Markov chain Monte Carlo

Probabilistic Models of Cognition, 2011 http://www.ipam.ucla.edu/programs/gss2011/

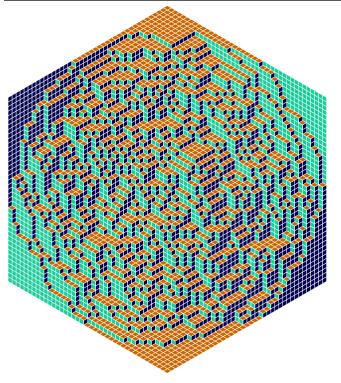
Roadmap:

- Motivation
- Monte Carlo basics
- What is MCMC?
- Metropolis–Hastings and Gibbs
- ...more tomorrow.

Iain Murray

http://homepages.inf.ed.ac.uk/imurray2/

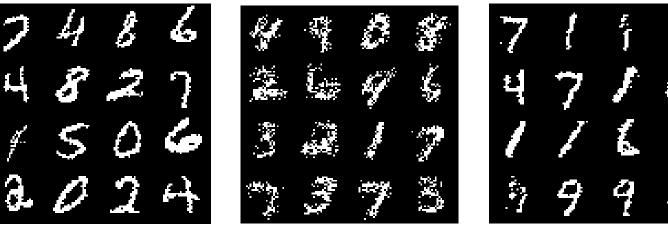
Eye-balling samples



Sometimes samples are pleasing to look at: (if you're into geometrical combinatorics)

Figure by Propp and Wilson. Source: MacKay textbook.

Sanity check probabilistic modeling assumptions:



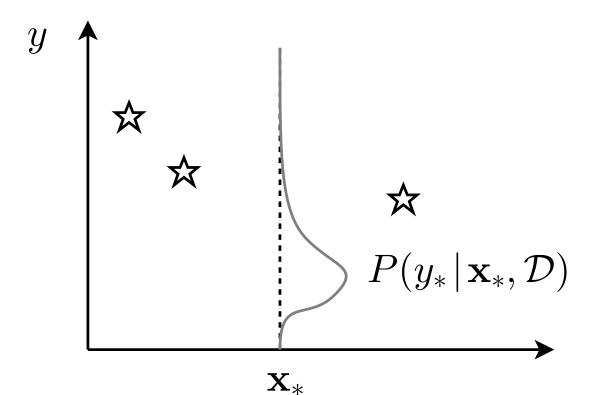
Data samples

MoB samples

RBM samples

The need for integrals

$$P(y_* | \mathbf{x}_*, \mathcal{D}) = \int d\theta \ P(y_*, \theta | \mathbf{x}_*, \mathcal{D})$$
$$= \int d\theta \ P(y_* | \theta, \mathcal{D}) \ P(\theta | \mathbf{x}_*, \mathcal{D})$$



A statistical problem

What is the average height of the GSS2011 lecturers? Method: measure their heights, add them up and divide by $N \approx 25$.

What is the average height f of people p in California C?

$$E_{p \in \mathcal{C}}[f(p)] \equiv \frac{1}{|\mathcal{C}|} \sum_{p \in \mathcal{C}} f(p), \quad \text{``intractable'' ?}$$

 $\approx \frac{1}{S} \sum_{s=1}^{S} f(p^{(s)}), \text{ for random survey of } S \text{ people } \{p^{(s)}\} \in \mathcal{C}$

Surveying works for large and notionally infinite populations.

Simple Monte Carlo

Statistical sampling can be applied to any expectation:

In general:

$$\int f(x)P(x) \, \mathrm{d}x \; \approx \; \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \ x^{(s)} \sim P(x)$$

Example: making predictions

$$p(x|\mathcal{D}) = \int P(x|\theta, \mathcal{D}) P(\theta|\mathcal{D}) d\theta$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} P(x|\theta^{(s)}, \mathcal{D}), \quad \theta^{(s)} \sim P(\theta|\mathcal{D})$$

More examples: E-step statistics in EM, Boltzmann machine learning

Properties of Monte Carlo

Estimator:
$$\int f(x) P(x) dx \approx \hat{f} \equiv \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x^{(s)} \sim P(x)$$

Estimator is unbiased:

$$\mathbb{E}_{P(\{x^{(s)}\})}\left[\hat{f}\right] = \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{P(x)}[f(x)] = \mathbb{E}_{P(x)}[f(x)]$$

Variance shrinks $\propto 1/S$:

$$\operatorname{var}_{P(\{x^{(s)}\})}\left[\hat{f}\right] = \frac{1}{S^2} \sum_{s=1}^{S} \operatorname{var}_{P(x)}[f(x)] = \operatorname{var}_{P(x)}[f(x)] / S$$

"Error bars" shrink like \sqrt{S}

"Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse."

— Alan Sokal, 1996

A dumb approximation of π

$$P(x,y) = \begin{cases} 1 & 0 < x < 1 \text{ and } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$
$$\pi = 4 \iint \mathbb{I} \left((x^2 + y^2) < 1 \right) P(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333
octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418</pre>

Alternatives to Monte Carlo

There are other methods of numerical integration!

Example: (nice) 1D integrals are easy:

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

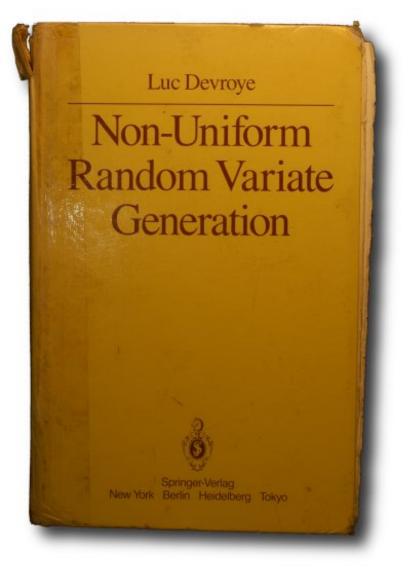
Gives π to 6 dp's in 108 evaluations, machine precision in 2598. (NB Matlab's quadl fails at tolerance=0, but Octave works.)

In higher dimensions sometimes determinstic approximations work: Variational Bayes, EP, INLA, . . . Want to sample to approximate expectations:

$$\int f(x) P(x) \, \mathrm{d}x \; \approx \; \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x^{(s)} \sim P(x)$$

How do we get the samples?

Sampling simple distributions



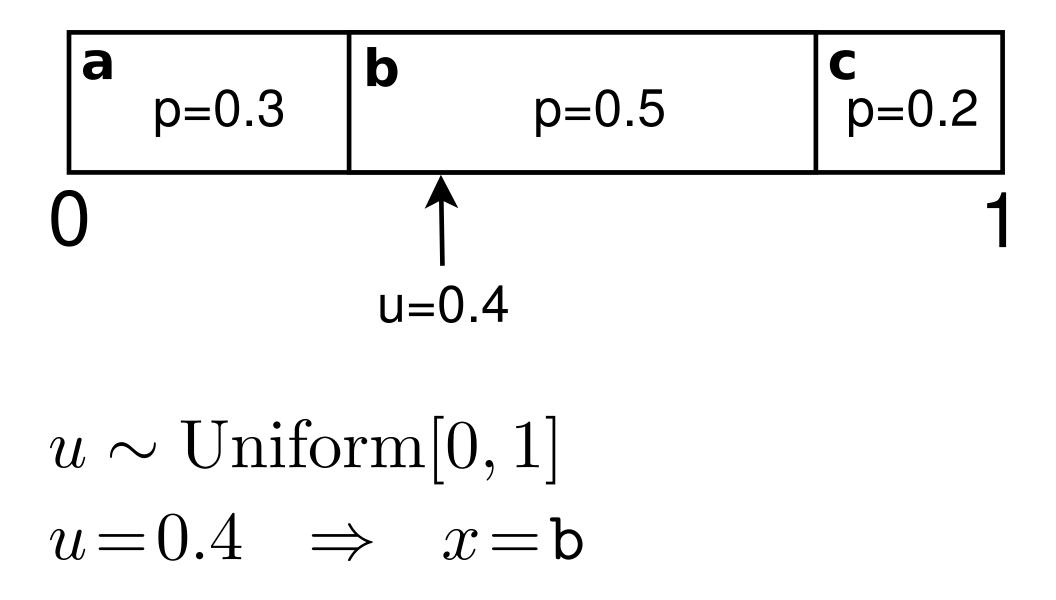
Use library routines for univariate distributions

(and some other special cases)

This book (free online) explains how some of them work

http://cg.scs.carleton.ca/~luc/rnbookindex.html

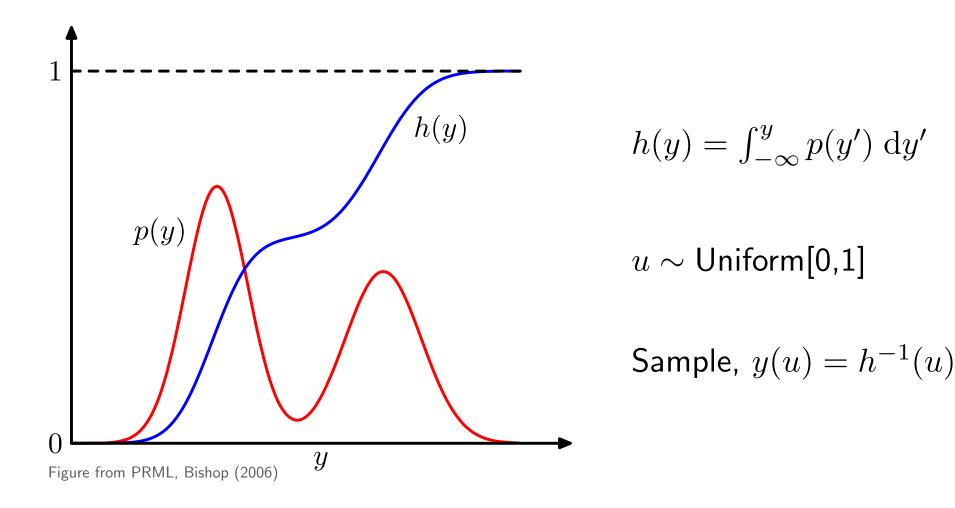
Sampling discrete values



There are more efficient ways for large numbers of values and samples. See Devroye book.

Sampling from densities

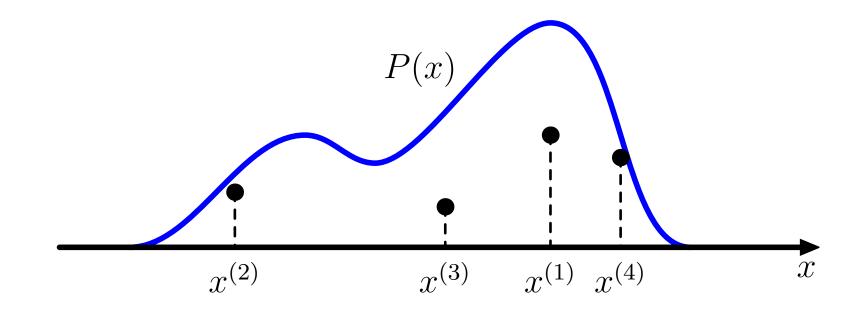
How to convert samples from a Uniform[0,1] generator:



Although we can't always compute and invert h(y)

Sampling from densities

Draw points uniformly under the curve:



Probability mass to left of point \sim Uniform[0,1]

Rejection sampling

Sampling from $\pi(x)$ using tractable q(x):

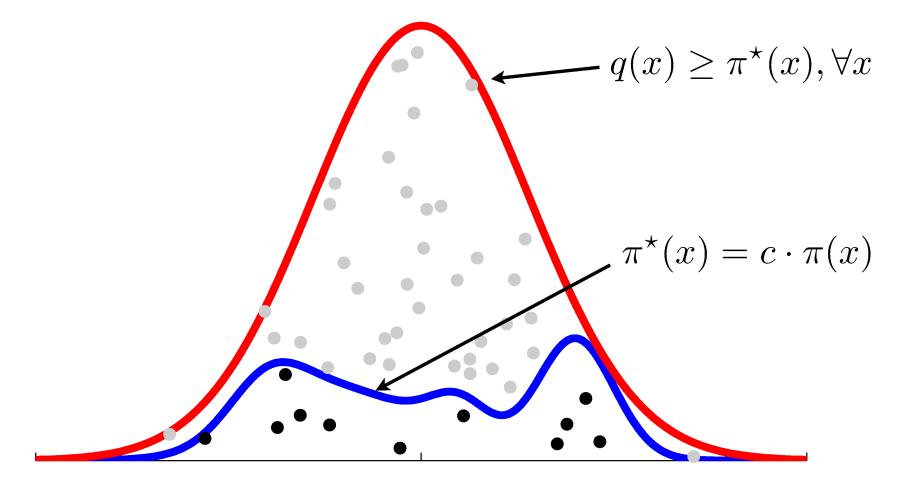


Figure credit: Ryan P. Adams

Importance sampling

Throwing away samples seems wasteful Instead rewrite the integral as an expectation under Q:

$$\int f(x) P(x) dx = \int f(x) \frac{P(x)}{Q(x)} Q(x) dx, \qquad (Q(x) > 0 \text{ if } P(x) > 0)$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{P(x^{(s)})}{Q(x^{(s)})}, \quad x^{(s)} \sim Q(x)$$

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation. Divide and multiply any integrand by a convenient distribution.

Importance sampling (2)

Previous slide assumed we could evaluate $P(x) = \tilde{P}(x)/\mathcal{Z}_P$

$$\int f(x) P(x) \, dx \approx \frac{Z_Q}{Z_P} \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{\tilde{P}(x^{(s)})}{\tilde{Q}(x^{(s)})}, \quad x^{(s)} \sim Q(x)$$
$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{\tilde{r}^{(s)}}{\frac{1}{S} \sum_{s'} \tilde{r}^{(s')}} \equiv \sum_{s=1}^{S} f(x^{(s)}) w^{(s)}$$

This estimator is **consistent** but **biased**

Exercise: Prove that $Z_P/Z_Q \approx \frac{1}{S} \sum_s \tilde{r}^{(s)}$

Summary so far

- Sums and integrals, often expectations, occur frequently in statistics
- Monte Carlo approximates expectations with a sample average
- **Rejection sampling** draws samples from complex distributions
- Importance sampling applies Monte Carlo to 'any' sum/integral

Next: Why are we not done? MCMC, Metropolis–Hastings and Gibbs

Need to sample large, non-standard distributions:

$$P(x | \mathcal{D}) \approx \frac{1}{S} \sum_{s=1}^{S} P(x | \theta), \qquad \theta \sim P(\theta | \mathcal{D})$$

When there are nuisance parameters:

$$P(\theta | \mathcal{D}) = \int d\alpha \ P(\theta, \alpha | \mathcal{D})$$

$$\theta, \alpha \sim P(\theta, \alpha | \mathcal{D}) \propto P(\alpha) P(\theta | \alpha) P(\mathcal{D} | \theta)$$

and discard α 's

Application to large problems

Rejection & importance sampling scale badly with dimensionality

Example:

$$P(x) = \mathcal{N}(0, \mathbb{I}), \quad Q(x) = \mathcal{N}(0, \sigma^2 \mathbb{I})$$

Rejection sampling:

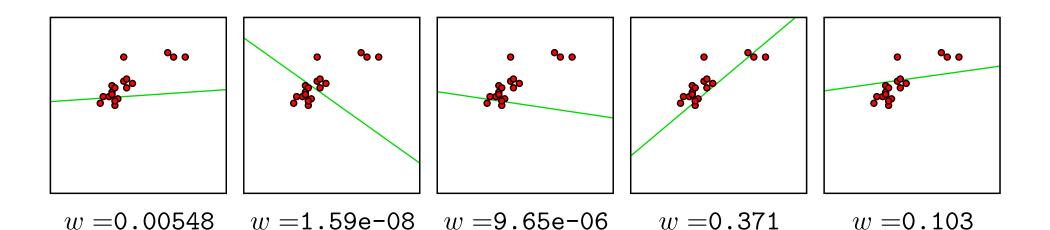
Requires $\sigma \geq 1$. Fraction of proposals accepted = σ^{-D}

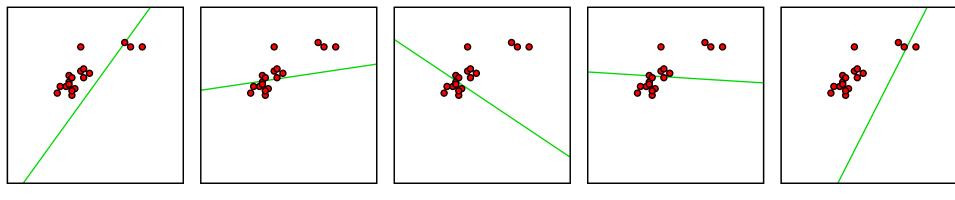
Importance sampling:

$$\operatorname{Var}[P(x)/Q(x)] = \left(\frac{\sigma^2}{2-1/\sigma^2}\right)^{D/2} - 1$$

Infinite / undefined variance if $\sigma \leq 1/\sqrt{2}$

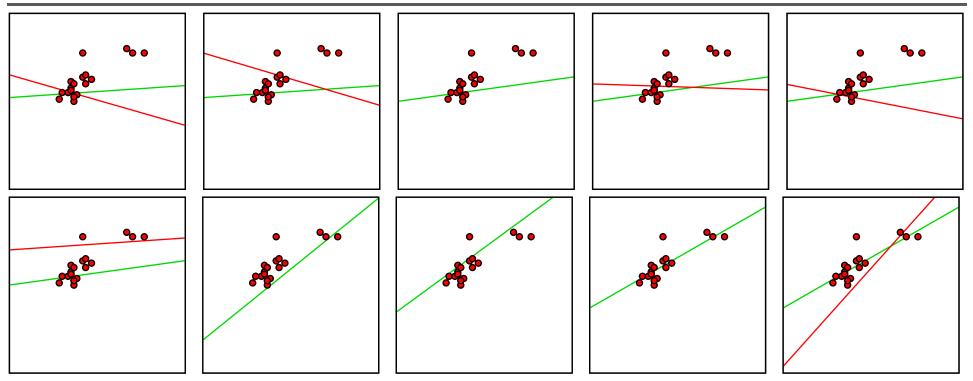
Importance sampling weights





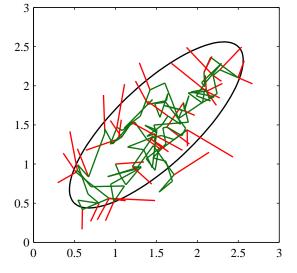
w = 1.01e-08 w = 0.111 w = 1.92e-09 w = 0.0126 w = 1.1e-51

Metropolis algorithm



- Perturb parameters: $Q(\theta'; \theta)$, e.g. $\mathcal{N}(\theta, \sigma^2)$
- Accept with probability $\min\left(1, \frac{\tilde{P}(\theta'|\mathcal{D})}{\tilde{P}(\theta|\mathcal{D})}\right)$
- Otherwise keep old parameters

Detail: Metropolis, as stated, requires $Q(\theta'; \theta) = Q(\theta; \theta')$

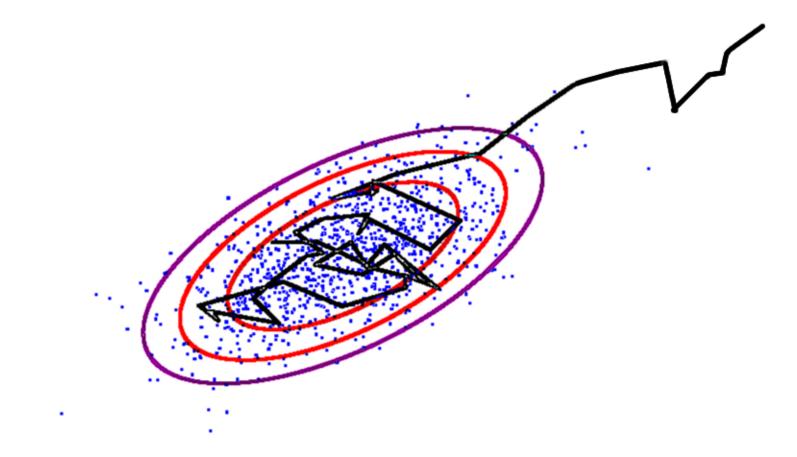


This subfigure from PRML, Bishop (2006)

Markov chain Monte Carlo

Construct a biased random walk that explores target dist $P^{\star}(x)$

Markov steps, $x_t \sim T(x_t \leftarrow x_{t-1})$



MCMC gives approximate, correlated samples from $P^{\star}(x)$

Transition operators

Discrete example

$$P^{\star} = \begin{pmatrix} 3/5\\1/5\\1/5 \end{pmatrix} \qquad T = \begin{pmatrix} 2/3 & 1/2 & 1/2\\1/6 & 0 & 1/2\\1/6 & 1/2 & 0 \end{pmatrix} \qquad T_{ij} = T(x_i \leftarrow x_j)$$

 P^{\star} is an **invariant distribution** of T because $TP^{\star} = P^{\star}$, i.e.

$$\sum_{x} T(x' \leftarrow x) P^{\star}(x) = P^{\star}(x')$$

Also P^* is the equilibrium distribution of T:

Fo machine precision:
$$T^{100} {1 \choose 0} = {3/5 \choose 1/5} = P^{\star}$$

Ergodicity requires: $T^{K}(x' \leftarrow x) > 0$ for all $x' : P^{\star}(x') > 0$, for some K

If T leaves $P^{\star}(x)$ stationary, we can define a *reverse operator*

$$R(x \leftarrow x') \propto T(x' \leftarrow x) P^{\star}(x) = \frac{T(x' \leftarrow x) P^{\star}(x)}{\sum_{x} T(x' \leftarrow x) P^{\star}(x)} = \frac{T(x' \leftarrow x) P^{\star}(x)}{P^{\star}(x')}$$

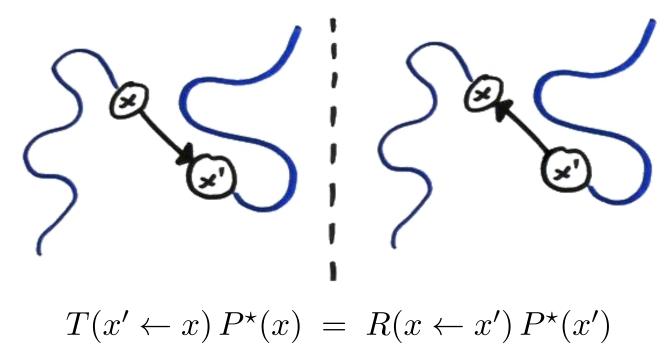
A necessary (and sufficient) condition: there exists R such that:

$$T(x' \leftarrow x) P^{\star}(x) = R(x \leftarrow x') P^{\star}(x'), \qquad \forall x, x'$$

If R = T, operator satisfies **detailed balance** (not necessary)

Balance condition

 $\rightarrow x \rightarrow x'$ and $\rightarrow x' \rightarrow x$ are equally probable:

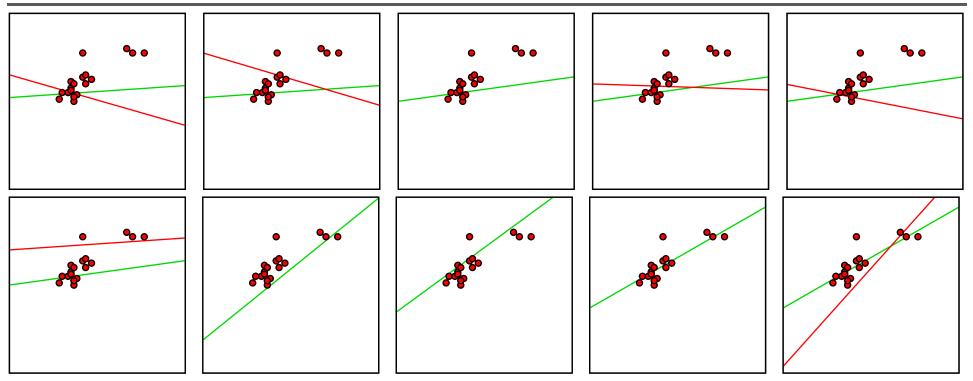


Implies that $P^{\star}(x)$ is left invariant:

$$\sum_{x} T(x' \leftarrow x) P^{\star}(x) = P^{\star}(x') \sum_{x} R(x \leftarrow x')^{-1}$$

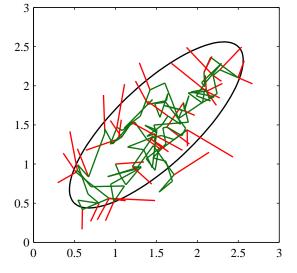
Enforcing the condition is easy: it only involves isolated pairs

Metropolis algorithm



- Perturb parameters: $Q(\theta'; \theta)$, e.g. $\mathcal{N}(\theta, \sigma^2)$
- Accept with probability $\min\left(1, \frac{\tilde{P}(\theta'|\mathcal{D})}{\tilde{P}(\theta|\mathcal{D})}\right)$
- Otherwise keep old parameters

Detail: Metropolis, as stated, requires $Q(\theta'; \theta) = Q(\theta; \theta')$



This subfigure from PRML, Bishop (2006)

Metropolis–Hastings

Transition operator

- Propose a move from the current state Q(x';x) , e.g. $\mathcal{N}(x,\sigma^2)$
- Accept with probability $\min\left(1, \frac{P(x')Q(x;x')}{P(x)Q(x';x)}\right)$
- Otherwise next state in chain is a copy of current state

Notes

- Can use $\tilde{P} \propto P(x)$; normalizer cancels in acceptance ratio
- Satisfies detailed balance (shown below)
- $\bullet \ Q$ must be chosen so chain is ergodic

$$P(x) \cdot T(x' \leftarrow x) = P(x) \cdot Q(x';x) \min\left(1, \frac{P(x')Q(x;x')}{P(x)Q(x';x)}\right) = \min\left(P(x)Q(x';x), P(x')Q(x;x')\right)$$
$$= P(x') \cdot Q(x;x') \min\left(1, \frac{P(x)Q(x';x)}{P(x')Q(x;x')}\right) = P(x') \cdot T(x \leftarrow x')$$

Matlab/Octave code for demo

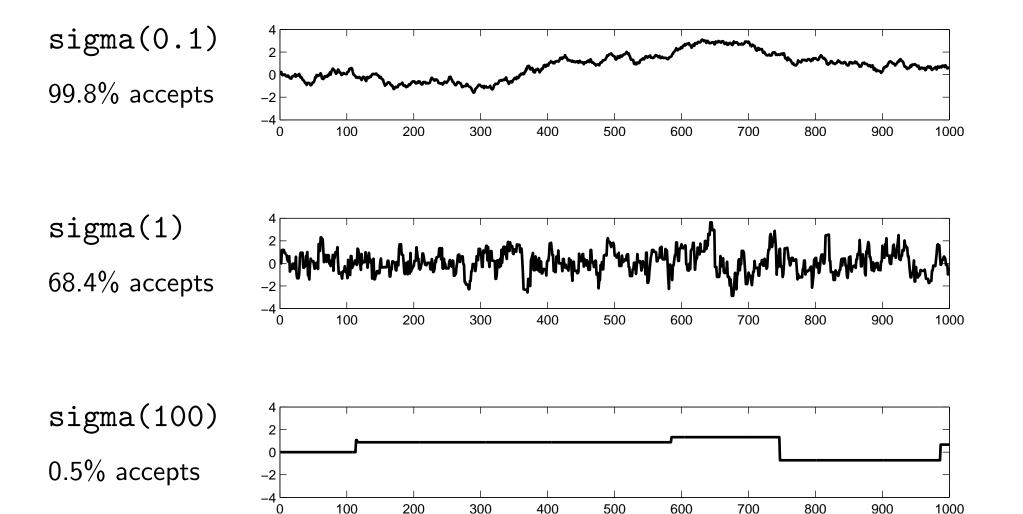
```
function samples = dumb_metropolis(init, log_ptilde, iters, sigma)
```

```
D = numel(init);
samples = zeros(D, iters);
state = init;
Lp_state = log_ptilde(state);
for ss = 1:iters
    % Propose
    prop = state + sigma*randn(size(state));
    Lp_prop = log_ptilde(prop);
    if log(rand) < (Lp_prop - Lp_state)
        % Accept
        state = prop;
        Lp_state = Lp_prop;
    end
    samples(:, ss) = state(:);
end
```

Step-size demo

Explore $\mathcal{N}(0,1)$ with different step sizes σ

sigma = @(s) plot(dumb_metropolis(0, @(x) -0.5*x*x, 1e3, s));



Gibbs sampling

A method with no rejections:

- Initialize \mathbf{x} to some value
- Pick each variable in turn or randomly and resample $P(x_i | \mathbf{x}_{j \neq i})$

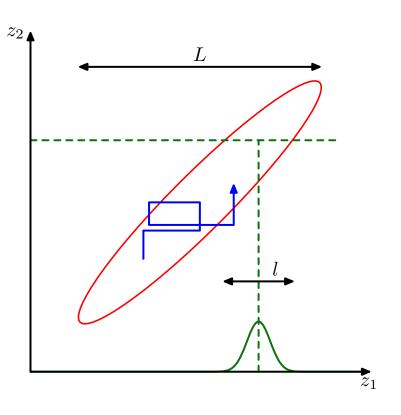


Figure from PRML, Bishop (2006)

Proof of validity: a) check detailed balance for component update. b) Metropolis–Hastings 'proposals' $P(x_i|\mathbf{x}_{j\neq i}) \Rightarrow$ accept with prob. 1 Apply a series of these operators. Don't need to check acceptance.

Gibbs sampling

Alternative explanation:

Chain is currently at \mathbf{x}

At equilibrium can assume $\mathbf{x} \sim P(\mathbf{x})$

Consistent with $\mathbf{x}_{j\neq i} \sim P(\mathbf{x}_{j\neq i}), \ x_i \sim P(x_i | \mathbf{x}_{j\neq i})$

Pretend x_i was never sampled and do it again.

This view may be useful later for non-parametric applications

Summary so far

- We need approximate methods to solve sums/integrals
- Monte Carlo does not explicitly depend on dimension, although simple methods work only in low dimensions
- Markov chain Monte Carlo (MCMC) can make local moves. By assuming less, it's more applicable to higher dimensions
- simple computations \Rightarrow "easy" to implement (harder to diagnose).