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Abstract

Nested sampling is a new Monte Carlo method by Skilling [1] in-
tended for general Bayesian computation. Nested sampling pro-
vides a robust alternative to annealing-based methods for comput-
ing normalizing constants. It can also generate estimates of other
quantities such as posterior expectations. The key technical re-
quirement is an ability to draw samples uniformly from the prior
subject to a constraint on the likelihood. We provide a demonstra-
tion with the Potts model, an undirected graphical model.

1 Introduction

The computation of normalizing constants plays an important role in statistical
inference. For example, Bayesian model comparison needs the evidence, or marginal
likelihood of a model M

Z = p(D|M) =

∫

p(D|θ,M)p(θ|M) dθ ≡
∫

L(θ)π(θ) dθ, (1)

where the model has prior π and likelihood L over parameters θ after observing data
D. This integral is usually intractable for models of interest. However, given its
importance in Bayesian model comparison, many approaches—both sampling-based
and deterministic—have been proposed for estimating it.

Often the evidence cannot be obtained using samples drawn from either the prior
π, or the posterior p(θ|D,M) ∝ L(θ)π(θ). Practical Monte Carlo methods need
to sample from a sequence of distributions, possibly at different “temperatures”
p(θ|β) ∝ L(θ)βπ(θ) (see Gelman and Meng [2] for a review). These methods are
sometimes cited as a gold standard for comparison with other approximate tech-
niques, e.g. Beal and Ghahramani [3]. However, care is required in choosing inter-
mediate distributions; appropriate temperature-based distributions may be difficult
or impossible to find. Nested sampling provides an alternate standard, which makes
no use of temperature and does not require tuning of intermediate distributions or
other large sets of parameters.



θ1

θ2

x11
2

1
4

1
8

L(x)

(a)

θ1

θ2

x1

L(x)

x1x2x3

(b)

θ1

θ2

x1

L(x)

x1

(c)

Figure 1: (a) Elements of parame-
ter space (top) are sorted by likeli-
hood and arranged on the x-axis. An
eighth of the prior mass is inside the
innermost likelihood contour in this
figure. (b) Point xi is drawn from
the prior inside the likelihood con-
tour defined by xi−1. Li is identified
and p({xi}) is known, but exact val-
ues of xi are not known. (c) With N
particles, the least likely one sets the
likelihood contour and is replaced by
a new point inside the contour ({Li}
and p({xi}) are still known).

Nested sampling uses a natural definition of Z, a sum over prior mass. The
weighted sum over likelihood elements is expressed as the area under a monotonic
one-dimensional curve “L vs x” (figure 1(a)), where:

Z =

∫

L(θ)π(θ) dθ =

∫ 1

0

L(θ(x)) dx. (2)

This is a change of variables dx(θ) = π(θ)dθ, where each volume element of the prior
in the original θ-vector space is mapped onto a scalar element on the one-dimensional
x-axis. The ordering of the elements on the x-axis is chosen to sort the prior mass
in decreasing order of likelihood values (x1 < x2 ⇒ L(θ(x1)) > L(θ(x2))). See
appendix A for dealing with elements with identical likelihoods.

Given some points {(xi, Li)}I
i=1 ordered such that xi > xi+1, the area under the

curve (2) is easily approximated. We denote by Ẑ estimates obtained using a

trapezoidal rule. Rectangle rules upper and lower bound the error Ẑ − Z.

Points with known x-coordinates are unavailable in general. Instead we generate
points, {θi}, such that the distribution p(x) is known (where x ≡ {xi}), and find
their associated {Li}. A simple algorithm to draw I points is algorithm 1, see also
figure 1(b).

Algorithm 1

Initial point: draw θ1 ∼ π(θ).
for i = 2 to I: draw θi ∼ π̆(θ|L(θi−1)),

where

π̆(θ|L(θi−1)) ∝
{

π(θ) L(θ) > L(θi−1)

0 otherwise.
(3)

Algorithm 2

Initialize: draw N points θ(n) ∼ π(θ)
for i = 2 to I:

• m = argminn L(θ(n))

• θi−1 = θ(m)

• draw θm ∼ π̆(θ|L(θi−1)), given
by equation (3)

We know p(x1) = Uniform(0, 1), because x is a cumulative sum of prior mass.
Similarly p(xi|xi−1) = Uniform(0, xi−1), as every point is drawn from the prior
subject to L(θi) > L(θi−1) ⇒ xi < xi−1. This recursive relation allows us to
compute p(x).

A simple generalization, algorithm 2, uses multiple θ particles; at each step the least
likely is replaced with a draw from a constrained prior (figure 1(c)). Now p(x1|N)=

NxN−1
1 and subsequent points have p(xi/xi−1|xi−1, N) = N(xi/xi−1)

N−1. This
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Figure 2: The arithmetic and geometric means of xi against iteration number, i, for
algorithm 2 with N = 8. Error bars on the geometric mean show exp(−i/N ±

√
i/N).

Samples of p(x|N) are superimposed (i = 1600 . . . 1800 omitted for clarity).

distribution over x combined with observations {Li} gives a distribution over Ẑ:

p(Ẑ|{Li}, N) ≈
∫

δ(Ẑ(x) − Ẑ)p(x|N) dx. (4)

Samples from the posterior over θ are also available, see Skilling [1] for details.

Nested sampling was introduced by Skilling [1]. The key idea is that samples from
the prior, subject to a nested sequence of constraints (3), give a probabilistic re-
alization of the curve, figure 1(a). Related work can be found in McDonald and
Singer [4]. Explanatory notes and some code are available online1. In this paper we
present some new discussion of important issues regarding the practical implemen-
tation of nested sampling and provide the first application to a challenging problem.
This leads to the first cluster-based method for Potts models with first-order phase
transitions of which we are aware.

2 Implementation issues

2.1 MCMC approximations

The nested sampling algorithm assumes obtaining samples from π̆(θ|L(θi−1)), equa-
tion (3), is possible. Rejection sampling using π would slow down exponentially with
iteration number i. We explore approximate sampling from π̆ using Markov chain
Monte Carlo (MCMC) methods.

In high-dimensional problems it is likely that the majority of π̆’s mass is typically in
a thin shell at the contour surface [5, p37]. This suggests finding efficient chains that
sample at constant likelihood, a microcanonical distribution. In order to complete
an ergodic MCMC method, we also need transition operators that can alter the
likelihood (within the constraint). A simple Metropolis method may suffice.

We must initialize the Markov chain for each new sample somewhere. One possibil-
ity is to start at the position of the deleted point, θi−1, on the contour constraint,
which is independent of the other points and not far from the bulk of the required
uniform distribution. However, if the Markov chain mixes slowly amongst modes,
the new point starting at θi−1 may be trapped in an insignificant mode. In this
case it would be better to start at one of the other N−1 existing points inside the
contour constraint. They are all draws from the correct distribution, π̆(θ|L(θi−1)),
so represent modes fairly. However, this method may also require many Markov
chain steps, this time to make the new point effectively independent of the point it
cloned.

1http://www.inference.phy.cam.ac.uk/bayesys/
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Figure 3: Histograms of errors in the point estimate log(Z̃)
over 1000 random experiments for different approximations.
The test system was a 40-dimensional hypercube of length
100 with uniform prior centered on the origin. The log-
likelihood was L = −θ⊤θ/2. Nested sampling used N = 10,
I = 2000. (a) Monte Carlo estimation (equation (5)) using
S = 12 sampled trajectories (b) S = 1200 sampled trajec-
tories. (c) Deterministic approximation using the geomet-
ric mean trajectory. In this example perfect integration over

p(x|N) gives a distribution of width ≈ 3 over log(Ẑ). There-
fore, improvements over (c) for approximating equation (5)
are unwarranted.

2.2 Integrating out x

To estimate quantities of interest, we average over p(x|N), as in equation (4). The

mean of a distribution over log(Ẑ) can be found by simple Monte Carlo estimation:

log(Z) ≈
∫

log(Ẑ(x))p(x|N) dx ≈ 1

S

S
∑

s=1

log(Ẑ(x(s))) x(s) ∼ p(x|N). (5)

This scheme is easily implemented for any expectation under p(x|N), including

error bars from the variance of log(Ẑ). To reduce noise in comparisons between
runs it is advisable to reuse the same samples from p(x|N) (e.g. clamp the seed
used to generate them).

A simple deterministic approximation is useful for understanding, and also pro-
vides fast to compute, low variance estimators. Figure 2 shows sampled tra-
jectories of xi as the algorithm progresses. The geometric mean path, xi ≈
exp(

∫

p(xi|N) log xi dxi) = e−i/N , follows the path of typical settings of x. Us-
ing this single x setting is a reasonable and very cheap alternative to averaging over
settings (equation 5); see figure 3.

Typically the trapezoidal estimate of the integral, Ẑ, is dominated by a small
number of trapezoids, around iteration i∗ say. Considering uncertainty on just
log xi∗ = −i∗/N ±

√
i∗/N provides reasonable and convenient error bars.

3 Potts Models

The Potts model, an undirected graphical model, defines a probability distribution
over discrete variables s = (s1, . . . , sn), each taking on one of q distinct “colors”:

P (s|J, q) =
1

ZP(J, q)
exp

(

∑

(ij)∈E

J(δsisj
− 1)

)

. (6)

The variables exist as nodes on a graph where (ij) ∈ E means that nodes i and j
are linked by an edge. The Kronecker delta, δsisj

is one when si and sj are the
same color and zero otherwise. Neighboring nodes pay an “energy penalty” of J
when they are different colors. Here we assume identical positive couplings J > 0
on each edge (section 4 discusses the extension to different Jij). The Ising model
and Boltzmann machine are both special cases of the Potts model with q=2.

Our goal is to compute the normalization constant ZP(J, q), where the discrete
variables s are the θ variables that need to be integrated (i.e. summed) over.



3.1 Swendsen–Wang sampling

We will take advantage of the “Fortuin-Kasteleyn-Swendsen-Wang” (FKSW) joint
distribution identified explicitly in Edwards and Sokal [6] over color variables s and
a bond variable for each edge in E , dij ∈ {0, 1}:

P (s,d) =
1

ZP(J, q)

∏

(ij)∈E

[

(1 − p)δdij ,0 + pδdij ,1δsi,sj

]

, p ≡ (1 − e−J). (7)

The marginal distribution over s in the FKSW model is the Potts distribution,
equation (6). The marginal distribution over the bonds is the random cluster model
of Fortuin and Kasteleyn [7]:

P (d) =
1

ZP(J, q)
pD(1−p)|E|−DqC(d) =

1

ZP(J, q)
exp(D log(eJ −1))e−J|E|qC(d), (8)

where C(d) is the number of connected components in a graph with edges wherever
dij =1, and D=

∑

(ij)∈E dij . As the partition functions of equations 6, 7 and 8 are

identical, we should consider using any of these distributions to compute ZP(J, q).
The algorithm of Swendsen and Wang [8] performs block Gibbs sampling on the
joint model by alternately sampling from P (dij |s) and P (s|dij). This can convert
a sample from any of the three distributions into a sample from one of the others.

3.2 Nested Sampling

A simple approximate nested sampler uses a fixed number of Gibbs sampling up-
dates of π̆. Cluster-based updates are also desirable in these models. Focusing on
the random cluster model, we rewrite equation (8):

P (d) =
1

ZN
L(d)π(d) where (9)

ZN =
ZP(J, q)

Zπ
exp(J |E|), L(d) = exp(D log(eJ − 1)), π(d) =

1

Zπ
qC(d).

Likelihood thresholds are thresholds on the total number of bonds D. Many states
have identical D, which requires careful treatment, see appendix A. Nested sampling
on this system will give the ratio of ZP/Zπ. The prior normalization, Zπ, can be
found from the partition function of a Potts system at J = log(2).

The following steps give two MCMC operators to change the bonds d → d′:

1. Create a random coloring, s, uniformly from the qC(d) colorings satisfying
the bond constraints d, as in the Swendsen–Wang algorithm.

2. Count sites that allow bonds, E =
∑

(ij)∈E δsi,sj
.

3. Either, operator 1: record the number of bonds D′ =
∑

(ij)∈E dij

Or, operator 2: draw D′ from Q(D′|E(s)) ∝
(

E(s)
D′

)

.

4. Throw away the old bonds, d, and pick uniformly from one of the
(

E(s)
D′

)

ways of setting D′ bonds in the E available sites.

The probability of proposing a particular coloring and new setting of the bonds is

Q(s,d′|d) = Q(d′|s, D′)Q(D′|E(s))Q(s|d) =
1

(

E(s)
D′

)
Q(D′|E(s))

1

qC(d)
. (10)

Summing over colorings, the correct Metropolis-Hastings acceptance ratio is:

a =
π(d′)

π(d)
·
∑

s
Q(s,d|d′)

∑

s
Q(s,d′|d)

=
qC(d′)

qC(d)
· qC(d)

qC(d′)

∑

s
Q(D|s)/

(

E(s)
D

)

∑

s
Q(D′|s)/

(

E(s)
D′

)
= 1, (11)



Table 1: Partition function results for 16×16 Potts systems (see text for details).

Method q = 2 (Ising), J = 1 q = 10, J = 1.477

Gibbs AIS 7.1 ± 1.1 (1.5)
Swendsen–Wang AIS 7.4 ± 0.1 (1.2)
Gibbs nested sampling 7.1 ± 1.0 12.2 ± 2.4
Random-cluster nested sampling 7.1 ± 0.7 14.1 ± 1.8
Acceptance ratio 7.3 11.2

regardless of the choice in step 3. The simple first choice solves the difficult problem
of navigating at constant D. The second choice defines an ergodic chain2.

4 Results

Table 1 shows results on two example systems: an Ising model, q = 1, and a q = 10
Potts model in an difficult parameter regime. We tested nested samplers using
Gibbs sampling and the cluster-based algorithm, annealed importance sampling
(AIS) [9] using both Gibbs sampling and Swendsen–Wang cluster updates. We also
developed an acceptance ratio method [10] based on our representation in equation
(9), which we ran extensively and should give nearly correct results.

Annealed importance sampling (AIS) was run 100 times, with a geometric spacing
of 104 settings of J as the annealing schedule. Nested sampling used N = 100
particles and 100 full-system MCMC updates to approximate each draw from π̆.
Each Markov chain was initialized at one of the N−1 particles satisfying the current
constraint. In trials using the other alternative (section 2.1) the Gibbs nested
sampler could get stuck permanently in a local maximum of the likelihood, while
the cluster method gave erroneous answers for the Ising system.

AIS performed very well on the Ising system. We took advantage of its performance
in easy parameter regimes to compute Zπ for use in the cluster-based nested sam-
pler. However, with a “temperature-based” annealing schedule, AIS was unable to
give useful answers for the q = 10 system. While nested sampling appears to be
correct within its error bars.

It is known that even the efficient Swendsen–Wang algorithm mixes slowly for Potts
models with q > 4 near critical values of J [11], see figure 4. Typical Potts model
states are either entirely disordered or ordered; disordered states contain a jumble
of small regions with different colors (e.g. figure 4(b)), in ordered states the system
is predominantly one color (e.g. figure 4(d)). Moving between these two phases
is difficult; defining a valid MCMC method that moves between distinct phases
requires knowledge of the relative probability of the whole collections of states in
those phases.

Temperature-based annealing algorithms explore the model for a range of settings
of J and fail to capture the correct behavior near the transition. Despite using
closely related Markov chains to those used in AIS, nested sampling can work in all
parameter regimes. Figure 4(e) shows how nested sampling can explore a mixture
of ordered and disordered phases. By moving steadily through these states, nested
sampling is able to estimate the prior mass associated with each likelihood value.

2Proof: with finite probability all si are given the same color, then any allowable D′ is
possible, in turn all allowable d

′ have finite probability.
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Figure 4: Two 256 × 256, q = 10 Potts models with starting states (a) and (c) were
simulated with 5 × 106 full-system Swendsen–Wang updates with J = 1.42577. The
corresponding results, (b) and (d) are typical of all the intermediate samples: Swendsen–
Wang is unable to take (a) into an ordered phase, or (c) into a disordered phase, although
both phases are typical at this J . (e) in contrast shows an intermediate state of nested
sampling, which succeeds in bridging the phases.

This behaviour is not possible in algorithms that use J as a control parameter.

The potentials on every edge of the Potts model in this paper were the same. Much
of the formalism above generalizes to allow different edge weights Jij on each edge,
and non-zero biases on each variable. Indeed Edwards and Sokal [6] gave a general
procedure for constructing such auxiliary-variable joint distributions. This gener-
alization would make the model more relevant to MRFs used in other fields (e.g.
computer vision). The challenge for nested sampling remains the invention of effec-
tive sampling schemes that keep a system at or near constant energy. Generalizing
step 4 in section 3.2 would be the difficult step.

Other temperatureless Monte Carlo methods exist, e.g. Berg and Neuhaus [12] study
the Potts model using the multicanonical ensemble. Nested sampling has some
unique properties compared to the established method. Formally it has only one
free parameter, N the number of particles. Unless problems with multiple modes
demand otherwise, N = 1 often reveals useful information, and if the error bars on
Z are too large further runs with larger N may be performed.

5 Conclusions

We have applied nested sampling to compute the normalizing constant of a system
that is challenging for many Monte Carlo methods.

• Nested sampling’s key technical requirement, an ability to draw samples
uniformly from a constrained prior, is largely solved by efficient MCMC
methods.

• No complex schedules are required; steady progress towards compact re-
gions of large likelihood is controlled by a single free parameter, N , the
number of particles.

• Multiple particles, a built-in feature of this algorithm, are often necessary
to obtain accurate results.

• Nested sampling has no special difficulties on systems with first order phase-
transitions, whereas all temperature-based methods fail.

We believe that nested sampling’s unique properties will be found useful in a variety
of statistical applications.



A Degenerate likelihoods

The description in section 1 assumed that the likelihood function provides a total
ordering of elements of the parameter space. However, distinct elements dx and
dx′ could have the same likelihood, either because the parameters are discrete, or
because the likelihood is degenerate.

One way to break degeneracies is through a joint model with variables of interest θ
and an independent variable m ∈ [0, 1]:

P (θ, m) = P (θ) · P (m) =
1

ZL(θ)π(θ) · 1

Zm
L(m)π(m) (12)

where L(m)=1 + ǫ(m − 0.5), π(m)=1 and Zm =1. We choose ǫ such that log(ǫ)
is smaller than the smallest difference in log(L(θ)) allowed by machine precision.
Standard nested sampling is now possible. Assuming we have a likelihood constraint
Li, we need to be able to draw from

P (θ′,m′|θ, m,Li) ∝
{

π(θ′)π(m′) L(θ′)L(m′) > Li,

0 otherwise.
(13)

The additional variable can be ignored except for L(θ′) = L(θi), then only m′ > m
are possible. Therefore, the probability of states with likelihood L(θi) are weighted
by (1 − m′).
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