domains like crowdsourcing. While the the second experiment tests for large item sets
(item expansion) that often arise in domains like meta-search.

Figures 10 and 10(b) show, averaged across queries, runtimes (in seconds) for both
methods at each expansion iteration. Figure 10(a) shows runtimes for the expert expansion
while Figure 10(b) shows runtimes for the item expansion. From the figures we see significant
differences in runtimes between the two methods. The difference is especially large for the
expert expansion (Figure 10(a)) where SVDsup is on average almost 80 times slower than
our CRF method at the tenth iteration. This difference is due to the fact that SVDsup has
to run SVD factorization for every expert. Consequently, the number of SVD factorizations
grows linearly with the number of experts significantly slowing down SVDsup. For the item
expansion (Figure 10(b)) the number of experts stays constant while the dimension of the
preference matrix increases. Since no additional SVD factorizations are required we found
the speed of SVDsup to not increase as significantly as in the first experiment. However,
even in this setting the CRF model is more than 3.5 times faster. From these results we can
conclude that when inference speed is important CRF is a better model choice especially if
the number of experts is large.

3.7.4 Assessing Expert Quality

An additional advantage of using preference matrices directly, as done in CRF, is model
interpretability. By analyzing the learned potential weights we can gain insight into which
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Figure 11: Learned bψ, wψpos and wψneg expert weights for training Fold 1 of MQ2008-agg;
weights for other folds look analogous. White squares represent positive weights
while black squares represent negative ones. The area of each square is propor-
tional to weight magnitude.

experts are useful and how their preferences are combined. Figure 11 shows an example
weight matrix learned by CRF model on the training Fold 1 of MQ2008-agg. Before delving
into the figure we note that negative bψ raises the energy (lowering the probability, see
Equation 4). Hence large negative values indicate that when preference from expert ψ is
missing for a given document it is pushed down in the aggregate ranking, that is, expert ψ is
important for aggregation. Similarly, positive wψpos lower the energy (upping the probability)

while positive wψneg raise the energy. Consequently, when both weights are positive for a

given expert ψ, documents dni strongly preferred by k (i.e.,
∑

j 6=i Y
ψ
n (i, j)�

∑
j 6=i Y

ψ
n (j, i))

get pushed up in the ranking while those not preferred get pushed down.
Taking these relationships into account we see from Figure 11 that preferences from

experts 14, 15, 17, 18 and 21 are good indicators of document relevance. The importance
of these experts is shown by large negative values of bψ. Moreover, large positive values for
both wψpos and wψneg indicate that strong net preference from each of these experts correlates
closely with high relevance.

We also see that some experts are not useful for aggregation. For instance experts 24,
and 25 all have positive bψ’s meaning that when their preferences are absent the rank of
a document actually improves. Each of these experts also has near-zero wψpos and wψneg
indicating that when their preferences are present the model does not use them.

Finally, some experts are used for aggregation even though their preferences correlate
inversely with ground truth. For instance, experts 10, 11 and 12 all have negative wψpos
and wψneg weights indicating that documents strongly preferred by these experts will be
pushed down in the ranking while those strongly opposed will be pushed up. Moreover,
most weights for these experts are large indicating that they play an important role in the
aggregation process. The model thus learned that these experts often give wrong relative
orderings reversing which can still lead to useful predictions. It is worth noting here that
this kind of inverse relationship is impossible to capture with unsupervised methods.

To further validate the utility of analyzing experts through CRF’s parameters we re-
moved experts whose preferences were found not to be useful by the CRF and retrained
the model. Specifically, from Figure 11 we see that experts 13, 20, 24 and 25 are not being
used by the model and when preferences from these experts are missing, the corresponding
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N@1 N@2 N@3 N@4 N@5

CRF 42.29 44.99 47.54 49.05 51.03
CRF* 42.64 45.07 47.63 49.00 50.90

Table 6: MQ2008-agg NDCG@1-5 results; CRF is trained on the full data, CRF* is trained
on a subset of the data with experts 13, 20, 24 and 25 removed.

document actually gets a boost in ranking. These experts are clearly not useful for ranking
so we removed them and retrained the model on the remaining 21 experts. The results
are shown in Table 6, from the table we see that retrained model CRF* either performs
comparably or outperforms the original model. This further supports the conclusion that
useful insight into expert quality can be gained by analyzing weights learned by the model.
Such analysis can be particularly useful in crowdsourcing and related domains where the
goal is often to identify most accurate/reliable labelers from the crowd.

4. Conclusion and Future Work

In this work we have investigated the preference aggregation problem. The explosion in
online technology has generated an immense amount of preference data and introduced
many new ways to express and mine preferences. As the social web activity continues to
grow effective preference aggregation techniques become increasingly more important as
they have a direct impact on the success or failure of many web applications.

Machine learning has recently become the technique of choice to automatically mine
preferences and learn effective aggregating functions. Building on the success of existing
methods we have investigated both supervised and unsupervised aggregation problems and
introduced new machine learning models for each problem type.

In the unsupervised problem we introduced a new probabilistic model over preferences
based on a multinomial generative process. Preferences over items are expressed through
real valued scores resulting in a convex optimization problem during inference which can
be solved efficiently with standard gradient based techniques. Modeling the general partial
pairwise preferences makes the model applicable to a wide range of preference aggregation
problems. Empirically we have shown that our approach outperforms existing unsupervised
aggregation methods on two unrelated problems: rank aggregation and collaborative filter-
ing. Future work includes in this area includes investigating how the learned variances can
be used to improve the final ranking. Another interesting direction is to explore mixtures
of the MPM distributions where each mixing component is parametrized by its own set of
scores. This idea is similar to the mixture of Mallows models discussed above and could
be employed to learn a model for different user preference types and used for personalized
recommendation.

In the supervised domain we have introduced a supervised extension to the Multinomial
Preference Model as well as two fully supervised preference aggregation models. All of the
presented approaches are based on pairwise preference matrices, and can also be applied to
a variety of problems with different preference types. Both supervised models fully use the
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labeled training data and can optimize the aggregating function for any target IR metric.
The first model allows to apply any learning-to-rank algorithm during optimization and can
thus be easily incorporated into many existing IR frameworks. The second model has a more
involved learning procedure but is significantly faster during inference time and produces
interpretable results. The two models thus offer a trade-off between ease of use and speed
allowing the user to make an appropriate choice based on systems requirements. Future
work in this domain involves applying these models to preference aggregation problems with
other forms of expert and ground truth preferences. We also plan to investigate other ways
of producing effective document representations from full or partial preferences.
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