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ABSTRACT
Previous highly scalable One-Class Collaborative Filtering (OC-CF)

methods such as Projected Linear Recommendation (PLRec) have

advocated using fast randomized SVD to embed items into a latent

space, followed by linear regression methods to learn personalized

recommendation models per user. However, naive SVD embedding

methods often exhibit a strong popularity bias that prevents them

from accurately embedding less popular items, which is exacer-

bated by the extreme sparsity of implicit feedback matrices in the

OC-CF setting. To address this deficiency, we leverage insights from

Noise Contrastive Estimation (NCE) to derive a closed-form, effi-

ciently computable “depopularized” embedding. We show that NCE

item embeddings combined with a personalized user model from

PLRec produces superior recommendations that adequately account

for popularity bias. Further analysis of the popularity distribution

of recommended items demonstrates that NCE-PLRec uniformly

distributes recommendations over the popularity spectrum while

other methods exhibit distinct biases towards specific popularity

subranges. Empirically, NCE-PLRec produces highly competitive

performance with run-times an order of magnitude faster than

existing state-of-the-art approaches for OC-CF.

KEYWORDS
One-Class Collaborative Filtering; Noise Contrastive Estimation

ACM Reference Format:
Ga Wu, Maksims Volkovs, Chee Loong Soon, Scott Sanner, and Himanshu

Rai. 2019. Noise Contrastive Estimation for One-Class Collaborative Fil-

tering. In Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR ’19), July 21–25,
2019, Paris, France. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3331184.3331201

∗
This work has been primarily completed while the author was working at Layer6 AI.

†
Affiliate to Vector Institute of Artificial Intelligence, Toronto

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGIR ’19, July 21–25, 2019, Paris, France
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6172-9/19/07. . . $15.00

https://doi.org/10.1145/3331184.3331201

1 INTRODUCTION
In an era of virtually unlimited choices, recommender systems are

necessary to assist users in finding items they may like. Collabo-

rative filtering (CF) is the de-facto standard approach for making

such personalized recommendations based on automated collection

of item interaction data from a population of users [23]. However,

in many cases, these interactions lack explicit negative signals, e.g.,

clicks on a website or purchases of a book. In these cases, a lack of

interaction should not be construed as implicitly negative; indeed,

it could simply be that a user was unaware of the item’s existence.

This recommendation setting where only positive (and typically

very sparse) interactions are observed is known as the One Class

Collaborative Filtering (OC-CF) problem [20].

One approach to tackle OC-CF is to factorize a large sparse im-
plicit matrix into smaller latent matrices of user and item represen-

tations [10, 20]. However, matrix factorization requires optimizing a

non-convex objective, resulting in local optima and the need for sub-

stantial hyperparameter tuning for good practical performance [13].

An alternative scalable solution is to first reduce the dimension-

ality of the matrix, then learn the importance of different latent

projected features using linear regression. Methods such as [24],

which we refer to as Projected Linear Recommendation (PLRec)

precompute the item embeddings through fast randomized Singular

Value Decomposition (SVD) [6] and train separate linear regression

models for each user on top of these embeddings. This separation

enables parallelization across users and reduces the optimization

to a convex objective that is globally optimized in closed-form [14].

However, naive SVD embedding methods exhibit a popularity bias

that skews their ability to accurately embed less popular items [21].

In this paper, we propose a novel projected linear recommenda-

tion algorithm called Noise Contrastive Estimation PLRec (NCE-

PLRec). Instead of explicitly treating unobserved interactions as neg-

ative feedback, we leverage insights from the NCE framework [5]

that attempt to discriminate between observed interactions and a

noise model; NCE has been previously used extensively in high-

quality word embeddings for natural language [15, 18]. Specifically,

we first transform the implicit matrix into a de-popularized matrix

that optimally re-weights the interactions in closed-form according

to the NCE objective. Then we extract item embeddings by pro-

jecting items onto the principal components of this de-popularized

matrix obtained via SVD. We can then leverage the standard PLRec
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frameworkwith these NCE item embeddings in the novel and highly

scalable NCE-PLRec method for OC-CF problems.

An analysis of recommendation popularity distribution demon-

strates that NCE-PLRec uniformly distributes its recommendations

over the popularity spectrum while other methods exhibit distinct

biases towards specific popularity subranges. Overall, our results

show that NCE-PLRec is an order of magnitude faster and highly

competitive with existing state-of-the-art OC-CF methods.

2 NOTATION AND BACKGROUND
Before proceeding, we define notation used throughout this paper:

• R:m × n is an implicit feedback matrix. Entries ri j are either
1 (observed interaction) or 0 (no interaction). ri represents
all implicit feedback from user i ∈ {1 · · ·m}, and r:, j repre-
sents all user feedback for item j ∈ {1 · · ·n}. We use |r:, j | to
represent the count of observed interactions for item j.
• U , V : Latent representations (or embeddings) of users and

items respectively. U is m × k , V is n × k . We use ui to
represent the ith user representation (row of U ), and vj to
represent the jth item representation (row of V ).

• D = UVT
: An inner product of user and item embeddings

that has the same shape as the implicit feedback matrix R.
• Q = RV :m × k is a projected feedback matrix, obtained by

projecting R onto item embeddings V .

2.1 Matrix Factorization
Matrix factorization (MF) aims to uncover latent features of users

and items that explain observations in the feedback matrix. Implicit

feedback is reconstructed through a function д that operates on the

corresponding user and item latent representations ui and vj :

argmin

U ,V

∑
i, j
(ri j − д(ui , vj ))2 + λ(∥ui ∥22 +



vj

2
2
),

whereд is typically a dot product uTi vj , or a neural network [8]. This
objective doesn’t perform well in the OC-CF setting as unobserved

interactions skew the representations. Weighted Regularized MF

(WRMF) [10] addresses this by adding a weight on the observed in-

teractions. In WRMF an additional hyper parameter α is introduced

to derive a weight for each user-item pair ci j = 1+αri j which is in-

corporated into the squared error objective

∑
i, j ci j (ri j −д(ui , vj ))2.

Although WRMF performs well in the OC-CF setting, it requires

expensive iterative optimization using Alternating Least Squares

(ALS) to minimize an upper bound on the reconstruction error. ALS

can be replaced with Stochastic Gradient Descent (SGD), however,

this further requires sampling “negative" items (i.e., sparsity cannot

be exploited like in ALS) and typically slows down convergence.

2.2 Linear Recommenders
An alternative approach to low rank factorization is to learn the

similarity matrix directly via linear regression [25]. Sparse LInear

Method (SLIM) [19] achieves this by minimizing the constrained

linear regression objective:

argmin

W

∑
i, j
(ri, j − riwj )2 + β



wj


2
2
+ λ



wj



1
,

W ≥ 0, diaд(W ) = 0

whereW is the similarity matrix to be learned. The constraints and

regularizers prevent the trivial solution whereW is the identity

matrix I . SLIM and its variants such as LRec [25] also suffer from

scalability issues as they require storing a large similarity matrix

that grows quadratically with the number of users or items, which

is not fully mitigated even with SLIM’s L1-regularized sparsification
approach. This is impractical for real-world problems with millions

of users and items. Moreover, learning a large number of parameters

relative to sparse observations is ill-formed since it leads to more

unknowns than available equations.

Linear Flow [24], which we refer to as Projected Linear Rec-

ommendation (PLRec) for technical clarity to relate it to LRec, ad-

dresses these issues by first reducing the dimensionality of the

implicit matrix followed by Linear Regression:

argmin

W

∑
i, j
(ri, j − riVwT

j )
2 + λ



wj


2
2
, (1)

where V is an item embedding matrix obtained from the truncated

SVD decomposition of the implicit matrix R (R = U ΣVT
), often

computed scalably on large matrices via fast randomized SVD ap-

proaches [6]. Since the item embedding dimension k ≪min{m,n},
training PLRec requires substantially fewer parameters to learn

compared to SLIM or LRec. Moreover, this formulation is fully par-

allelizeable across users and reduces the optimization to a convex

objective that is globally optimized in closed-form [14]. This makes

PLRec one of the most efficient and scalable recommender models.

However, PLRec also has several deficiencies that affect its per-

formance. First, directly decomposing the raw implicit feedback

matrix with an SVD makes the model highly biased to the large

number of unobserved ratings. This can result in poor item em-

beddings, especially for less popular items [21]. Second, since the

SVD is the optimal decomposition under a squared error objective,

the optimalW learned from PLRec would be close to V (and hence

little gain over the original SVD) if regularization were ignored.

To understand this issue, we substitute ri ≈ uiΣVT
(approximate

since this is a truncated SVD reconstruction) in the PLRec objective

function and obtain the following:

argmin

W

∑
i, j
(ri, j − riVwj )2 + λ



wj


2
2

≈ argmin

W

∑
i, j
(ri, j − uiΣVTVwj )2 + λ



wj


2
2

= argmin

W

∑
i, j
(ri, j − uiΣwj )2 + λ



wj


2
2

since VTV = I .

With λ = 0, the optimal wj is the vj given by SVD since the first

term is the SVD objective. Empirically, we find that PLRec often

performs similar to the PureSVD [4] algorithm for this reason and

thus suffers from the popularity bias of SVD embeddings.

3 NCE-PLREC
PLRec stands out as one of the most scalable OC-CF methods (as our

runtime results later verify). However, the SVD item embeddings

used by PLRec suffer from popularity bias that can significantly

affect performance [21]. In this work we leverage ideas from Noise-

Contrastive Estimation (NCE) to derive improved item embeddings



for PLRec. We begin by revisiting recommendation from a proba-

bilistic perspective. Specifically, we fit a model parameterized by the

user and item embeddings to maximize the probability of observed

feedback. Instead of explicitly treating unobserved interactions

as negative feedback, our NCE approach learns to discriminate

between observed interactions and unobserved noise.

3.1 Noise Contrastive Estimation in
Recommendation

Noise-Contrastive Estimation (NCE) [5] learns to discriminate be-

tween the observed data and some artificially generated noise.

Given a set of observations X = {x1 · · · xn } and artificially gen-

erated noise Y = {y1 · · · yn }, NCE aims to separate observations

from noise: ∑
j
log(д(xj ;θ )) + log(1 − д(yj ;θ )), (2)

where д(·) is a (possibly unnormalized) probability density function,

and θ are model parameters to estimate. NCE is normally used to

estimate the observation probability where the partition function

is hard to estimate due to either computational cost or lack of

observed negative samples. In implicit feedback recommendation

tasks, we only explicitly observe positive observations for each user,

whichmakes NCE an ideal tool to estimate user preferences without

explicitly assuming unobserved interactions are negative samples

as done in most OC-CF methods. The simple idea driving NCE

is that it adversarially trains to maximize prediction probability

of the observed user preferences while minimizing the prediction

probability of negative samples drawn from a (usually) popularity-

biased noise distribution.

To apply NCE to OC-CF we first note that in the probabilistic

formulation the objective of recommendation is to train a model

that maximizes the probability of observed interactions p(ri, j =
1|i, j). Motivated by the log-odds ratio derived from a Bernoulli

Distribution [2], we define this positive interaction probability as

the following logistic sigmoid function:

p(ri, j = 1|i, j) = σ (uTi vj ) =
1

1 + e−u
T
i vj
. (3)

Since the negative feedback is not observed in OC-CF, we could

artificially generate negative samples by sampling from some item

distribution q. A natural choice for q is the popularity distribution

q(j) = |r:, j |/
∑n
k |r:,k |. Popular items are more likely to be encoun-

tered by the user so the absence of an interaction with these items

is more likely to be indicative of negative feedback. This leads to

the following NCE objective for each user i , where the goal is to
maximize the probability of observed interactions and minimize it

for sampled “noise” items:

argmax

ui ,V

∑
j
ri, j

[
logσ (uTi vj ) + logσ (−u

T
i vj′)

]
,

(4)

where we sample a noise item j ′ according toq(j ′) for each observed
user interaction j . Here we remark that (a) the ri, j indicators restrict
us to only contrast observed positive interactions with the noise

distribution and that (b) observing the logistic sigmoid identity

1−σ (uTi vj′) = σ (−uTi vj′) allows us to the see the equivalence with
the general form of NCE in (2).

If we take the expectation of the above objective w.r.t. distribu-

tion q(j ′), we see that we can rewrite the objective in the following

expected form by exploiting linearity of expectation:

argmax

ui ,V

∑
j
ri, j

[
logσ (uTi vj )+Eq(j′)[logσ (−u

T
i vj′)]

]
.

(5)

In the multi-user collaborative filtering setting, the full objective

function ℓ corresponds to a summation over each independent user,

where the item embeddings are shared by all users:

argmax

U ,V

∑
i

∑
j
ri, j

[
logσ (uTi vj )+Eq(j′)[logσ (−u

T
i vj′)]

]
︸                                                         ︷︷                                                         ︸

ℓ

.

(6)

Globally optimizing (6) with respect to both user and item rep-

resentations in closed-form is intractable due to the shared item

embeddings and the nonlinear relationship between user and item

embeddings. Therefore, we optimize (6) with respect to the dot

product di, j = uTi vj directly to simplify the objective into a convex

optimization problem. Such a procedure is often referred to as lift-
ing in the optimization literature; once we solve for di, j , we will
then be able to recover a suitable ui and vj . Solving for the optimal

di, j for positive observations (ri, j = 1), we obtain the following:

∂ℓ

∂di, j
= σ (−di, j ) −

|r:, j |∑
j′ |r:, j′ |

σ (di, j ) (7)

d∗i, j = log

∑
j′ |r:, j′ |
|r:, j |

∀ri, j = 1. (8)

For the unobserved interactions, the optimal solution is simply

zero:

d∗i, j = 0 ∀ri, j = 0. (9)

The resulting sparse matrix D maintains the same number of

non-zero entries and shape from the original implicit matrix. The

difference is that the entries are now replaced with the optimal

inner product of user and item representations, D∗ = U ∗V ∗T .
Finally, we recover all ui and vj embeddings by projecting the

sparse D∗ using truncated SVD [6] as it exploits sparsity in the

matrix. Then

U ∗ ≈ UDΣ
1

2

D V ∗ ≈ VDΣ
1

2

D , (10)

whereUD ,VD and ΣD come from the truncated SVDD∗ ≈ UDΣDVT
D .

This concludes our NCE-based derivation of user and item em-

beddings, where we see that in contrast to the standard SVDmethod

of embeddings, NCE provides a slight variation we call NCE-SVD.

That is, instead of taking the SVD of the implicit feedback matrix R
directly, the NCE embedding instead takes the SVD of the D matrix

as defined in (8) and (9), which is a logarithmic and popularity

renormalized version of R. In short, a visual inspection of D indi-

cates that prior to performing the SVD, NCE suggests that items j
with more positive observations – i.e., a larger denominator in (8) –

should be downweighted prior to deriving the SVD-based user and

item embeddings. In this sense, we can view the NCE-SVD embed-

ding as a “depopularized” approach that places more emphasis on

accurate SVD reconstruction of less popular items.



3.2 Relation to the Neural Word Embeddings
Noise Contrastive Estimation was first brought to the attention

of the Machine Learning community from the literature on word

embeddings [7, 15, 17, 18]. However, to the best of our knowledge,

it has not been widely applied in the recommendation setting even

though the implicit negative problem of word embeddings is pre-

cisely the same as the implicit negative problem in OC-CF.

Conceptually, our proposed objective is similar to word embed-

dings such as Word2Vec [18] (that can be intepreted as a special

case of NCE), where we analogize users as word contexts and items

as words. One key difference from word embeddings is that we as-

sume the users (contexts) are unique and that the user interactions

(words) are independent with a uniform discrete distribution.

3.3 An NCE Item Embedding Hyperparameter
The optimal solution of NCE as shown in Equation (8) penalizes

the influence of popular items on the user and item representation.

In other words, it is inversely proportional to the popularity of an

observed item. However, this relies heavily on a good estimate of

the popularity of observed itemsp(j ′). Since the data is sparse, there
is high uncertainty on the popularity estimate and this uncertainty

propagates to Equation (8).

To alleviate this, we introduce a hyperparameter β into the de-

nominator, which adjusts the penalty on high frequency items. We

rewrite Equation (8) to include β as follows:

di, j = max(log
∑
j′
|r:, j′ | − β log |r:, j |, 0) ∀ri, j = 1, (11)

where we add a di, j ≥ 0 constraint to guarantee the positive feed-

back is more significant compared to the unobserved feedback in

Equation (9). Empirically, this hyperparameter aids generalization

on the test set as shown in Figure 4.

3.4 NCE Projected Linear Recommendation
Using optimal userU ∗ and itemV ∗ embeddings from Equation (10),

we can predict unobserved interactions with a simple dot product

U ∗V ∗T . Hence, the simple method of NCE-SVD can be used as a

recommendation algorithm by itself.

As noted previously, NCE-SVD effectively de-popularizes the

dataset by rescaling entries in R inversely proportional to their

popularity. However, popularity bias can still be important in terms

of ranking performance depending on the dataset [3]. Therefore,

following the approach of PLRec, we further perform the Linear

Regression of (1) on top of NCE-SVD for the model to learn the

importance of different latent features for each user. It also has the

side benefit of correcting for approximation error in fast randomized

truncated methods used for large-scale SVD [6]. We call this final

solution, NCE-PLRec, as it performs NCE followed by PLRec [25].

We note that the static latent representation of NCE-SVD is

unable to capture non-uniform weighting of users and items, such

as done for drifting user preferences [12] or to improve OC-CF

matrix factorization [10]. For example, in the latter case of [10], the

authors propose to use a user-item weighting matrix C of the same

dimensions R with elements ci, j defined as follows:

ci, j = 1 + αri, j , (12)

where hyperparameter α ≥ −1 modulates the loss weighting dif-

ferential of positive and negative examples (with α = 0 leading to

all preferences being weighted equally). We will support this form

of C in the following user-item loss weighted extension of basic

NCE-PLRec.

To leverage the user-item weights ofC in NCE-PLRec, we project

the original implicit matrix R onto the learned item representation

V ∗. This projection produces the user representation, Q = RV ∗,
which is the sum over all item representations of the user’s interac-

tion history. Then, we maximize a user-item reweighted version of

the PLRec objective as follows:

argmin

W

∑
i, j

ci, j (ri, j − qiwj )2 + λ


wj



2
2
,

(13)

where qi is the user representation, ci, j is described previously, and
W is the linear regression coefficient matrix to estimate. This leads

to the most general form of NCE-PLRec that we will define in this

paper; if specific user-item weights are not needed, one can simply

set α = 0.

3.5 NCE-PLRec for Cold-Start Test Users
Referring to Equation (13), the trained weights wj for each item j
are shared and trained over all training users. Given a cold-start

test user i ′, whose ratings ri′ were not observed during training, we
can recommend the top-K items from the projection of ri′ onto the

item features and weights learned by NCE-PLRec on the training

users. Specifically, a vector of NCE-PLRec predictions for cold-start

test user i ′ is given by ri′V ∗WT = qi′WT
.

3.6 Algorithm
We summarize the general user-item weighted Noise-Contrastive

Estimation Projected Linear Recommender (NCE-PLRec) required

to optimize Equation (13) in Algorithm 1.

Algorithm 1 NCE-PLRec

1: procedure Train(R, α = 0, β = 1)

2: D∗ ← NCE(R, β) ▷ Construct D matrix

3: UD ,ΣD ,V
T
D ← Truncated SVD(D∗)

4: Q ← RVDΣ
1

2

D ▷ Project implicit matrix

5: for i ∈ ranдe(1,m) do ▷ Loop over users

6: C j ← diag(1 + αr:, j )
7: wj ← (QTC jQ + λI )−1QTC j r:, j
8: return QWT ▷ Prediction

With user-item loss weighting given by C , the optimization

shown in Algorithm 1 appears to be closed-form only with respect

to each user. However, when α = 0, we note that the NCE-PLRec

algorithm has a globally closed-form solution for this special case,

i.e.,W = (QTQ + λI )−1QT R.
Since user-item loss weighting for implicit feedback recommen-

dation has already been well-studied in the literature [8–11], we do

not explore tuning α in our experiments, but simply define NCE-

PLRec as in Algorithm 1 for full generality in cases where varying

α is desired. Hence, we will set α = 0 in all experiments.



Table 1: Summary of datasets used in evaluation.

Dataset m n |ri, j > ϑ | Sparsity

MovieLens-20m 138,493 27,278 12,195,566 3.47 × 10−3
Netflix Prize 2,649,430 17,771 56,919,190 1.2 × 10−3
YahooR1 Data 1,948,882 46110 48,817,561 5.43 × 10−4

4 EXPERIMENTS AND EVALUATION
In this section, we evaluate the proposed NCE-PLRec model by com-

paring to a variety of state-of-the-art OC-CF algorithms on three

real-world datasets with at least 10 million interactions. We com-

pare across a variety of performance metrics and settings including

an evaluation of top-k recommendation performance, running time

performance, and the distribution of recommended item popularity.

We ran our experiments on a GPU compute cluster with the

Slurm workload manager system. Each computation node has one

4-core CPU, 32GB RAM, and one Nvidia Titan XP GPU. Implemen-

tation is done with Python 2.7 and includes Tensorflow 1.4 [1]. Code

to reproduce all results is available on Github.
1

4.1 Datasets
We evaluate the candidate algorithms on three publicly available

rating datasets: Movielens-20M, Netflix Prize, and Yahoo R1. Each

dataset contains more than 10 million interactions. Thus, we are

only able to compare with state-of-the-art models that are able to

run on these large-scale datasets. For each dataset, we binarize the

rating dataset with a rating threshold, ϑ , defined to be the upper

half of the range of the ratings. We do this so that the observed

interactions correspond to positive feedback. To be specific, the

threshold is ϑ > 3 for Movielens-20M and Netflix Prize, and ϑ > 70

for Yahoo R1. Table 1 summarizes the properties of the binarized

matrices.

We split the data into train, validation and test sets based on

timestamps given by the dataset (when available) to provide a

recommendation evaluation setting closer to production use [27].

For each user, we use the first 50% of data as the train set, 20% data

as validation set and 30% data as the test set. For the Yahoo dataset,

we split the dataset randomly as it does not contain timestamps.

4.2 Evaluation Metrics
We evaluate the recommendation performance using five met-

rics: Precision@K, Recall@K, MAP@K, R-Precision, and B-NDCG,

where R-Precision is an order insensitive metrics, NDCG is order

sensitive, and Precision@K as well as Recall@K are semi-order

sensitive due to the K values given.

4.3 Candidate Methods
We compare the proposed algorithm with nine state-of-the-art

models from classical matrix factorization to the latest Collaborative

Metric Learning approaches. These models all scale to the large

size of our datasets.

• POP: Most popular items – not user personalized but an

intuitive baseline to test the claims of this paper.

1
https://github.com/wuga214/NCE_Projected_LRec

Table 2: Hyper-parameters tuned on the experiments.

name Range Functionality Algorithms affected

r {50, 100, 200, 500} Latent Dimension

PLRec, PureSVD

WRMF, AutoRec, CML

NCE-SVD, NCE-PLRec

BPR, CDAE, VAE-CF

α
{-0.5, -0.4 · · · -0.1} ∪
{0, 0.1, 1, 10, 100}

Loss Weighting WRMF, NCE-PLRec

β {0.7, 0.8 · · · 1.3} Popularity Sensitivity NCE-PLRec

λ {1e-4, 1e-3 · · · 1e4} Regularization

PLRec, WRMF, AutoRec

CML, BPR, NCE-PLRec

CDAE, VAE-CF

ρ {0.1, 0.2 · · · 1} Corruption CDAE, VAE-CF

• PureSVD [4]: A similarity based recommendation method

that constructs a similarity matrix through SVD decomposi-

tion of implicit matrix R.
• WRMF [10]: Weighted Regularized Matrix Factorization.

• AutoRec [26]: A neural Autoencoder based recommendation

system with one hidden layer and ReLU activation function.

• CDAE [29]: Collaborative Denoising Autoencoder, which is

specifically optimized for implicit feedback recommendation

tasks.

• VAE-CF [16]: Variational Autoencoder for Collaborative Fil-

tering – a state-of-the-art deep learning based recommender

system.

• BPR [22]: Bayesian Personalized Ranking. One of the first

recommendation algorithms that explicitly optimizes pair-

wise rankings.

• CML [9]: Collaborative Metric Learning. A state-of-the-art

metric learning based recommender system.

• PLRec [24]: Also called Linear-Flow. This is the baseline pro-

jected linear recommendation approach. This is one ablation

of NCE-PLRec.

• NCE-SVD: Inner product of SVD-decomposed item and user

representation learned from NCE. This is the second ablation

of NCE-PLRec without PLRec’s learned linear models.

• NCE-PLRec: The full version of the proposed model.

We tune the hyper-parameters for the candidate algorithms by

evaluating on the validation datasets through grid search. The

candidate parameter ranges are shown in Table 2. The best hyper-

parameter settings found for each algorithm and domain are listed

in Table 3.

4.4 Ranking Performance Evaluation
Tables 4, 5 and 6 show the general performance comparison between

the proposed model with the nine existing methods on all metrics.

From the results, we notice the following observations:

(a) In one of the three domains, the proposed NCE-PLRec model

outperforms all candidate methods on all metrics in the ex-

periments. In the other two domains, the NCE-PLRec model

also shows to be strongly competitive with the state-of-the-

art VAE-CF deep learning model.

(b) NCE-PLRec as a projected linear model shows a substan-

tial performance improvement compared to PLRec, which

indicates the benefit of NCE optimized embeddings.

https://github.com/wuga214/NCE_Projected_LRec


(a) Movielens20m (b) Netflix (c) Yahoo

Figure 1: Precision-recall curve based on number of items being recommended. Larger area underneath the curve is better. For
all three domains, PLRec overlaps with PureSVD. NCE-PLRec performs strongly across the entire precision-recall spectrum.

Table 3: Best hyper-parameter setting for each algorithm.

Domain Algorithm r α λ Iteration* ρ β

PLRec 50 1 10000 10 0 1

BPR 50 1 0.00001 30 0 1

NCE-SVD 50 1 1 10 0 1

NCE-PLRec 50 1 1 10 0 1

Movielens20m CML 100 1 0.01 30 0 1

PureSVD 50 1 1 10 0 1

CDAE 50 1 0.00001 300 0.2 1

WRMF 200 1 100 10 0 1

VAE-CF 200 1 0.001 300 0.5 1

AutoRec 50 1 0.00001 300 0 1

PLRec 50 1 1 10 0 1

BPR 50 1 0.00001 30 0 1

NCE-SVD 50 1 1 10 0 1

NCE-PLRec 100 1 1 10 0 1.1

Netflix CML 50 1 0.00001 30 0 1

PureSVD 50 1 1 10 0 1

CDAE 50 1 0.00001 300 0.2 1

WRMF 200 10 1000 10 0 1

VAE-CF 100 1 0.0001 300 0.5 1

AutoRec 50 1 0.00001 300 0 1

PLRec 50 1 10000 10 0 1

BPR 50 1 0.00001 30 0 1

NCE-SVD 50 1 1 10 0 1

NCE-PLRec 50 1 1000 10 0 1.2

Yahoo CML 100 1 0.0001 30 0 1

PureSVD 50 1 1 10 0 1

CDAE 50 1 0.1 300 0.2 1

WRMF 100 100 1000 10 0 1

VAE-CF 200 1 0.001 300 0.5 1

AutoRec 50 1 0.00001 300 0 1

* For PureSVD, PLRec, NCE-SVD, and NCE-PLRec, iterations in this table means

number of randomized SVD iterations. For WRMF, iteration shows number of

alternative close-form optimizations. For AutoRec, BPR, CDAE, and VAE-CF,

iteration shows number of epochs that processed over all users.

(c) NCE-SVD alone is not sufficient to provide good perfor-

mance, indicating the importance of using the PLRec correc-

tion to the NCE-SVD embeddings.

(d) WRMF is another strong competitor in terms of general per-

formance. We notice that WRMF outperforms NCE-PLRec

when a large number of items are retrieved. This reflects its

wide usage as the first stage algorithm in multi-stage recom-

mendation tasks [28], where the first stage retrieves a high

recall candidate list to be refined by other models precise at

lower ranks in a second stage.

(e) CDAE is inconsistent as it performs well on Movielens-20m

and Netflix, but performs poorly on Yahoo R1.

(f) PLRec and PureSVD show similar performances across all

three datasets. This observation supports our theoretical

claim that PLRec should learn a near-optimal weightW ≈ V
that is close to the SVD decomposition given by PureSVD.

Figure 1 provides further detail of the performance through the

precision-recall curve with K ∈ [5, 10, 15, 20, 50]. It shows that
NCE-PLRec has consistently good performance over the number of

items being retrieved. Especially, in the Netflix dataset, NCE-PLRec

shows significantly better performance than the other candidates.

We also observe that the performance of AutoRec and CDAE drops

considerably when the data becomes sparse with large user-item

dimensions. We will discuss reasons for this in Section 4.6, which

explores the popularity distribution of recommendations.

4.5 Performance vs. User Interaction Level
Wenow investigate conditions where the proposed algorithmworks

better compared to the strongest baselines. We categorize users

based on the number of interactions they made in the training

set into 4 categories. The categories come from the 25%, 50%, 75%,

and 100% quantiles of the number of training interactions, which

indicate how often the user rated items in the training set.

Figure 2 shows comparative results in regard to the four quan-

tiles for MovieLens-20M. In general, NCE-PLRec shows strong

performance across all quantiles of user interaction volume. While

VAE-CF shows better performance over the user categories with a

lower number of ratings, its performance drops considerably with a



Table 4: Results of Movielens-20M dataset with 95% confidence interval. Hyper-parameters are chosen from the validation set.

model R-Precision NDCG MAP@5 MAP@50 Precision@5 Precision@50 Recall@5 Recall@50

POP 0.068±0.0005 0.1194±0.0007 0.1011±0.0011 0.0739±0.0005 0.0945±0.0009 0.0585±0.0004 0.0327±0.0004 0.167±0.0011
AutoRec 0.0931±0.0006 0.1693±0.0009 0.1388±0.0012 0.1018±0.0006 0.1294±0.001 0.0821±0.0005 0.0455±0.0005 0.2442±0.0013
BPR 0.0846±0.0006 0.154±0.0008 0.1207±0.0011 0.0927±0.0006 0.1149±0.001 0.0763±0.0004 0.0397±0.0005 0.2267±0.0012
CDAE 0.084±0.0006 0.1536±0.0008 0.1259±0.0012 0.0932±0.0006 0.1173±0.001 0.0756±0.0005 0.0399±0.0005 0.2219±0.0012
CML 0.0906±0.0006 0.177±0.0008 0.1246±0.0011 0.1024±0.0006 0.1203±0.001 0.0869±0.0005 0.04±0.0005 0.2766±0.0013
PLRec 0.0955±0.0006 0.1785±0.0008 0.1376±0.0012 0.1042±0.0006 0.1288±0.001 0.0851±0.0004 0.0452±0.0005 0.2652±0.0012
PureSVD 0.0954±0.0006 0.1783±0.0008 0.1375±0.0012 0.1041±0.0006 0.1287±0.001 0.085±0.0004 0.0451±0.0005 0.2647±0.0012
VAE-CF 0.1008±0.0006 0.1973±0.0009 0.1371±0.0012 0.1075±0.0006 0.1302±0.001 0.0899±0.0004 0.0503±0.0006 0.3067±0.0014
WRMF 0.1±0.0006 0.1962±0.0008 0.1433±0.0012 0.1106±0.0006 0.1342±0.001 0.0918±0.0004 0.0485±0.0005 0.3021±0.0014
NCE-PLRec 0.102±0.0006 0.1957±0.0009 0.1456±0.0012 0.1113±0.0006 0.137±0.001 0.0917±0.0005 0.0498±0.0005 0.2971±0.0014
NCE-SVD 0.0809±0.0005 0.1638±0.0008 0.115±0.0011 0.0911±0.0005 0.1083±0.0009 0.0766±0.0004 0.0379±0.0005 0.2594±0.0013

Table 5: Results of Netflix dataset with 95% confidence interval. Hyper-parameters are chosen from the validation set.

model R-Precision NDCG MAP@5 MAP@50 Precision@5 Precision@50 Recall@5 Recall@50

POP 0.0486±0.0002 0.0853±0.0003 0.0747±0.0005 0.065±0.0003 0.0711±0.0004 0.0582±0.0002 0.0179±0.0002 0.1215±0.0005
AutoRec 0.0876±0.0003 0.1454±0.0004 0.14±0.0006 0.1074±0.0003 0.1324±0.0005 0.0894±0.0003 0.0361±0.0002 0.1958±0.0006
BPR 0.0757±0.0002 0.1312±0.0003 0.1197±0.0006 0.096±0.0003 0.115±0.0005 0.0816±0.0002 0.0291±0.0002 0.1859±0.0006
CDAE 0.0797±0.0003 0.1316±0.0004 0.1251±0.0006 0.0979±0.0003 0.1198±0.0005 0.0832±0.0002 0.0323±0.0002 0.1788±0.0006
CML 0.0878±0.0003 0.1511±0.0004 0.1398±0.0006 0.1091±0.0003 0.1332±0.0005 0.0906±0.0003 0.0365±0.0002 0.2117±0.0006
PLRec 0.0994±0.0003 0.1645±0.0004 0.1591±0.0007 0.118±0.0003 0.149±0.0006 0.0953±0.0003 0.0445±0.0003 0.2189±0.0006
PureSVD 0.0994±0.0003 0.1644±0.0004 0.159±0.0007 0.118±0.0003 0.149±0.0005 0.0953±0.0003 0.0445±0.0003 0.2188±0.0006
VAE-CF 0.1017±0.0003 0.1705±0.0004 0.1559±0.0007 0.1176±0.0003 0.1465±0.0005 0.0957±0.0003 0.0467±0.0003 0.2309±0.0006
WRMF 0.0985±0.0003 0.1681±0.0004 0.1531±0.0007 0.117±0.0003 0.1447±0.0006 0.096±0.0003 0.045±0.0003 0.2325±0.0007
NCE-PLRec 0.1049±0.0003 0.1764±0.0004 0.1654±0.0007 0.1247±0.0003 0.1552±0.0006 0.1015±0.0003 0.0477±0.0003 0.2392±0.0007
NCE-SVD 0.0917±0.0003 0.158±0.0004 0.1559±0.0007 0.1129±0.0003 0.1446±0.0006 0.0897±0.0002 0.0422±0.0003 0.216±0.0006

Table 6: Results of Yahoo dataset with 95% confidence interval. Hyper-parameters are chosen from the validation set.

model R-Precision NDCG MAP@5 MAP@50 Precision@5 Precision@50 Recall@5 Recall@50

POP 0.0795±0.0004 0.1843±0.0005 0.1022±0.0006 0.0672±0.0003 0.0897±0.0005 0.051±0.0002 0.0652±0.0005 0.3322±0.0009
AutoRec 0.1338±0.0005 0.2711±0.0007 0.1845±0.0008 0.1093±0.0004 0.1625±0.0007 0.0723±0.0003 0.1065±0.0006 0.437±0.001
BPR 0.1377±0.0005 0.288±0.0006 0.1822±0.0008 0.1129±0.0004 0.1637±0.0007 0.0784±0.0003 0.1146±0.0006 0.4883±0.001
CDAE 0.0795±0.0004 0.1843±0.0005 0.1022±0.0006 0.0672±0.0003 0.0897±0.0005 0.051±0.0002 0.0652±0.0005 0.3323±0.0009
CML 0.2101±0.0007 0.4046±0.0007 0.2754±0.001 0.162±0.0005 0.2484±0.0008 0.1034±0.0003 0.1795±0.0007 0.6401±0.0009
PLRec 0.2051±0.0007 0.3673±0.0008 0.2838±0.001 0.1496±0.0005 0.2456±0.0008 0.0893±0.0003 0.1779±0.0007 0.5363±0.001
PureSVD 0.205±0.0007 0.367±0.0008 0.2836±0.001 0.1495±0.0005 0.2455±0.0008 0.0893±0.0003 0.1778±0.0007 0.5358±0.001
VAE-CF 0.2701±0.0008 0.4698±0.0008 0.3423±0.001 0.1849±0.0005 0.3005±0.0009 0.1102±0.0003 0.238±0.0008 0.6824±0.0009
WRMF 0.2612±0.0008 0.4633±0.0008 0.3244±0.001 0.1795±0.0005 0.2866±0.0008 0.1094±0.0003 0.2321±0.0008 0.6881±0.0009
NCE-PLRec 0.2562±0.0008 0.4595±0.0008 0.344±0.0011 0.1841±0.0005 0.2989±0.0009 0.1098±0.0004 0.2249±0.0008 0.6757±0.0009
NCE-SVD 0.2332±0.0007 0.412±0.0008 0.313±0.001 0.1624±0.0005 0.2713±0.0008 0.0934±0.0003 0.2129±0.0008 0.5959±0.001

higher number of ratings. With more than 71 ratings, VAE-CF per-

forms even worse than the simpler AutoRec model. We conjecture

that VAE blindly increases the certainty of prediction given more

observed user interactions. While it seems reasonable in the case

that the user rates items with coherent properties, this assumption

does not hold if there are the thousands of items being rated by

the user. WRMF as another strong competitor also shows robust

performance where we observe very similar performance for all

four rating quantiles comparing to the NCE-PLRec. CML is com-

petitive when the number of observed ratings is higher than 71.

This is reasonable because CML learns better distance metrics with

more observations.

4.6 Popularity Distribution
We analyze the sensitivity of the candidate methods’ recommenda-

tions on popular items as shown in Figure 3. In general, most of the

candidate learning methods show strong personalization (recom-

mendations of less popular items) except AutoRec and CDAE, which

tend to recommend popular items. While recommending popular

items in a relatively dense and small dataset achieves acceptable

performance, the performance drops quickly with increasing data

sparsity and dimensionality as shown in Figure 1. BPR does not

show strong personalization in this Figure due to the insufficient

pairwise sampling given limited training epochs. While we are able

to tune the sampling size for a small dataset such as Movielens



(a) NDCG (b) R-Precision

Figure 2: Performance comparison for different quantiles of user activity (number of ratings) for MovieLens-20M. Error bars
show standard derivation. All figures share the legend.

Figure 3: Popularity distribution of items recommended by
the candidate algorithms for all the users. Higher value in
x-axis indicates less personalization. Algorithms are sorted
by themedian of their popularity distributions respectively.

1m, it is hard to estimate the pairwise sampling size that main-

tains a good performance on very large datasets considering the

stochasticity of performance contributed by the noise. On the other

hand, NCE-SVD learns to only recommend unpopular items since

the NCE embedding is de-popularized. Impressively, NCE-PLRec

spreads its recommendations over the popularity spectrum com-

pared to other algorithms and this proves to be beneficial in terms

of its overall ranking performance previously observed in Tables 4,

5 and 6.

Figure 4: The effect of tuning the hyper-parameter β on the
three datasets.

4.7 Hyper-parameter Tuning
Figure 4 shows the effects of tuning hyper-parameter β for NCE-

PLRec defined in Equation (11) on NDCG in all datasets (perfor-

mance on other metrics was similar). A higher value indicates

higher popularity. While only moderate in the Movielens-20M and

Netflix datasets, we observe a remarkable performance improve-

ment by adjusting the weighting of the noise contrastive term in

the Yahoo dataset. This observation corresponds to our conjecture

that this adjustment of the level of depopularization is critical for

working with extremely sparse recommendation data as found in

this dataset.

4.8 Training Time and Scalability
Figure 5 shows the total time taken for training the candidate meth-

ods on the Netflix dataset. We compare only the training time since

the prediction and evaluation step require similar operations for all

algorithms and take approximately the same time. The result shows

the significant efficiency improvements from the linear models

compared to neural network and alternating least squares training.



Figure 5: Training times in seconds of the various meth-
ods on Netflix. AutoRec, CDAE, and VAE-CF are neural net-
works that optimized through gradient descent. BPR and
CML requires pairwise sampling to learn the ranking. Al-
ternating optimization of WRMF requires the inversion of
large matrices twice per iteration.

Figure 6: Cold-start comparison histogram for Recall@50
of NCE-PLRec minus Recall@50 for PLRec. Positive values
showNCE-PLRec has higher Recall whereas negative shows
PLRec has higher Recall. The significant skew of area to the
right side of the dotted 0.0 red line indicates that more cold-
start users benefitted from NCE-PLRec.

All PLRec methods including NCE-PLRec easily scale to these very

large datasets.

4.9 Cold-Start Test Users Case Study
Among the recommendation methods, PureSVD, PLRec and NCE-

PLRec are able to handle cold-start recommendations without lever-

aging additional side information. Since PLRec and PureSVD be-

have similarly, we only compare NCE-PLRec to PLRec for our user

cold-start case study.

Figure 6 shows a more comprehensive pairwise comparison be-

tween NCE-PLRec and PLRec for the cold-start test users evaluation.

In this experiment, we randomly remove 5% of the users from the

training dataset and use the remaining users for training. Then, we

use the trained model to recommend items to the 5% of held-out

cold-start test users and evaluate performance. Clearly, most of the

users received better cold-start recommendations from NCE-PLRec

compared to PLRec in terms of Recall@50.

5 CONCLUSION
We proposed a novel and highly efficient linear recommendation

algorithm called Noise Contrastive Estimation Projected Linear

Recommendation (NCE-PLRec) that leverages item embeddings

learned from NCE to make predictions using the highly scalable

PLRec approach. NCE-PLRec addresses the strong popularity bias

of existing SVD-based embedding approaches for recommendation

that are exacerbated by the extreme sparsity of implicit feedbackma-

trices in the OC-CF setting. On three large OC-CF recommendation

datasets, we showed that NCE-PLRec outperforms several robust

and scalable recommendation methods (or performs comparably to

the best performing algorithms) in almost all metrics. Furthermore,

NCE-PLRec is highly efficient during training, personalized with

little popularity bias, and is able to effectively handle cold-start user

recommendation without leveraging side information.
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