
Markov chain Monte Carlo

Roadmap:
— Monte Carlo basics

— What is MCMC?

— Gibbs and Metropolis–Hastings

— Practical details

Iain Murray
http://iainmurray.net/



Monte Carlo and Insomnia

Enrico Fermi (1901–1954) took great

delight in astonishing his colleagues

with his remakably accurate predictions

of experimental results. . . he revealed

that his “guesses” were really derived

from the statistical sampling techniques

that he used to calculate with whenever

insomnia struck in the wee morning

hours!

—The beginning of the Monte Carlo method,

N. Metropolis



Linear Regression: Prior
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Prior P (θ)

Input → output mappings considered plausible before seeing data.



Linear Regression: Posterior
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P (θ |Data) ∝ P (Data | θ) P (θ)

Posterior much more compact than prior.



Linear Regression: Posterior
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P (θ |Data) ∝ P (Data | θ) P (θ)

Draws from posterior. Non-linear error envelope. Possible explanations linear.



Model mismatch
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What will Bayesian linear regression do?



Quiz

Given a (wrong) linear assumption, which explanations are

typical of the posterior distribution?
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A B C

D All of the above

E None of the above

Z Not sure



‘Underfitting’
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Posterior very certain despite blatant misfit. Prior ruled out truth.



Microsoft Kinect (Shotton et al., 2011)

Eyeball modelling assumptions

Generate training data

Random forest applied to fantasies



Infer/predict ⇒ sums/integrals

Inference:

p(θ |D) ∝
∑
h

p(D,h, θ)

Prediction:

P (x |D) =

∫
dθ P (x, θ |D)

=

∫
dθ P (x |θ, ����D)P (θ |D)



A statistical problem

What is the average height of the people in this room?
Method: measure our heights, add them up and divide by N .

What is the average height f of people p in Iceland I?

Ep∈I[f(p)] ≡
1

|I|
∑
p∈I

f(p), “intractable”?

≈ 1

S

S∑
s=1

f
(
p(s)
)
, for random survey of S people {p(s)} ∈ I

Surveying works for large and notionally infinite populations.



Simple Monte Carlo

Statistical sampling can be applied to any expectation:

In general:∫
f(x)P (x) dx ≈ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

Example: making predictions

P (x |D) =

∫
P (x |θ) p(θ |D) dθ

≈ 1

S

S∑
s=1

P (x |θ(s)), θ(s) ∼ p(θ |D)

More examples: E-step statistics in EM, Boltzmann machine learning



Marginalization is trivial

P (x |D) ≈ 1

S

S∑
s=1

P (x |θ(s)), θ(s) ∼ p(θ |D)

Need to ‘sum out’ hidden variables? (Answer: No.)

p(θ |D) ∝
∑
h

p(D,h, θ)

Sample hidden variables too:

(θ(s),h(s)) ∼ p(θ,h |D) ∝ p(D,h, θ)

The θ(s) are still samples from p(θ |D)



Properties of Monte Carlo

Estimator:

∫
f(x) P (x) dx ≈ f̂ ≡ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

Estimator is unbiased:

EP ({x(s)})

[
f̂
]

=
1

S

S∑
s=1

EP (x) [f(x)] = EP (x) [f(x)]

Variance shrinks ∝ 1/S:

varP ({x(s)})

[
f̂
]

=
1

S2

S∑
s=1

varP (x) [f(x)] = varP (x) [f(x)] /S

“Error bars” shrink like
√
S



Aside: don’t always sample!

“Monte Carlo is an extremely bad method;
it should be used only when all alternative
methods are worse.”

— Alan Sokal, 1996



A dumb approximation of π

P (x, y) =

{
1 0<x<1 and 0<y<1

0 otherwise

π = 4

∫∫
I
(
(x2 + y2) < 1

)
P (x, y) dx dy

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.3333

octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)

ans = 3.1418



Alternatives to Monte Carlo

There are other methods of numerical integration!

Example: (nice) 1D integrals are easy:

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp’s in 108 evaluations, machine precision in 2598.

(NB Matlab’s quadl fails at tolerance=0, but Octave works.)

In higher dimensions sometimes determinstic approximations work:

Variational Bayes, EP, INLA, . . .



Reminder

Want to sample to approximate expectations:∫
f(x)P (x) dx ≈ 1

S

S∑
s=1

f(x(s)), x(s) ∼ P (x)

How do we get the samples?



Sampling simple distributions

Use library routines for
univariate distributions
(and some other special cases)

This book (free online) explains how

some of them work

http://cg.scs.carleton.ca/~luc/rnbookindex.html



Sampling discrete values

u ∼ Uniform[0, 1]

u=0.4 ⇒ x=b

There are more efficient ways for large numbers of values and samples. See Devroye book.



Sampling from densities

How to convert samples from a Uniform[0,1] generator:

p(y)

h(y)

y0

1

Figure from PRML, Bishop (2006)

h(y) =
∫ y
−∞ p(y

′) dy′

u ∼ Uniform[0,1]

Sample, y(u) = h−1(u)

Although we can’t always compute and invert h(y)



Sampling from densities

Draw points uniformly under the curve:

P (x)

xx(2) x(3) x(1) x(4)

Probability mass to left of point ∼ Uniform[0,1]



Rejection sampling

Sampling from π(x) using tractable q(x):

Figure credit: Ryan P. Adams



Importance sampling

Rewrite integral: expectation under simple distribution Q:

∫
f(x)P (x) dx =

∫
f(x)

P (x)

Q(x)
Q(x) dx,

≈ 1

S

S∑
s=1

f(x(s))
P (x(s))

Q(x(s))
, x(s) ∼ Q(x)

Simple Monte Carlo applied to any integral.

Unbiased and independent of dimension?



Importance sampling (2)

If only know P (x) = P ∗(x)/ZP up to constant:∫
f(x)P (x) dx ≈ ZQZP

1

S

S∑
s=1

f(x(s))
P ∗(x(s))

Q∗(x(s))︸ ︷︷ ︸
w∗(s)

, x(s) ∼ Q(x)

≈
�
�
�
�
�
��1

S

S∑
s=1

f(x(s))
w∗(s)

�
�
�
�1
S

∑
s′w

∗(s′)

This estimator is consistent but biased

Exercise: Prove that ZP/ZQ ≈ 1
S

∑
sw
∗(s)



Summary so far

• Monte Carlo
approximate expectations with a sample average

• Rejection sampling
draw samples from complex distributions

• Importance sampling
apply Monte Carlo to ‘any’ sum/integral

Next: High dimensional problems: MCMC



Application to large problems

Approximations scale badly with dimensionality

Example: P (x) = N (0, I), Q(x) = N (0, σ2I)

Rejection sampling:

Requires σ ≥ 1. Fraction of proposals accepted = σ−D

Importance sampling:

Var[P (x)/Q(x)] =
(

σ2

2−1/σ2
)D/2

− 1

Infinite / undefined variance if σ ≤ 1/
√
2



Reminder

Need to sample large, non-standard distributions:

P (x |D) ≈ 1

S

S∑
s=1

P (x |θ), θ ∼ P (θ |D) = P (D|θ)P (θ)
P (D)



Importance sampling weights

w =0.00548 w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

w =1.01e-08 w =0.111 w =1.92e-09 w =0.0126 w =1.1e-51



Metropolis algorithm

• Perturb parameters: Q(θ′; θ), e.g. N (θ, σ2)

• Accept with probability min

(
1,
P̃ (θ′|D)
P̃ (θ|D)

)
• Otherwise keep old parameters
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This subfigure from PRML, Bishop (2006)Detail: Metropolis, as stated, requires Q(θ′; θ) = Q(θ; θ′)



>20,000 citations



Target distribution

P (x) =
1

Z
e−E(x)

e.g. x =



Local moves

↙ ↓ ↘ Q(x′;x)



Markov chain exploration

→ →

↓
Goal: a Markov chain,

xt ∼ T (xt←xt−1), such that:

P (x(t)) = e−E(x(t))/Z for large t.



Invariant/stationary condition

If x(t−1) is a sample from P ,

x(t) is also a sample from P .

∑
x

T (x′←x)P (x) = P (x′)



Ergodicity

Unique invariant distribution

if ‘forget’ starting point, x(0)



Quick review
MCMC: biased random walk exploring a target dist.

Markov steps,

x(s) ∼ T
(
x(s)←x(s−1)

)
MCMC gives approximate,

correlated samples

EP [f ] ≈
1

S

S∑
s=1

f(x(s))

T must leave target invariant

T must be able to get everywhere in K steps



Gibbs sampling

Pick variables in turn or randomly,

and resample P (xi|xj 6=i)

z1

z2
L

l ?

Ti(x
′←x) = P (x′i |xj 6=i) δ(x′j 6=i − xj 6=i)



Gibbs sampling correctness

P (x) = P (xi |x\i)P (x\i)

Simulate by drawing x\i, then xi |x\i

Draw x\i: sample x, throw initial xi away



Reverse operators

If T leaves P (x) stationary, define a reverse operator

R(x←x′) =
T (x′←x)P (x)∑
x T (x

′←x)P (x)
=
T (x′←x)P (x)

P (x′)
.

A necessary condition: there exists R such that:

T (x′←x)P (x) = R(x←x′)P (x′), ∀x, x′.

If R = T , known as detailed balance (not necessary)



Balance condition

T (x′← x)P (x) = R(x← x′)P (x′)

Implies that P (x) is left invariant:∑
x

T (x′←x)P (x) = P (x′)

�
��
�
��
�
��
�
��
�
��
�
��*1∑

x

R(x←x′)



Metropolis–Hastings

Arbitrary proposals ∼ Q:

Q(x′;x)P (x) 6= Q(x;x′)P (x′)
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PRML, Bishop (2006)

Satisfies detailed balance by rejecting moves:

T (x′←x) =


Q(x′;x)min

(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)
x′ 6= x

. . . x′=x



Metropolis–Hastings

Transition operator

• Propose a move from the current state Q(x′;x), e.g. N (x, σ2)

• Accept with probability min
(
1, P (x′)Q(x;x′)

P (x)Q(x′;x)

)
• Otherwise next state in chain is a copy of current state

Notes

• Can use P ∗ ∝ P (x); normalizer cancels in acceptance ratio

• Satisfies detailed balance (shown below)

• Q must be chosen so chain is ergodic

P (x) · T (x
′←x) = P (x) ·Q(x

′
; x)min

(
1,

P (x′)Q(x; x′)
P (x)Q(x′; x)

)
= min

(
P (x)Q(x

′
; x), P (x

′
)Q(x; x

′
)
)

= P (x
′
) ·Q(x; x

′
)min

(
1,

P (x)Q(x′; x)
P (x′)Q(x; x′)

)
= P (x

′
) · T (x←x

′
)



Matlab/Octave code for demo
function samples = dumb_metropolis(init, log_ptilde, iters, sigma)

D = numel(init);

samples = zeros(D, iters);

state = init;

Lp_state = log_ptilde(state);

for ss = 1:iters

% Propose

prop = state + sigma*randn(size(state));

Lp_prop = log_ptilde(prop);

if log(rand) < (Lp_prop - Lp_state)

% Accept

state = prop;

Lp_state = Lp_prop;

end

samples(:, ss) = state(:);

end



Step-size demo

Explore N (0, 1) with different step sizes σ

sigma = @(s) plot(dumb_metropolis(0, @(x)-0.5*x*x, 1e3, s));

sigma(0.1)
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sigma(1)
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68.4% accepts

sigma(100)
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0.5% accepts



Diffusion time

Q

P

L

Generic proposals use

Q(x′;x) = N (x, σ2)

σ large → many rejections

σ small → slow diffusion:
∼(L/σ)2 iterations required

Adapted from MacKay (2003)



An MCMC strategy

Come up with good proposals Q(x′;x)

Combine transition operators:
x1 ∼ TA(·←x0)

x2 ∼ TB(·←x1)

x3 ∼ TC(·←x2)

x4 ∼ TA(·←x3)

x5 ∼ TB(·←x4)

. . .



Summary so far

• We need approximate methods to solve sums/integrals

• Monte Carlo does not explicitly depend on dimension,

although simple methods work only in low dimensions

• Markov chain Monte Carlo (MCMC) can make local moves.

By assuming less, it’s more applicable to higher dimensions

• simple computations ⇒ “easy” to implement

(harder to diagnose).



http://www.kaggle.com/c/DarkWorlds

http://www.kaggle.com/c/DarkWorlds


Dark Matter

http://www.kaggle.com/c/DarkWorlds

http://www.kaggle.com/c/DarkWorlds


Dark Matter

http://www.kaggle.com/c/DarkWorlds

http://www.kaggle.com/c/DarkWorlds










Probabilistic model

e
(n)
1 ∼ N

(
f (n) cos 2θ(n), σ2

)
e
(n)
2 ∼ N

(
f (n) sin 2θ(n), σ2

) f (n) = m/r(n)
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radial distance

× σ̂

+ f̂

f = m/min(r0, r)

σ2 larger for small r



Inference

Markov chain Monte Carlo

(MCMC)



































. . .







Reporting results?

— Average/mean sample?

— Most probable sample?

— Cluster?



Evaluation

Cost: RMSE/1000 +G

G =

√(
1
N

∑N
n=1 cosφn

)2
+
(

1
N

∑N
n=1 sinφn

)2

http://www.kaggle.com/c/DarkWorlds/details/evaluation

http://www.kaggle.com/c/DarkWorlds/details/evaluation


Toy demo
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Toy demo
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Toy demo
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Ave. max. likelihood separation = 0.96, 4% too close



Graphical model

galaxies n=1..N

h(s) x(n)e(n)

Made with http://daft-pgm.org/

http://daft-pgm.org/


Graphical model

sky s=1..S

galaxies n=1..N

h(s)θ x(n)e(n)

Made with http://daft-pgm.org/

http://daft-pgm.org/


How should we run MCMC?

• The samples aren’t independent. Should we thin,

only keep every Kth sample?

• Arbitrary initialization means starting iterations are bad.

Should we discard a “burn-in” period?

• Maybe we should perform multiple runs?

• How do we know if we have run for long enough?



Forming estimates

Approximately independent samples can be obtained by thinning.

However, all the samples can be used.

Use the simple Monte Carlo estimator on MCMC samples. It is:

— consistent

— unbiased if the chain has “burned in”

The correct motivation to thin: if computing f(x(s)) is expensive

In some special circumstances strategic thinning can help.
Steven N. MacEachern and Mario Peruggia, Statistics & Probability Letters, 47(1):91–98, 2000.
http://dx.doi.org/10.1016/S0167-7152(99)00142-X — Thanks to Simon Lacoste-Julien for the reference.



Empirical diagnostics

Rasmussen (2000)

Recommendations

For diagnostics:
Standard software packages like R-CODA

For opinion on thinning, multiple runs, burn in, etc.

Practical Markov chain Monte Carlo
Charles J. Geyer, Statistical Science. 7(4):473–483, 1992.
http://www.jstor.org/stable/2246094



Consistency checks

Do I get the right answer on tiny versions

of my problem?

Can I make good inferences about synthetic data

drawn from my model?

Getting it right: joint distribution tests of posterior simulators,

John Geweke, JASA, 99(467):799–804, 2004.

Posterior Model checking: Gelman et al. Bayesian Data Analysis

textbook and papers.



Getting it right

θ

y

We write MCMC code to update θ |y

Idea: also write code to sample y |θ

Both codes leave P (θ, y) invariant

Run codes alternately. Check θ’s match prior



Example / warning

|—|—————————|
0 1 10

Proposal:

{
xt+1 = 9xt + 1, 0 < xt < 1

xt+1 = (xt − 1)/9, 1 < xt < 10

Accept move with probability:

min

(
1,
P (x′)Q(x;x′)

P (x)Q(x′;x)

)
= min

(
1,
P (x′)

P (x)

)
(Wrong!)



Summary

Write down the probability of everything.

Condition on what you know,
sample everything that you don’t.

Samples give plausible explanations:
— Look at them
— Average their predictions
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