
Continuous Data Cleaning

Maksims Volkovs #1, Fei Chiang∗ #2, Jaroslaw Szlichta∗ #1, Renée J. Miller∗ #1

#1 Dept. of Computer Science, University of Toronto
{mvolkovs, szlichta, miller}@cs.toronto.edu

#2 Dept. of Computing and Software, McMaster University
fchiang@mcmaster.ca

Abstract—In declarative data cleaning, data semantics are
encoded as constraints and errors arise when the data violates
the constraints. Various forms of statistical and logical inference
can be used to reason about and repair inconsistencies (errors)
in data. Recently, unified approaches that repair both errors in
data and errors in semantics (the constraints) have been proposed.
However, both data-only approaches and unified approaches are
by and large static in that they apply cleaning to a single
snapshot of the data and constraints. We introduce a continuous
data cleaning framework that can be applied to dynamic data
and constraint environments. Our approach permits both the
data and its semantics to evolve and suggests repairs based on
the accumulated evidence to date. Importantly, our approach
uses not only the data and constraints as evidence, but also
considers the past repairs chosen and applied by a user (user
repair preferences). We introduce a repair classifier that predicts
the type of repair needed to resolve an inconsistency, and that
learns from past user repair preferences to recommend more
accurate repairs in the future. Our evaluation shows that our
techniques achieve high prediction accuracy and generate high
quality repairs. Of independent interest, our work makes use of
a set of data statistics that are shown to be sensitive to predicting
particular repair types.

I. INTRODUCTION

Data quality is an increasingly pervasive problem for
organizations as they try to derive value from data. Integrity
constraints are an important tool for ensuring one aspect of
data quality, that is data consistency. Integrity constraints were
originally designed to enforce data quality by preventing data
from becoming inconsistent. However, in many applications,
enforcing constraints may be too expensive since constraints
must be checked as data is changed. Enforcement may also be
undesirable if a correct, consistent value is not known at data
entry time and there is value in recording alternatives for later
decision making. It is well known that when integrating data,
even when the original data satisfies the integrity constraints,
the integrated data may not. For these and many other reasons,
data may be inconsistent, that is, the data may not satisfy a
specified set of integrity constraints.

Nonetheless, integrity constraints still play an important
role in managing data quality, even when the constraints are
not enforced and data may be inconsistent. Over the last decade
declarative data cleaning has emerged as an important method
for data quality management [1]. In declarative data cleaning,
logical reasoning over integrity constraints is used together

*Szlichta is a Fellow at the IBM Centre for Advanced Studies in Toronto.
The work of Chiang, Szlichta and Miller supported in part by NSERC BIN.

with statistical inference over the data to both understand the
quality of data (the degree and type of inconsistency in the
data) and also to clean or repair the data [2], [3], [4], [5], [6],
[7], [8], [9], [10].

The success of declarative data cleaning has also led to
the realization that sometimes the right way to improve data
quality is not to repair the inconsistent data, but rather to
modify the integrity constraints because the semantics of the
data or application have evolved [11], [12]. The data may be
correct and consistent (or more consistent) if viewed under the
lens of the modified constraints, and the modified constraints
may more accurately model the domain semantics. The need
to consider both the data and the constraints as potential
sources of data quality problems was driven home by Paul
Yaron’s SIGMOD 2013 keynote discussing the over 23,000
database instances used to run JP Morgan’s daily business,
and the almost daily integration of new databases (from new
vendors, new customers, acquisitions, and mergers). In such a
world, the integrity constraints must evolve to accommodate
the semantics of new business rules, newly integrated data, and
new business and regulatory rules.

When data is inconsistent, we can use data or constraint
repair techniques to reduce the inconsistency and improve the
quality of the data. Data repair algorithms assume that the
given set of constraints is correct, and search for repairs to
the data (often minimal or least cost repairs) that satisfy the
constraints [3], [8], [13], [9], [14]. Constraint repair algorithms,
on the other hand, aim to identify stale constraints and find
modifications that bring the constraints and data into better
alignment [11], [12]. However, to the best of our knowledge,
the work on declarative data cleaning, including the many
systems in the area (AJAX [1], Nadeef [4], LLUNATIC [7]
and others), has focused on cleaning a single snapshot of the
data with a given set of constraints. These solutions, while
effective for static data and fixed constraints, are expensive
and difficult to use in dynamic environments where data may
change frequently and constraints may evolve. Rather, the
cleaning process must presumably be rerun periodically (from
scratch) to keep the data clean. To make matters worse, a data
analyst must manually tune parameters (used for the statistical
inference of repairs) to ensure the algorithms perform well
as the data distributions and constraints change, and that
the recommended repairs align with user expectations and
application requirements.

To support data cleaning in dynamic environments, a new
framework is needed that focuses on continuous and adaptive

Fig. 1. A framework for continuous data cleaning.

data cleaning. Such environments involve updates to the data
and possible evolution of constraints. As data is updated, and
the applications semantics evolves, the desired repairs may
change. For example, in the financial market domain, data
volume and data distributions vary as the types of trades,
number of orders, and commodities bought/sold, change each
day. Similarly, constraints defined on such data that ensure
values are accurate, and that fair market trading is followed,
may evolve as legal and governing organizations introduce and
modify existing policies. Resolving inconsistencies between
the data and the constraints in such a dynamic environment
requires the following considerations.

• Data and constraints evolution: We need to deter-
mine whether the source of inconsistency is due to
incorrect data values or stale constraints.

• Incremental cleaning: As the data and constraints
evolve, incremental changes occur. We need to identify
repairs based on these incremental changes, without
having to start the repair process from scratch each
time.

• Adaptivity: Data cleaning is often subjective, accord-
ing to user and application semantics. Incorporating
the user into the cleaning process is critical towards
achieving high quality repairs. We naturally include
users in the cleaning process, and as users select
repairs to apply, we learn from these chosen repair
preferences, and propose future repairs that adapt to
users’ (possibly changing) preferences.

In this paper, we present a framework (shown in Figure
1) that enables continuous data cleaning in environments
where the data and the constraints are changing. Given a data
instance that is inconsistent with respect to a set of constraints,
our framework uses a classifier to recommend the type of
repair needed to resolve a given inconsistency. We consider
repairs to the data, to the constraints, or to both the data and
the constraints (hybrid repairs). The latter is needed when a
constraint has evolved, but the data may still be inconsistent
to some extent with the new semantics. The recommended
types of repairs are passed to a repair algorithm that generates
specific data and/or constraint modifications based on the
classifier’s recommendations. A data analyst then selects which
repairs to apply to the database. Our classifier leverages this

user feedback to learn repair preferences over time in order to
adaptively refine future repair recommendations. In addition,
our classifier uses a set of statistics (computed over the data
and the constraints) to predict the types of repairs needed.
As the data and the constraints change, these statistics are
recomputed to include this evolution without having to start
the repair process from scratch. We use statistics that can
be computed and maintained efficiently, allowing us to adapt
efficiently to dynamic changes in the data and constraints.

Our repair-type classifier both reduces a repair algorithm’s
search space of possible repairs, but more importantly by
incorporating past user preferences (that is, the repairs choosen
and applied by a user), it can also greatly improve the accuracy
of unified repair algorithms by directing them to the correct
part of the search space. In addition, as new repairs are
applied by a user, the classifier is continuously re-trained. Re-
training tunes the classifier to evolving data distributions and
user preferences. Passing this updated information (through
predictions) to the repair algorithm allows the entire system to
continuously adapt and stay up to date. This results in more
accurate repair recommendations that continue to be accurate
over time.

We note that re-training can be done automatically using
efficient numerical optimization and requires no additional
supervision from the user beyond the applied repairs. This
is a significant advantage over most existing algorithms [3],
[13], [14], [11], [12], [4] that have to be manually re-tuned to
achieve the same effect.

In summary, we make the following contributions.

1) An adaptive data cleaning framework for continuous
data quality improvement that adjusts to data and
constraint changes, and leverages user feedback (of
applied repairs) to learn repair preferences. These
preferences are used to successively refine and pro-
pose improved repairs. We show that our framework
is able to achieve more accurate repairs than static
data cleaning solutions. In particular, we are able
to achieve an average 20% improvement in repair
accuracy over non-learning approaches [11], and a
performance time reduction between 13%-19% over
static data cleaning solutions [11].

2) A logistic classifier that predicts the types of repairs
needed (data, constraint, or both data and constraint)
to resolve a given inconsistency. After a training
phase, our classifier is able to achieve prediction
accuracy as high as 97%. Our evaluation reveals that
we can achieve an overall average of approximately
80% classification accuracy using real data sets with
user feedback. After a re-training phase on a single
snapshot of the data that incorporates the user’s feed-
back on preferred repairs, our average classification
accuracy increases by approximately 11%. Therefore,
the re-trained with user feedback classifier adapts to
the user preferences.

3) We hypothesize that the use of statistics, computed
over the data and the constraints, can help data clean-
ing solutions to adapt to changing data distributions
and constraint updates. We experiment with a large
set of statistics and show that a set of these statistics

are predictive for finding the right class of repairs
to improve data quality. We empirically identify the
statistics that are sensitive to the classification task,
and report our insights on the data and constraint
properties that influence individual repair choices.

4) We provide a performance and qualitative evaluation
of our techniques highlighting the adaptivity of our
framework, and our classification accuracy and repair
accuracy.

To the best of our knowledge, this is the first attempt to
exploit dynamic data quality solutions to repair inconsistency
when the data and the underlying constraints may change.
For this work, we focus on the most widely used integrity
constraint, functional dependencies (FDs). We feel this work
opens exciting avenues for future work to develop a powerful
new family of dynamic data quality techniques in database
systems.

This paper is organized as follows. We begin by discussing
related work in Section II. We provide a motivating example
and describe our framework in Section III. Preliminary back-
ground is presented in Section IV, followed by our classifi-
cation framework in Section V. In Section VI, we describe
our experimental setup and present our evaluation results. We
conclude in Section VII.

II. RELATED WORK

Recent data cleaning systems such as AJAX [1],
Nadeef [4], LLUNATIC [7] and others, have focused on clean-
ing a static snapshot of the data for a given set of constraints.
While these solutions are effective for data environments where
the data and the constraints may not change frequently, they
are expensive to implement in environments where the data and
the constraints may evolve, as they require manual re-tuning
of parameters, and acquisition of new data and constraints.
For example, Beskales et al., propose data and constraint
algorithms that generate repairs according to a relative trust
parameter [12]. To capture repair preferences in dynamic data
environments, the relative trust parameter must be manually
adjusted each time to adapt to changing application semantics.
To the best of our knowledge, our work is the first to consider
adaptive and continuous data cleaning where the underlying
data and constraints may change.

Incorporating user feedback is a vital component towards
achieving high quality repairs. A Guided Data Repair (GDR)
framework is proposed by Yakout et al. [9] that uses a
classification model to predict the utility of a set of data
repairs, that is, whether a data repair should be accepted,
rejected, or retained. The model solicits user feedback to gauge
which repairs are most appropriate. Our work differs from
this effort in two ways. First, the GDR framework considers
only modifications to the data in its search space, whereas
we consider FD repairs, and hybrid repairs consisting of
modifications to both data and the FDs. Secondly, the GDR
framework focuses on converging to the best set of data repairs
for a given static data instance. Changes to the data and/or
to the constraints will require obtaining new data snapshots
(as there are no provisions for incremental data changes), and
restarting the repair process from scratch with an updated
set of constraints. Our framework avoids these burdens by

considering the incremental changes to the data and to the
constraints during the cleaning process.

Constraint-based data cleaning aims to resolve inconsisten-
cies between a data instance and a given set of constraints.
The constraints are often assumed to be fixed and correct.
Hence, data repair algorithms seek modifications to the data
that minimize a cost function such as the number of edits, or
the distance between source and target data values, to re-align
the data and the constraints [3], [5], [8]. Due to the large space
of possible repairs, and the high complexity of finding minimal
cost repairs [3], heuristic solutions, sampling techniques [13],
and statistic inference [15], [16] are often proposed to reduce
the space of possible repairs. As data intensive applications
increasingly operate in data environments where rules and
business policies may change, recent work in this area has
proposed repair techniques to consider evolving constraints,
primarily focused on FDs [11], [12]. Chiang and Miller [17]
propose a unified repair model that considers repairing an
inconsistency via modifications to the data or to the set of FDs.
The decision is based on minimizing a description length cost
function based on the Minimum Description Length (MDL)
principle [18]. Despite this wealth of data cleaning solutions,
to the best of our knowledge, none of the existing techniques
have considered cleaning data and stale constraints in evolving
data environments.

III. MOTIVATING EXAMPLE AND FRAMEWORK
OVERVIEW

A. Motivating Example

Modern business applications are running in dynamic data
environments where the data, and the constraints are changing
constantly (as described in Section I). In such environments,
when an inconsistency occurs, it is no longer apparent, if the
data is wrong or if the constraints have changed. Constraint
evolution occurs, for example when data are integrated from
different sources or business requirements change. Sources
of data errors include careless data entry, integration of data
sources, and de-normalized data with redundancies. In this
work, we consider data repairs, FD repairs, and a hybrid of
both data and/or FD repairs.

Consider Table I (Employee salary) and the constraint:
F1: [First name, Surname] → [Salary].

Dependency F1 states that whenever two tuples agree on values
for attributes First name and Surname, they must agree on
values for attribute Salary. Let’s assume F1 holds for each
specific branch of the company, in which surname and first
name uniquely identify a person, but does not necessarily hold
for the entire company. If the company decides to consolidate
all employee salaries across all the branches to a central
data warehouse with an ETL (Extract, Transform, Load) pro-
cess, ambiguity among employee salaries can arise. That is,
a specific employee will be difficult to distinguish without
considering the branch identifier (branchID). The dependency
F1 will no longer hold over an integrated table such as Table
I. A possible constraint repair would be to add BranchID to
the left side of F1, giving a modified dependency,

F ′1: [First name, Surname, BranchID] → [Salary].
Note we could repair the violations by changing the data, but
we would have to update values in some of the three tuples

TABLE I. EMPLOYEE SALARY.

tid First name Surname BranchID Salary Zip City
t1 James Brown 107 70K 50210 Miami
t2 Craig Rosberg 107 50K 50210 Miami
t3 James Brown 308 70K 21100 Atlanta
t4 Monica Johnson 308 60K 21100 Houston
t5 James Brown 401 80K 65300 NY
t6 Monica Johnson 401 100K 65300 NY
t7 Craig Rosberg 401 80K 65300 Boston
t8 Mark Douglas 401 130K 65300 NY

for James Brown ({t1, t3, t5}), at least one tuple for Monica
Johnson ({t4, t6}), and one for Craig Rosberg ({t2, t7}).
However, there is little evidence in the data to tell us which
tuples should be changed. More importantly, we would be
changing tuples that all have the exact same error. Therefore,
Chiang and Miller [17] propose that it may be more likely that
the constraint F1 is wrong rather than the data.

Furthermore, consider the following FD:
F2: [Zip] → [City].

Tuples t3 − t8, do not satisfy F2. For tuples t5 − t8, based on
the data, we may conclude that the city value of “Boston”
in t7 may be incorrect. (There is more support for “NY”
in the data, since t5, t6 and t8 are all in agreement.) Note
that adding BranchID to the left side of dependency F2 does
not help to resolve the inconsistency. Intuitively, we want
to add an extra attribute or a set of attributes whose values
neatly separate the conflicting tuples [17], while preserving the
existing data regularity (w.r.t. the FD) as much as possible.
Adding BranchID to the left side of F2 does not help to
separate t3 and t4, nor does it distinguish t7 from (t5, t6, t8).
Adding Salary to the left side of F2 helps to distinguish t3 from
t4, thereby resolving that inconsistency, but it does not help
to distinguish t7 from t5. Furthermore, it has not preserved
the existing data regularity (i.e., ”50210”, ”Miami”) in the
satisfying tuples t1, t2, which have now been separated by
different salary values.

For tuples t3 and t4 that do not satisfy F2, we can repair
the violations by changing the data, but we would have to
change either t3 or t4 (the value of “Atlanta” or “Houston”,
respectively). However, there is not enough support in the data
to tell us which tuples would be better to change. In this case,
we let a domain user decide the best repair value, and we do
not automatically recommend a repair.

Now let’s suppose that a user suggests modifying the value
of the City attribute in t3 to “Houston”. Furthermore, there
is new incoming data, and an extra tuple t9 is added in
the next iteration of the ETL process, where t9[Zip,City] =
{“21100”, “Atlanta”}. Now, tuples t3, t4 and t9 do not satisfy
F2. However, this time, based on the data and user feedback,
we may infer that the city value of “Atlanta” (in t9) is not
likely to be correct. There is more support for “Houston” in
the data (tuples t3 and t4 are in agreement), and the value
“Houston” is a user substantiated value.

In the examples above, we have presented a case where
a constraint repair is better than a data repair, and a case
where one data repair is better than another (and better than
a constraint repair). In this paper, we present a classifier
(described in Sections III-B and V) that reflects this intuition
and accurately and efficiently selects between data repair, FD
repair, or a hybrid of both repairs In dynamic settings, we

need to adjust to changes in the data and evolving constraints
without having to start the repair process from scratch each
time. As data cleaning tasks are often subjective, incorporating
the user into the cleaning process is critical to achieve high
quality repairs. We continuously learn and adapt to the user’s
(potentially changing) preferences.

B. Overview of Framework

To manage inconsistencies in dynamic data environments,
where the data and the constraints may change, requires a
new data cleaning approach that considers these evolutionary
changes along with user feedback. We address this by framing
the data cleaning problem as a classification problem. We
introduce a classifier that is automatically tuned to adapt to
evolving data and constraint changes, and to users’ preferences.

We will consider functional dependencies (FDs) as our set
of constraints. Let F : X → A be a single FD. Without
loss of generality, we assume FDs have been decomposed to
have a single attribute on the right-hand side. At the data
level, we consider (tuple) patterns to be the set of distinct
tuples produced by the projection of t[XA] for all tuples t
in the relation. A pattern p (over XA) is violating if there
exists a (distinct) pattern p′ where ΠX(p) = ΠX(p′) but
ΠA(p) 6= ΠA(p′). Modifications (repairs) are needed to the
tuples containing violating patterns or to the violated FDs, to
resolve these inconsistencies.

Figure 1 shows our framework consisting of four stages. In
the first stage, we train a probabilistic classifier (Figure 1 (a))
using repairs that have been selected and validated by a user.
These repairs provide a baseline to the classifier representing
the types of modifications that align with user and application
preferences. As the database is used, and the data and the
constraints change, inconsistencies may arise that need to be
resolved.

Once the classifier is trained (Figure 1 (b)), it predicts the
types of repairs needed to address the violating patterns. To
compute these predictions, we apply a set of statistics that
are calculated over the data and the constraints, describing
properties of the violating patterns. We generate predictions
by computing statistics with respect to each pattern, and then
use the classifier to compute the probability of each repair type
(data, FD, or a hybrid of both). These repair predictions are
passed to the repair search algorithm (Figure 1 (c)), which
narrows the search space of repairs based on the classifier’s
recommendation. The repair search algorithm includes a cost
model that determines which repairs are best to resolve the
inconsistencies. The repair search algorithm recommends a
set of data and/or FD repairs to the user, who will decide
which repairs to apply (Figure 1 (d)). The applied repairs are
then used to re-train the classifier, and the process is repeated.
Incremental changes to the data and to the constraints are
passed to the classifier (Figure 1 (b)), and reflected via the
statistics and the patterns.

Our framework provides the following advantages over past
data cleaning solutions [9], [12], [4], [19]. First, our classifier
helps to reduce the space of possible repairs. Since each vio-
lating pattern can be repaired by either a data, FD or a hybrid
repair, without any prior knowledge about the repair type,
the repair search algorithm must consider this large search

TABLE II. SUMMARY OF NOTATION.

Variable Description

R = {r1, ..., rM} attributes
I, |I| = N relation over R
rij value of attribute ri in tuple j in I
ΠXA(I) projection of attributes in XA (patterns)
F, |F| = K set of K FDs: F : X→ A
Fv ⊆ F all violated FDs
I \ F tuples in I that violate an FD F
p→ pΘ data repair
F → FΘ FD repair
Θ ordered set of data and/or FD repairs
IΘ, FΘ repaired by Θ relation and FDs

space of repairs. In our framework, our repair search algorithm
focuses its search only on the repair type recommended by
the classifier, thereby saving both computational resources
and time. Second, by having a feedback loop to re-train the
classifier as new repairs are applied by the user, allows the
classifier to adapt to the user’s preferences, which may change
over time as the data and constraints evolve. Moreover, as
more repairs are applied, this feedback will enable the classifier
to make more accurate predictions, and in turn, improve the
repair search algorithm’s recommendations. Finally, to resolve
inconsistencies due to incremental changes in the data and in
the FDs, we do not require starting the entire repair process
from scratch. Our framework captures these changes via a
set of statistics that allow the classifier to respond to these
incremental changes and recommend new types of repair. Our
framework is a first step towards continuous data cleaning that
adaptively learns which repairs are most suitable in a dynamic
data environment.

IV. BACKGROUND

Let I be an instance (relation) over a set of M attributes
R = {r1, ..., rM}, N = |I| is the cardinality (number of
tuples) of I. We use rij to denote the value of attribute ri
in the j’th tuple. In addition to I, we are also given a set of
K FDs F = {F1, ..., FK}, represented as: F : X→ A, where
X ⊆ R and A ∈ R.

An instance I satisfies F (written as I |= F) if for every
pair of tuples t1, t2 in I , if ΠX(t1) = ΠX(t2) then ΠA(t1) =
ΠA(t2). Here, ΠX is the projection on the attributes of X.
We refer to tuples in ΠXA as patterns. For a pattern p, we
often refer to the set of relation tuples that contain p, meaning
{t ∈ I|ΠXA(t) = p}. We write Fv ⊆ F to denote the subset
of FDs that are violated in I and use I\F to denote the set of
tuples that violate F . Consequently ΠX(I\F) is the projection
on attributes of X only for those tuples in I that violate F .

An instance I is consistent (with respect to the constraints
in F) if I |= F. Different types of repairs can be applied to
make a database consistent. In this paper we consider three
types of repairs: data repairs, FD repairs, and the combination
of both data and FD repairs.

A. Data Repair

Suppose we have two tuples t1 and t2 in I that violate
an FD F : X → A, so t1 and t2 agree on X (ΠX(t1) =

ΠX(t2)) and disagree on A (ΠA(t1) 6= ΠA(t2)). To repair
such a violation, we can change some attribute values in either
of the following ways. (Without loss of generality, we assume
t1 is changed.)

Right Data Repair Change the A values to be the same.
Change the right side attribute A to make ΠA(t1) equal
ΠA(t2).

Left Data Repair Change the X values to be different.
Here, we might find another tuple t3 which shares the same
right side values with t1 (ΠA(t1) = ΠA(t3)) but has different
left side values (ΠX(t1) 6= ΠX(t3)). The values of ΠX(t1)
is changed to equal ΠX(t3), where the chosen repair value is
from the active domain of X.

While repair algorithms differ on the evidence they use to
choose a right vs. a left data repair or in choosing a value for
a data repair, in most algorithms, the chosen data repair for t1
would typically be applied to every tuple that has the same X
and A attribute values as t1. Consequently, we can view data
repairs as pattern substitutions. For a given violating pattern p
we use a repairing pattern pΘ to repair all tuples t that match
p: {t | t ∈ I,ΠXA(t) = ΠXA(p)}. For right data repair we
would change the A attribute value of t, ΠA(t) → ΠA(pΘ),
whereas for left data repairs we would change the X values,
ΠX(t)→ ΠX(pΘ). We use p→ pΘ to denote the data repair
for pattern p.

B. FD Repair

In addition to data repairs, we consider repairs that change
the constraints (FDs). In this paper, we consider one type of
constraint repair for an FD F : X → A, the addition of
attributes to X. This type of constraint repair has been con-
sidered in past work where only one attribute [11] or multiple
attributes [12], [17] are added to X. This type of constraint
repair is useful when data is integrated, or when a relation
evolves to encode new types of information. For example,
in a data set containing North American addresses, the FD
[PostalCode] → [StateOrProv] accurately models the domain,
but as the data evolves to include international addresses, a
more accurate integrity constraint is [Country, PostalCode] →
[StateOrProv]. We use F → FΘ to denote an FD repair; here
FΘ represents the new FD after an attribute is added to the
left attribute(s) X of F .

In our approach, we allow a given FD F to be repaired
by a combination of both data and FD repairs. We call this a
hybrid-repair of F . While it is possible to use other repair
types, the data and FD repairs described above cover all
of the approaches proposed by existing methods. The repair
algorithms that we consider all produce an ordered set of (data
or constraint) repairs Θ. To repair the database, the repairs
are applied sequentially in the order that they appear in Θ.
We write IΘ and FΘ to denote relation and FDs after they
have been repaired by Θ. Table II summarizes the notation
introduced so far.

V. CLASSIFICATION FRAMEWORK

We now introduce a classifier that adapts to dynamic
data and constraint environments. Our classifier considers
evolutionary changes, along with user feedback (in the form

of selected repairs over previous versions of the database).
We compute and maintain a set of statistics over the data and
the FDs, which allow us to capture the latest changes. We
present a logistic regression classifier that learns from these
statistics to predict the types of repairs needed to resolve the
inconsistencies. In this section, we first introduce the set of
statistics that we use, followed by a discussion of the different
classes of repairs that our classifier considers. Finally, we
present details of our predictive model and training procedure.

A. Repair Statistics

Past work has considered how statistics can be used to
improve data cleaning applications by taking a statistical
inference approach to identify attribute correlations [15], or
by quantifying the deviations between source and target sta-
tistical data distributions to identify data repair values [20].
In dynamic data environments, we need to keep up with
evolving data distributions and changes to the FDs, and need
statistics that allow us to capture these incremental changes.
We propose a set of statistics that can be computed and
maintained efficiently, and allow us to compute repairs as
needed without having to start the repair process from scratch
each time a change occurs. We systematically reviewed the
literature and identified the type of evidence used in the cost
models. We found the support of a pattern (Statistic 2) used
in many approaches and others in a single approach, like the
entropy statistics of FD violations (Statistics 6-8) that modeled
the variance of information used by Chiang and Miller [11].
We found 29 total statistics1 and we report the 22 statistics
that proved to be most predictive.

Given a violating pattern p ∈ ΠXA(I \ F) for an FD
F : X → A, our goal is to design a set of statistics G
that accurately describe the statistical properties of the pattern
and its relation to other tuples in the table with respect to
the FD. By leveraging the statistics, our goal is to efficiently
compare the alternative repairs that could be used to resolve
the violating patterns and understand which are most likely
given the data. We define 22 statistics G = [g1, ..., g22], which
we experimentally found to work well. All statistics depend
on a pattern p, except the first which depends only on an FD
F . We use NF = |I \ F | to denote the number of violating
tuples for F and freq(p) = |{t | ΠXA(t) ≡ p}| as the number
of tuples containing the pattern p over the attributes of F .

Statistics on an FD F

1) Number of violating tuples in F relative to the total
number of tuples in I: g1 = NF /N

Statistics on pattern p of an FD F

2) Frequency of p relative to the total number of tuples:
g2 = freq(p)/N

3) Frequency of p relative to the total number of violat-
ing tuples for F : g3 = freq(p)/NF

Statistics on pattern p of F across a set of FDs F
With these statistics, we seek to characterize patterns whose
tuples (tuples containing the pattern) also violate many other
FDs in F vs. those that violate few other FDs. Conceptually

1The full set of statistics is available at:
http://www.cas.mcmaster.ca/∼fchiang/docs/featureStats.pdf

patterns with tuples that violate several FDs are more likely
to get fixed than those that only violate one FD. Furthermore,
such patterns are typically fixed by FD repair(s) since it is
difficult and often impossible to find data repairs that would
fix the pattern for all FDs simultaneously.

4) For an FD F ′ 6= F , the overlap of p is defined as the
fraction of tuples that violate F ′ and contain pattern
p in their XA attributes. Formally,

overlap(F ′, p) = |{t | t ∈ I \ F ′, ΠXA(t) ≡ p}|/freq(p)

Using this function, we compute descriptive statistics
across all FDs in F.

g4 = mean({overlap(F ′, p)}F ′ 6=F)

g5 = std({overlap(F ′, p)}F ′ 6=F)

g6 = max({overlap(F ′, p)}F ′ 6=F)

g7 = min({overlap(F ′, p)}F ′ 6=F)

Here, std is the standard deviation function.

Statistics on pattern p across possible constraint repairs

5) Let FRF = {F → F l}l be the set of all constraint
repairs for F . For each such FD repair F → F l, we
calculate the fraction of tuples (containing p) that are
not repaired.

fix(p, {F → F l}) =
|{t | t ∈ I \ F l,ΠXA(t) ≡ p}|

freq(p)

Note that 0 ≤ fix(p, {F → F l}) ≤ 1 with 0 indi-
cating that F → F l repairs every tuple containing p.
We summarize this function with a set of descriptive
statistics:

g8 = min({fix(p, {F → F l})F→F l∈FRF
)

g9 = mean({fix(p, {F → F l})F→F l∈FRF
)

g10 = std({fix(p, {F → F l})F→F l∈FRF
)

In g8, trivial repairs with keys are not considered. We
omit max since FD repairs that repair few (or zero)
patterns do not provide any useful information to the
classifier.

Statistics on pattern p of F across possible data repairs

6) Frequency-based entropy statistics of violating pat-
terns of X (left attributes) for the FD F . Let VX be
the violating patterns for X.
VX = {ΠX(t) | t ∈ I \ F,ΠX(t) ≡ ΠX(p)}

g11 = −
∑

p′∈VX

freq(p′)

|VX|
log

(
freq(p′)

|VX|

)
g12 = max

p′∈VX

freq(p′)

|VX|

g13 = min
p′∈VX

freq(p′)

|VX|
g14 = std

(
{freq(p′)/|VX|}p′

)
7) Frequency-based entropy statistics of non-violating

(satisfying) patterns of X. Let SX be the satisfying
patterns for X.
SX = {ΠX(t) | t /∈ I \ F,ΠX(t) ≡ ΠX(p)}

g15 = −
∑

p′∈SX

freq(p′)

|SX|
log

(
freq(p′)

|SX|

)
g16 = max

p′∈SX

freq(p′)

|SX|

g17 = min
p′∈SX

freq(p′)

|SX|
g18 = std

(
{freq(p′)/|SX|}p′

)
8) Frequency-based entropy statistics of violating pat-

terns of A (right attribute) for the FD F .
VA = {ΠA(t) | t ∈ I \ F,ΠA(t) ≡ ΠA(p)}

g19 = −
∑

p′∈VA

freq(p′)

|VA|
log

(
freq(p′)

|VA|

)
g20 = max

p′∈VA

freq(p′)

|VA|

g21 = min
p′∈VA

freq(p′)

|VA|
g22 = std

(
{freq(p′)/|VA|}p′

)
We note that the statistics described above can be computed

efficiently even for large databases. Most of the proposed
statistics are based on frequency counts. These counts can be
updated on the fly when new tuples are added (or removed) to
(from) the database. For instance, to update pattern frequency
we can build a pattern index for each FD and update this
index when new tuples are added/removed. For large databases,
updating indexes may be too slow, so an alternative is to create
separate hash tables, mapping hashed pattern representations
to counts. Hash tables can be updated very quickly and storing
them would require minimal memory overhead since for each
pattern we would only need to store a hash value of at most
256 bits.

The only statistical group that is relatively inefficient to
compute is group 5 (g8 - g10). To compute these statistics, we
need to find the number of tuples that each FD repair fixes
for a given pattern. Empirically, we found these statistics to
be very useful for classification, improving the accuracy by
almost 10%. To minimize the computational overhead we can
employ pattern statistics, and prune the set of possible repairs
that either turn the FD into a key or do not fix sufficiently
many tuples. Moreover, stochastic approximation can also be
employed here by sampling patterns from various regions of
the database and estimating necessary quantities using statistics
from those samples.

The computational efficiency of the proposed statistics
leads to an effective framework where a learned classifier can
be quickly applied to obtain repair type predictions for new
violating patterns and significantly reduce the search space of
possible repairs.

B. Target Classes

We formulate the prediction problem as a multiclass clas-
sification task and use logistic regression as the classifier. To
train the classifier, we assume that we are given a collection
of L relations each with its own set of FDs: {(I(l),F(l))}. For
each pair (I,F) we also have a set of target repairs Θ̃ that were

applied by the user. For cases where applied repairs are not
available, a problem known as cold start in machine learning,
we can use the repairs recommended by a repair algorithm,
and use those to train the classifier. For each relation, we then
create the pattern set as follows, for each FD we extract all
the violating patterns to create the violating pattern set:

P =
⋃
i

ΠXiAi
(I \ Fi)) (1)

For each pattern p in P we extract the set of statistics G(p),
described in the previous section. In addition to statistics we
use Θ̃ to assign the target repair ”state” to each violating
pattern. We use seven classes to encode possible repair states:

1) CLASS 1 = NOT REPAIRED
2) CLASS 2 = REPAIRED COMPLETELY BY FD RE-

PAIR(S)
3) CLASS 3 = REPAIRED COMPLETELY BY DATA RE-

PAIR(S)
4) CLASS 4 = REPAIRED COMPLETELY BY DATA AND

FD REPAIRS
5) CLASS 5 = REPAIRED PARTIALLY BY FD REPAIR(S)
6) CLASS 6 = REPAIRED PARTIALLY BY DATA RE-

PAIR(S)
7) CLASS 7 = REPAIRED PARTIALLY BY DATA AND FD

REPAIRS

A given pattern can be affected by a number of repairs in
Θ̃. Here we use a simple algorithm to determine the final
repair class for each such pattern. We consider a pattern to
be partially or completely repaired, if at least 50% or 100%,
respectively, of its tuples are repaired by Θ̃, otherwise we
assign it to CLASS 1. For each partially/completely repaired
pattern p we create a repair set Λp, initialized to an empty
set. Each repair in Θ̃ is then considered in order (first to last)
and gets added to Λp if it fixes any tuples in p that were not
fixed by the previous repairs. Repairs that concentrate on other
areas of I, might override all the repairs previously done to p
by re-introducing all/some of its violating tuples. This often
occurs when data repairs for one FD, re-introduces violations,
that were previously repaired for other FDs. To account for this
we reset Λp to ∅ every time the number of violating patterns
in p reaches its original count. At the end of this procedure Λp

contains an (approximate) list of repairs that contributed to p.
Distinct repair types in that list together with partial/complete
repair status define the target repair class for p. For example,
if both data and FD repairs are in Λp and p was repaired
partially then it is assigned to CLASS 7. On the other hand,
if p is repaired fully by data repairs, then it is assigned to
CLASS 3. We use c(p) ∈ {1, ..., 7} to denote the class of p.

The class assignment procedure outlined above does not
take into account the number of tuples that were fixed by each
repair in Λp. This can potentially lead to inaccurate class labels
when the majority of tuples for p were fixed by a subset of
repairs in Λp while other repairs in Λp were directed towards
other pattern(s). To avoid this problem we can extend the above
procedure and further prune Λp by thresholding the number
of tuples fixed. This, however, will introduce additional free
parameters to tune and we leave it as future work.

C. Logistic Regression

In this section we describe the repair type classifier. The
classifier’s task is to predict the type of repair(s) needed to

resolve a given set of violating patterns. Our repair framework
only depends on predicted class probabilities and can thus
incorporate any feature-base classifier. In this work we chose
to use logistic regression as our predictive model since this
is a common, well-accepted and effective classifier. Under the
logistic regression model, the probability of a given class is
given by the softmax function:

Q(p = CLASS i) =
exp(Wi ·G(p) + bi)∑7

j=1 exp(Wj ·G(p) + bj)
(2)

where Wi is a weight vector of the same dimension as G(p)
(one weight per feature) and bi is a bias term. The target
probability is taken to be:

P (p = CLASS i) = 1 if c(p) = i and 0 otherwise (3)

A standard way to learn this model is to make Q match P as
closely as possible by minimizing the cross entropy objective:

L = − 1

|P|
∑
p∈P

7∑
i=1

P (p = CLASS i) log(Q(p = CLASS i))

(4)
To deal with imbalanced classes we re-weight the cross entropy
terms by the fraction of patterns in each class:

L = −
∑
p∈P

7∑
i=1

1

|Ci|
P (p = CLASS i) log(Q(p = CLASS i))

where Ci = {p | p ∈ P, c(p) = i} is the set of patterns that
have been assigned to class i. Re-weighting by 1

|Ci| ensures
that each class has an equal weight during optimization and
prevents the model from always predicting the most common
class. In all experiments, we use standard stochastic gradient
descent method to minimize L with respect to W’s and b’s.

VI. EVALUATION

We now turn to the evaluation of our techniques on real
datasets. Our evaluation focuses on four objectives.

1) An evaluation of the classification accuracy using real
datasets. We consider cases where the data and the
constraints are evolving.

2) An evaluation of the utility of our proposed descrip-
tive statistics for repair type prediction.

3) An evaluation of the repair accuracy compared to
static cleaning solutions. We quantify the benefit of
the classifier to an existing repair algorithm, in terms
of accuracy and running time.

4) An evaluation of the scalability of our approach.

Our experiments were run using clusters of Intel Xeon
Processors 5160 (3GHz) with 16GB of memory.

A. Data Characteristics

We use two real data collections. The first collection (FVV)
contains finance, vehicles and veterans datasets gathered on-
line. The finance dataset is based on the US Federal Deposit
Insurance Corporation (FDIC) directory [21] to get a list of
all FDIC insured institutions. The data contains information
about each institution such as type, asset value, regulators,

geographic information (city, state), and operating status (ac-
tive, bank class), with 27602 tuples (25 attributes, 10 FDs).
The green vehicles data set is based on the US Environmental
Protection Agency’s Green Vehicle Guide that provides vehicle
ratings based on emissions and fuel economy [22], with 2294
tuples (18 attributes, 6 FDs). Finally, the Veterans of America
(veterans) dataset [23] contains demographic, socio-economic
data of donors with 95412 tuples (9 attribute, 5 FDs). Table
III shows the set of postulated FDs.

The second data collection contains four datasets obtained
from the Linked Clinical Trials (LinkedCT.org) database [24].
The LinkedCT.org project provides an open interface for
international clinical trials data. The XML version of this data
was transformed into open linked data [25]. We used a portion
of this dataset that includes data from four countries: Canada,
Germany, Italy and Japan. Our subset contains a total of 34,818
tuples (29 attributes) and 5 FDs summarized in Table III.

B. Repair Algorithm

For our experiments, we use the repair algorithm proposed
by Chiang and Miller [11]. Recall that the classifier provides
a set of repair type recommendations, and we pass these
recommendations to a repair algorithm that generates the set of
data and/or FD updates. We modify the repair algorithm such
that it only searches for repairs based on the classifier’s type
recommendation, we call this modified version classify-repair.
We choose Chiang and Miller’s repair algorithm for its ability
to consider both data and FD modifications. However, our
framework is amenable to other repair algorithms that generate
both data and FD repairs, and accept the classifier’s repair type
recommendations as input to guide the search space.

C. Classification Accuracy

To investigate the effectiveness of our framework, we
trained and evaluated two classifier models on each data
collection. Initially when the framework is launched, we are
unlikely to have access to user approved repairs to train the
classifier. To solve this cold start problem, we apply the
original (unmodified) version of Chiang and Miller’s repair
algorithm to generate an initial set of baseline repairs (set
A). Using A as the ground truth, we train our classifier
(CL-A) and pass its predictions to the classify-repair search
algorithm, which generates a new set of repairs. These repairs
are presented to a user who then validates/adds/removes repairs
to produce user validated repair set B. We use B to re-train
the classifier (CL-B), and evaluate both CL-A and CL-B on
a subset of test patterns from B. The complete procedure is
summarized below:

1) Apply baseline repair algorithm [11] to generate
repair set A.

2) Use A to train the classifier (CL-A).
3) Pass classifier output to classify-repair search algo-

rithm, and generate a new set of repairs.
4) Get user validation on repairs, to get repair set B.
5) Use B to re-train the classifier (CL-B).
6) Repeat to step (3), pass CL-B output.

By repeatedly re-training on user’s feedback the classifier
is able to stay up-to-date with dynamically changing database

TABLE III. DEFINED FDS OVER REAL DATASETS.

FD Finance Vehicles Veterans Clinical Trials

F1 [zipcode] → [city] [SalesArea] → [SmartWay] [freq; amt] → [income] [overall status] → [number of groups]
F2 [zipcode] → [stalp] [Model] → [Cyl] [prevHitRatev] → [freq] [study design] → [study type]
F3 [zipcode] → [stname] [Model] → [Trans] [prevHitRate] → [amt] [condition, time frame] → [measure]
F4 [adjequity] → [adjdeposit] [Fuel, Cyl, Drive] → [Cmb MPG] [wealth] → [amt] [safety issue, study type] → [eligibility minimum age]
F5 [state, specgrp, bkclass] → [stmult] [Cmb MPG, Cyl, Drive] → [Veh Class] [income] → [edu] [condition, country] → [drug name]
F6 [conserve] → [active] [PollutionScore] → [GreenhouseScore]
F7 [conserve] → [adjequity]
F8 [bkclass] → [regagnt]
F9 [changec1] → [assetvalue]
F10 [changec1] → [adjroa]

TABLE IV. NUMBER OF PATTERNS IN EACH CLASS.

FVV-A FVV-B Clinical-A Clinical-B

CLASS 1 1644 1502 2421 2357
CLASS 2 397 309 213 271
CLASS 3 155 157 122 112
CLASS 4 0 0 0 0
CLASS 5 91 320 145 161
CLASS 6 1 0 0 0
CLASS 7 0 0 0 0
TOTAL 2288 2288 2901 2901

and user’s repair preferences. It is worth re-emphasizing here
that re-training does not require any additional feedback from
the user beyond the applied repairs, and thus does not impose
any additional overhead on the user.

To test the effectiveness of re-training the classifier, once
the feedback from the user is available, we manually prune the
suggested repairs (set A) from step 3 above. During pruning,
some repairs are accepted as is while others are either modified
or deleted and new repairs are introduced. After pruning, the
resulting set of repairs is ready to be applied to the database.
The pruning step simulates feedback that the classifier would
receive from a domain user.

Note that since no repairs are yet applied to the database,
both the initial set of repairs A and the pruned set B contain
the same violating patterns and only differ in target class
assignments. For set A, the target classes come from the repairs
suggested by the algorithm of Chiang and Miller, whereas
for set B the target classes come from the ”ground truth”
repairs that were approved by the user. Table IV illustrates the
difference in class distributions. The table shows the number of
patterns in each class for Finance, Vehicles, Veterans (grouped
together as FVV) as well as Clinical datasets2. The class
distribution for repair set A is shown under FVV-A (Clinical-
A), and class distribution for repair set B is shown under FVV-
B (Clinical-B). Table IV shows that while the total number
of patterns remains the same, the class distribution across
patterns is different between sets A and B. For example, FVV-
B has considerably more patterns in class 5 = REPAIRED
PARTIALLY BY FD REPAIR(S) than FVV-A, indicating that
the user has chosen to repair more patterns with FD repairs
than was initially suggested by the algorithm in repair set A.
The difference in class distributions further illustrates the need
for adaptive re-training of the classifier.

To test the re-training framework we split the patterns in
FVV and Clinical data collections into training and test sets.

2The datasets were grouped together to increase the number training/test
patterns and make classification accuracy estimates more reliable.

All models were then trained on the training set and evaluated
on the test set. Given that our main objective is to dynamically
adapt to the proposed repairs to reflect the user’s preferences,
we are primarily interested in comparing the two classifiers on
target classes on the user-verified set B. Specifically, we want
to show that the re-trained classifier CL-B is able to adapt to
the user’s preferences, and thus suggest repairs that are aligned
with user expectations.

For each set, the statistical features were standardized by
subtracting the mean and dividing by the standard deviation.
Five 80%/20% random splits of patterns in each set were
used for training and testing, respectively. Due to the lack of
data in classes 4,6, and 7, they were removed from both data
sets. For each classifier the learning rate, was set to 0.05 and
starting weights were sampled independently from a Gaussian
distribution with mean 0 and standard deviation 0.1.

Table V shows the classification results for the test sets
(per-class), averaged across the five classes for the FVV
collection (top-half) and the clinical collection (bottom half).
For each collection, we show classification accuracies for both
CL-A and CL-B classifiers when they are applied to the test set
patterns with target classes specified by user-screened repairs
(set B). (We note that the directly comparable values are
the second and third rows from each data collection). For
completeness, we also show the accuracy of the CL-A classifier
when it is evaluated with target classes from set A (the first
row in each data collection).

From Table V, we see that the classification accuracy for
both CL-A and CL-B is considerably higher than random
guess, which is 1

4 = 25%. This indicates that the statistical
features do capture class sensitive information, and the classi-
fier is able to capture this. Moreover, on the FVV collection
the overall accuracy of CL-A classifier drops when it is
evaluated with labels from set B. Classes 1 and 5 suffer the
biggest decrease in accuracy with class 5 accuracy dropping
by over 24 points. CL-B on the other hand, considerably
improves this accuracy outperforming CL-A on three of the
four classes and providing an average per-class classification
gain of over 11 points. This shows that re-training the classifier
on user feedback allows it to adapt to user preferences,
thereby producing more relevant repairs. Interestingly, not all
classes suffer a drop in accuracy when CL-A is applied to
FVV-B, class 2 for example, gets a boost of over 15 points
(62.74% to 77.78%). This could be attributed to the violating
patterns being pruned by manual inspection, thereby making
the remaining distribution of patterns easier to separate.

1) Accuracy in a Continuous Cleaning Environment: We
evaluate classification accuracy under changing data distribu-

TABLE V. CLASSIFICATION ACCURACY ON REAL DATASETS.

CLASS 1 CLASS 2 CLASS 3 CLASS 4 CLASS 5 CLASS 6 CLASS 7 AVG

FVV-A, CL-A 74.32± 2.90 62.74± 7.05 96.77± 1.74 · 69.18± 6.76 · · ·

FVV-B, CL-A 62.46± 2.71 77.78± 6.43 97.45± 2.01 · 45.00± 3.25 · · 70.67
FVV-B, CL-B 82.34± 1.84 80.13± 6.95 96.03± 1.92 · 68.75± 3.47 · · 81.81

Clinical-A, CL-A 80.26± 1.25 89.47± 2.13 70.31± 5.71 · 73.89± 4.89 · · ·

Clinical-B, CL-A 72.14± 1.52 81.63± 1.09 52.31± 4.43 · 62.71± 5.11 · · 67.19
Clinical-B, CL-B 79.36± 1.30 90.01± 1.97 71.64± 6.22 · 77.47± 5.03 · · 79.62

tions and with user feedback. We started with clinical trials
data from one country, and incrementally added trials from
other countries to simulate a changing data environment. We
had the user recommend changes to the existing set of FDs
in cases where the FDs did not hold strongly over the newly
integrated data. To generate the repair type predictions, we
retrained twice (two iterations with user feedback). Table V
shows that CL-A suffers an average drop in accuracy of over
10 points on set B whereas CL-B significantly outperforms
CL-A across all classes gaining over 12 points on average. We
note that this improvement in accuracy in CL-B demonstrates
not only the usefulness of user feedback, but the ability of
our classifier to adapt to changing data distributions, in this
case, the integration of new data. Given the different data
distributions for each country, our classifier showed positive
gains across all classes with the newly integrated data, and
updated set of constraints.

Overall, the results show that we can achieve high clas-
sification accuracy to successfully predict repair types. With
an average classification accuracy of around 80% (with user
feedback) across all data sets, the predictions from the trained
classifiers allow us to improve data quality in dynamic settings
in a continuous manner (we achieved similar results using
other classifiers, 76% accuracy with Support Vector Machines).
Moreover, re-training the classifier once a set of repairs is ap-
plied to the data significantly improves classification accuracy,
allowing the repair process to stay in tune with user preferences
and changing application needs. In the next section, we look
more closely at the statistical features and their predictive
ability towards particular repair types.

D. Statistical Feature Analysis

In this section, we identify the discriminating statistical
features that are sensitive to the classification task. We ana-
lyzed the weights learned by the logistic classifier to determine
statistics that help to predict the type of repair. Figure 2 shows
a Hinton weight diagram for the classifier trained on the FVV-
B collection. The diagram shows weights for each of the 4
classes (C1, C2, C3, C5) and the 22 statistical features. White
and black colors indicate positive and negative correlation,
respectively, between the statistical feature and the repair class,
and the size of a square is proportional to the magnitude.
The magnitude of the weights indicates the strength of the
relationship between the statistical feature and its relevance to
classifying a pattern to a particular class.

Figure 2 shows that the notable statistical features are
g8, g15 and g19. These statistics have the greatest weights
(in terms of magnitude) across several classes. Specifically,
g8 computes the normalized number of tuples that remain

unresolved after the best (for this pattern) FD repair is applied.
This statistic shows a large positive correlation to C1 and C3
indicating that if there are many tuples that remain unresolved
even after the best FD repair is applied, then this pattern is not
going to be fixed by an FD repair. Conversely, if the number
of unresolved tuples is low, then the pattern is likely to be
resolved via an FD repair, which is indicated by the strong
inverse relationship between g8 and C2.

Statistical features g15 and g19 compute, respectively, the
entropy of the non-violating and violating patterns with respect
to the antecedent and consequent attributes. We observe that
a high entropy value for g15 indicates a high spread among
the tuple patterns in the antecedent i.e., many infrequently
occurring patterns. Hence, the larger the entropy the less likely
we are to find a repairing pattern which satisfies a minimum
frequency threshold. This, in turn, makes data repairs less
likely which is shown by large negative weights for C3.
Conversely, decreasing the likelihood of data repair classes
simultaneously increases the likelihood of NOT REPAIRED
and FULL/PARTIAL FD REPAIR classes which is indicated
by large positive weights for C1, C2 and C5.

Similarly, large values of g19 indicate that the right side
attribute A has many infrequently occurring patterns that
violate the FD. To repair p we need to repair all of these
violations. This makes full/partial FD repairs unlikely (negative
weights on C2 and C5) since any such repair would have to
split the left side pattern into many sub-patterns. The only way
that this can be accomplished is by adding a key (or almost
key) attribute to the FD. However, the cost of such repair would
be too high since it would be modifying the data distribution
of the FD. Moreover, since infrequent patterns are cheap to fix
via data repairs, p is likely to either be fixed completely (large
positive weight on C3) or not get fixed at all (positive weight
on C1).

In summary, using a set of statistical pattern features can
be an effective way to maintain currency with the data for
data cleaning tasks. In our case, we have found entropy-based
statistics across data repairs, and pattern based statistics across
constraint based repairs to be sensitive to full FD and full data
repairs. For large data cleaning tasks in dynamic settings, we
can use this information to efficiently compute the likelihood
of a particular repair type based on the corresponding statistical
values.

E. Repair Accuracy

In this section, we evaluate the benefit of repair accuracy
(precision) of our classifier over static data cleaning approaches
[11]. In particular, we compute the precision as the number of

Fig. 2. Hinton diagram showing the learned feature weights from the logistic classifier.

TABLE VI. REPAIR ACCURACY.

Dataset unified-repair classify-repair

green vehicles 72.5 92.7
finance 66.3 82.1
veterans 71.6 93.3

Avg 70.1 89.4

correct repairs (as determined by the user) divided by the total
number of repairs returned. Using the veterans, green vehicles
and finance datasets, we compute the accuracy values for:

1) The repairs returned by the (unmodified) unified
repair algorithm by Chiang and Miller (averaged over
data and FD repairs) [11].

2) The repairs returned by the classify-repairs algorithm
(modified to include the classifier recommendations),
after successive rounds of re-training and user feed-
back. We run the classifier, and if the recommenda-
tion is a data repair, we run classify-repairs by only
considering data repairs, to get a set of repairs D.
Similarly, if the classifier recommends FD repairs,
we run classify-repairs by only considering the space
of FD modifications, to get a set of repairs C. We
report the accuracy of D ∪ C.

Results are shown in Table VI. We observe that we can
achieve an improvement in average repair accuracy of approx-
imately 20% over the unified repair algorithm, which is a static
data cleaning solution. This reflects the usefulness of having
the user involved in the data cleaning process, and also having
the classifier provide targeted repair recommendations to the
search algorithm.

Next we consider the benefit of the classifier to the
repair algorithm in terms of providing accurate repair type
predictions. This will help to reduce the search space of
possible repairs and improve repair accuracy. We measured
the classifier’s accuracy to predict the correct type of repair
(assuming the ground truth is the repair proposed by the
user). We measured the running time saved, when a correct
repair type was predicted. We count the total number of
correct predictions and divide this by the total number of
inconsistencies. We ran our classifier using the green vehicles,
finance, and veterans real datasets. Results are shown in Table
VII.

Finally, when a correct prediction is made, we computed
the running time saved for the repair search algorithm, by not
having to consider the alternative repairs. Across the datasets,
we saved between 13%-19% of the total running time by first
applying our classifier followed by the repair algorithm. We

TABLE VII. CLASSIFIER ACCURACY.

Dataset Precision % Time Reduction

green vehicles 86.4 18.8
finance 72.6 13.7
veterans 82.1 13.1

Fig. 3. Average per pattern running times for statistical feature extraction,
and target generation versus the number of tuples.

found that we saved the most time when we correctly identified
that a constraint repair was needed, as this avoided searching
the large space of domain values.

F. Scalability

To evaluate how the system scales with the number of
tuples, we computed the average per pattern, statistical feature
extraction time for green vehicles, finance and veterans data
sets. The plot of the average times versus the number of tuples
is shown in Figure 3. Figure 3 also shows the average time per
pattern for target generation (finding which target class is best
for a violating pattern). Figure 3 reveals that the time needed
to compute the features increases linearly with the number of
tuples. The linear dependence will allow our prediction system
to scale well to large databases. Similar linear patterns can be
observed for the target generation times.

VII. CONCLUSIONS

As modern applications continue to operate in data inten-
sive and dynamic environments, there is an imminent need for
adaptive data cleaning solutions that can respond to changing
data and application constraint requirements. In this paper, we
proposed a continuous data cleaning framework that adapts

to the natural evolution in the data and in the constraints
over time. We presented a classifier that predicts the type of
repair needed (data, FD or a hybrid of both) to resolve an
inconsistency, and automatically learns user repair preferences
over time, such that more relevant repairs are generated on suc-
cessive iterations. We also presented a set of statistical features
that allow our classifier to adapt in dynamic environments, and
we showed a subset of these statistics are sensitive to specific
types of repairs. We believe our framework can be applied
in dynamic data environments to help users better respond
to data and constraint inconsistencies, and to minimize the
proliferation of these inaccuracies.

Recent work has proposed extending the set of constraints
to include more than FDs. This includes work by Fan et. al.,
who investigates the interaction between record matching and
data repair [14]. Specifically, they present a framework that
unifies repairing and matching operations to clean a database
based on a given set of constraints, matching rules, and master
data. Chu et. al., propose a holistic data cleaning approach
that allows for a unified set of data quality rules that may
include FDs, Conditional Functional Dependencies (CFDs),
and Matching Dependencies (MDs) [19]. This can be extended
by incorporating Order Dependencies [26], [27] and Sequential
Dependencies [28]. It would be interesting to extend our
framework to include an expanded set of data quality rules,
and to determine the necessary statistics that allow for efficient
online, adaptive data cleaning. Finally, missing values have a
special semantics [29] that should be considered within our
system for both data repair and constraint repair.

REFERENCES

[1] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita,
“Declarative data cleaning: Language, model, and algorithms,” in
VLDB, 2001, pp. 371–380.

[2] L. Bertossi and L. Bravo, “Generic and declarative approaches to
data quality management,” Handbook of Data Quality – Research and
Practice, pp. 181–211, 2013.

[3] P. Bohannon, M. Flaster, W. Fan, and R. Rastogi, “A cost-based model
and effective heuristic for repairing constraints by value modification,”
in SIGMOD, 2005, pp. 143–154.

[4] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas,
M. Ouzzani, and N. Tang, “NADEEF: A commodity data cleaning
system,” in SIGMOD, 2013, pp. 541–552.

[5] G. Cong, W. Fan, F. Geerts, X. Jia, and S. Ma, “Improving data quality:
Consistency and accuracy,” in VLDB, 2007, pp. 315–326.

[6] W. Fan, “Constraint-driven database repair,” in Encyclopedia of
Database Systems, L. Liu and M. T. Özsu, Eds. Springer US, 2009,
pp. 458–463.

[7] F. Geerts, G. Mecca, P. Papotti, and D. Santoro, “The LLUNATIC data-
cleaning framework,” PVLDB, vol. 6, no. 9, pp. 625–636, 2013.

[8] S. Kolahi and L. V. S. Lakshmanan, “On approximating optimum repairs
for functional dependency violations,” in ICDT, 2009, pp. 53–62.

[9] M. Yakout, A. K. Elmagarmid, J. Neville, M. Ouzzani, and I. F. Ilyas,
“Guided data repair,” PVLDB, vol. 4, no. 5, pp. 279–289, 2011.

[10] A. Arasu, C. Ré, and D. Suciu, “Large-scale deduplication with con-
straints using dedupalog,” in ICDE, 2009, pp. 952–963.

[11] F. Chiang and R. J. Miller, “A unified model for data and constraint
repair,” in ICDE, 2011, pp. 446–457.

[12] G. Beskales, I. F. Ilyas, L. Golab, and A. Galiullin, “On the relative
trust between inconsistent data and inaccurate constraints,” in ICDE,
2013, pp. 541–552.

[13] G. Beskales, I. F. Ilyas, and L. Golab, “Sampling the repairs of
functional dependency violations under hard constraints,” in PVLDB,
2010, pp. 197–207.

[14] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Interaction between record
matching and data repairing.” in SIGMOD, 2011, pp. 469–480.

[15] C. Mayfield, J. Neville, and S. Prabhakar, “ERACER: a database
approach for statistical inference and data cleaning,” in SIGMOD, 2010,
pp. 75–86.

[16] M. Yakout, L. Berti-Équille, and A. K. Elmagarmid, “Don’t be
SCAREd: use SCalable Automatic REpairing with maximal likelihood
and bounded changes,” in ICDE, 2013, pp. 553–564.

[17] F. Chiang and R. J. Miller, “Active repair of data quality rules,” in IJIQ,
2011, pp. 174–188.

[18] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, no. 5, pp. 465–471, 1978.

[19] X. Chu, I. F. Ilyas, and P. Papotti, “Holistic data cleaning: Putting
violations into context,” in ICDE, 2013, pp. 458–469.

[20] L. Berti-Equille, T. Dasu, and D. Srivastava, “Discovery of complex
glitch patterns: A novel approach to quantitative data cleaning,” in
ICDE, 2011, pp. 733–744.

[21] “FDIC institution directory.” [Online]. Available:
https://explore.data.gov/Banking-Finance-and-Insurance/FDIC-
Institution-Directory-ID-Insured-Insitution-D/sv8z-wqyy

[22] “Green vehicle guide.” [Online]. Available:
https://explore.data.gov/Transportation/Green-Vehicle-Guide-Data-
Downloads/9un4-5bz7

[23] “Veterans of america dataset.” [Online]. Available:
http://mlr.cs.umass.edu/ml/databases/kddcup98/

[24] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J. Miller, and
M. Wang, “Linkedct: A linked data space for clinical trials,” CoRR,
vol. abs/0908.0567, 2009.

[25] S. Yeganeh, O. Hassanzadeh, and R. J. Miller, “Linking semistructred
data on the web,” in WebDB, 2011.

[26] J. Szlichta, P. Godfrey, and J. Gryz, “Fundamentals of Order Depen-
dencies,” PVLDB, vol. 5, no. 11, pp. 1220–1231, 2012.

[27] J. Szlichta, P. Godfrey, J. Gryz, and C. Zuzarte., “Expressiveness and
Complexity of Order Dependencies,” PVLDB, vol. 6, no. 14, pp. 1858–
1869, 2013.

[28] L. Golab, H. J. Karloff, F. Korn, and D. Srivastava, “Sequential
Dependencies,” PVLDB, vol. 2, no. 1, pp. 574–585, 2009.

[29] C. Christodoulakis, C. Faloutsos, and R. J. Miller, “Voidwiz: Resolving
incompleteness using network effects,” in ICDE, 2014, 4 pages (System
Demonstration).

