ConEx: A System for Monitoring Queries

Chaitanya Mishra
University of Toronto

cmishra@cs.toronto.edu

ABSTRACT

We present a system, ConEx, for monitoring query execution in
a relational database management system. ConEx offers a unified
view of query execution, providing continuous visual feedback on
the progress of the query, and the status of operators in the query
evaluation plan. It incorporates novel techniques to dynamically
estimate important parameters affecting query progress efficiently.
We describe the design and features of ConEx, and discuss its tech-
nology.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Graphical user interfaces (GUI)

General Terms

Design, Management

Keywords

Query monitoring, Progress estimation, Database adminstration

1. INTRODUCTION

Database systems are often utilized to execute complex queries
that may run for long periods of time. However, they provide only
limited feedback on the progress of query execution towards com-
pletion. Such information can be of great utility to users and sys-
tem administrators. For example, one may choose to terminate the
query or change the query parameters if one is informed that the
query is long running. Similarly, a system administrator can use
this information to identify poor plans, inadequate tuning and re-
source bottlenecks.

There has recently been increasing interest in the development
of progress indicators for SQL queries [4, 3, 2, 1, 5]. A progress
indicator provides feedback about the fraction of work done by a
query. At a high level, these indicators define a model of work,
under which they measure the amount of work completed by the
query, and estimate the amount of work that remains to be done.
The ratio of the work done to the estimated total work is a measure
of the progress made towards completion.

Typically, the visual interface advocated for this task is a progress
bar based interface. Such an interface provides information about
the percentage of work completed and estimated work remaining.
Although such a simple interface works well for tasks like file

Copyright is held by the author/owner(s).
SIGMOD’07,dne 12-14, 2007, Beijing, China.
ACM 978-1-59593-686-8/07/0006.

1076

Maksims Volkovs
University of Toronto

m.volkovs @ utoronto.ca

downloads, we argue that it is too simplistic to provide informa-
tive feedback about the progress of execution of a query. This is
because queries are often executed in pipelined stages separated by
blocking points. A progress bar is a sufficient interface if the entire
process is pipelined (such as network file download). However, if
the process is broken into stages, it becomes difficult to predict the
amount of work to be done by future stages. In such a setting, a
simple progress bar interface provides limited, and potentially in-
correct feedback.

However, most database systems already provide a visual utility
(EXPLAIN) which provides detailed information before query exe-
cution. The EXPLAIN interface displays the structure of the query
execution plan, and provides cardinality estimates of the intermedi-
ate operators in the plan. While this is useful, the initial cardinality
estimates often have errors due to incomplete statistics or wrong
assumptions. Therefore, we often end up with an incorrect picture
of how the query execution will proceed.

The ConEx (Continuous Explain) system merges progress indi-
cator technology with an EXPLAIN interface in order to provide
a continuous view of query execution. Along with displaying in-
formation regarding work completed and an estimate of the work
remaining like any progress bar, it also updates an EXPLAIN tree
with improved cardinality estimates and information about the cur-
rently executing segments of the query plan. Therefore, ConEx
offers dynamic EXPLAIN functionality, which we argue is more
informative to users and administrators. The ConEx system in-
corporates a lightweight online statistics collection and estimation
framework [5] which has been developed specifically for aiding
progress indicators.

2. DESIGN

2.1 Requirements

A query monitoring system like ConEx must satisfy some re-
quirements and operate under certain constraints. It should provide
continuous online feedback on the current state of query execution.
It should also provide predictions on the future behaviour of the
query. At the same time, the technology should be minimally in-
trusive to query execution. A monitoring framework like ConEx
maintains a lot of information about the currently executing plan.
Such maintenance incurs runtime overhead and it is imperative to
keep such overheads minimal as they could affect query perfor-
mance. The technology behind ConEx has been designed with the
principle of minimal impact to query performance in mind.

Finally, ConEx aims to provide access to information regarding
a query at different levels of detail. A non-technical user might be
satisfied with just a progress-bar based interface which provides in-
formation about how much work has been performed by the query

and estimates of work remaining. On the other hand, a system ad-
ministrator might wish to discover more details regarding the query
such as incorrect cardinality estimates (which point to insufficient
statistics) and data distributions. We therefore implemented an in-
terface which provides higher level information, and also supports
zooming in to access pipeline and operator level information about

a query.
2.2 System Architecture

ConEx consists of two main components: A frontend graphical
user interface, and a backend database engine. The two compo-
nents communicate using a simple socket interface. For the back-
end, we modified the Postgresql 8.0 database engine to support
progress estimation and communication with the ConEx frontend.
We augmented the engine with our online statistics collection and
estimation framework [5] to provide accurate observations on the
current state of the query, and estimate future behaviour of the
query. The ConEx frontend is implemented in Java. It allows a
user to submit queries and view results. We now describe the de-
sign of the visual interface in more detail.

2.3 Visual Interface

The ConEx frontend provides online feedback about the current
state of the query. It consists of different components, each of
which displays information at a different level of granularity

2.3.1 Progress Indicator

The frontend incorporates a progress bar which displays the per-
centage of work completed, and estimated work remaining for the
query. We adopt a cardinality based notion of query progress [2].
The measure of work done by a query is the sum over all operators
of the number of tuples processed by each operator during the exe-
cution of the query. If we let N; be the total number of tuples to be
processed by operator ¢, and K; be the number of tuples processed
by the operator till this instant then:

2 Ki
Zi N;

We report this value as the progress estimate of the work per-
formed. Our online cardinality estimation techniques refine the
estimated number of tuples to be processed by an operator (NN;)
during runtime providing the user with an accurate picture of query
progress. A salient feature of our technique is that it provides high
accuracy estimates early in the execution of the pipeline. These
estimates provably converge to the correct values as more data is
processed by the pipeline [5].

2.3.2 Query Plan Viewer

The Plan Viewer component extends the traditional EXPLAIN
tree to provide the user with a graphical view of the query execu-
tion plan. Each node in the plan is annotated with the number of
tuples processed by the node, and the current cardinality estimate.
These values are continuously updated during query processing. In
addition, the plan is visually partitioned into pipelines (a set of op-
erators that execute concurrently) , with each pipeline marked with
a different colour. This provides a visual representation of query
progress in the form of completed stages which complements the
progress bar. The query plan viewer forms the main window of the
ConEx frontend.

progress =

2.3.3 Operator Viewer

The progress indicator, and query plan viewer components de-
scribed previously provide a global view of query progress. How-

1077

ever, one might want to drill down at the operator level to view
more details about query behaviour. In order to enable this func-
tionality, we support user interaction with the Query Plan Viewer.
When a user clicks on a node in the query plan tree, detailed infor-
mation about that node is displayed in the side panels of ConEx.
This information includes:

Operator Information: In the top panel of the operator viewer, we
display information on the number of tuples processed, estimated
number of tuples to be processed, and the initial optimizer estimate
for the node. In addition, we display operator specific information
as well.

Cardinality Convergence: In a different panel, we display infor-
mation about the convergence of our online cardinality estimates,
and how these estimates compare to the original optimizer cardi-
nality estimates for the node. This information, in the form of a
convergence graph, provides confidence guarantees on the quality
of the estimates produced by our framework.

Histograms: In the bottom panel, we display histograms on par-
ticular columns for blocking operators. These histograms are dis-
played on the join column for a hash operator, a grouping column
for an aggregation operator, and on sorting columns for sort opera-
tors. We display the frequencies of the most common values in the
column, and the average frequency of the remaining values.

2.4 Additional Features

ConEx supports additional features that make it particularly use-
ful for identifying poor query execution plans. These features en-
able analysis during and after query execution.

Alerts: Our online cardinality estimation techniques provide accu-
rate cardinality estimates early in the execution of a pipelined seg-
ment of the query execution plan. If these cardinality estimates dif-
fer significantly from the optimizer cardinality estimates we high-
light the plan red to flag the event that the optimizer estimates are
incorrect.

Runtime Profiling: We segment the progress bar into colour coded
segments with each segment representing a pipelined stage of query
execution. This enables us to identify how much time was spent in
each segment of query execution. Such runtime profiling can be
used to tune the system and optimize query execution time.

For example, suppose we notice that the query spends a major
fraction of its execution time in sequentially scanning a large table,
even though only a small fraction of tuples are actually used in
the query. This points to the need to construct an index on the
table to make query execution more efficient. Our runtime profiling
information can provide feedback to an index advisor utility which
suggests indices to be created on tables.

2.5 Sample Query

Figure 1 shows a screenshot of ConEx in action. The query be-
ing executed is a join between 4 relations. The query plan viewer
shows that the execution plan generated by the query optimizer is
a bushy plan tree with 3 hash joins. Query execution proceeds in
5 stages, with relations being hashed and joins being performed
before the final count is computed. Currently the query is in its
second pipelined stage. The node currently being clicked on is a
hash node. We can see that the associated join is a one pass join (0
batches) with 1092 hash buckets in use. The histogram shows that
the data is almost uniformly distributed with only a few high fre-
quency values. The join pipeline being currently executed (pipeline
2) is highlighted to signal that the optimizer estimates are off by a
significant amount. In this case, the original cardinality estimate
for the hash join is 371 tuples, while the actual number of tuples
produced is more than 100K. The progress monitor informs us that

i - Y

Query Database Prefs Help

HPipeline 1

Pipeline 2

Pipeline 2
HPFipeline 4
HPipeline 5
M Executing pipeline
M Dangerous pipeline

Growp-By: 0
Est: 1

Hash-Join: 0
Est:45

Hash: 35960
Est: 107899

Hash-Join: 35900
Est: 108096

Hash: 119320
Est:119347

Table-Scan: 1991900
Est: 3218907

Table-Scan: 119300
Est: 119507

Hash-Join: 0
Est: 300803

Nocie Information:

Mode: Hash

Tuples preduced: 35960
Pipeline number: 2

Initial estimare: 371
Current estimate: 107833

Batches O
Buckers 1092

Table-Scan: 0
Est: 849917

Cardinality Canvergence

P_;,_.‘__

112546

il se2r3

o EE303ms 1

Query To Execite
Elapsed Time: Oh 2m 495

country3="US%
Connect

Sulamit Query

Cancel Query

Wiew Result

SELECT COUNT(*) FROM owner, car, accidents, demographics WHERE car.ownerid = owner.id AND demographics.ownerid =
owner.id AND accidents.id = car.id and make = ‘Mazda' AND model = "626" AND salary > 5000 and seatbelton="N"and

Histogram:

34%

Figure 1: ConEx in Action

approximately 34% of query execution has completed. We can also
observe the relative lengths of the coloured segments of the first and
second pipelines. The first pipeline took a small time to execute
and the work done by it is represented as the small coloured region
at the left end of the progress bar. The second pipeline (which is
still executing) takes comparatively more time than the fist one, and
therefore represents more work done.

3. TECHNOLOGY

ConEx deploys an online cardinality estimation framework [5]
developed in order to aid progress estimators. This framework
monitors query execution at select points in the plan and collects
statistics from the tuples processed at various points in a plan. The
framework introduces a family of statistical estimators which uti-
lize random samples and statistical summaries (such as histograms)
to do online cardinality estimation at runtime.

4. DEMONSTRATION DESCRIPTION

Participants will be able to interact with ConEx using preloaded
databases. The graphical interface is easy to use and the progress of
various queries may be observed. The demonstration will highlight
query instances where optimizer cardinality estimates are incorrect.
We will demonstrate how ConEx obtains accurate cardinality esti-
mates at runtime and show how this information serves to diagnose

1078

incorrect plans and insufficient statistics on tables. This will serve
to show the utility of our system for long running queries. Par-
ticipants will also be provided with information on the technology
behind ConEx.

S. REFERENCES

[1] S. Chaudhuri, R. Kaushik, and R. Ramamurthy. When Can We
Trust Progress Estimators for SQL Queries. SIGMOD, 2005.
S. Chaudhuri, V. Narassaya, and R. Ramamurthy. Estimating
Progress of Execution for SQL Queries. SIGMOD, 2004.

G. Luo, J. Naughton, C. Ellman, and M. Watzke. Increasing
the Accuracy and Coverage of SQL Progress Indicators.
ICDE, 2004.

G. Luo, J. Naughton, C. Ellman, and M. Watzke. Toward a
Progress Indicator for Database Queries. SIGMOD, 2004.

C. Mishra and N. Koudas. A lightweight online framework for
query progress indicators. ICDE, 2007.

(2]
(3]

(4]
(5]

